1. Andrew flips a fair coin 5 times, and counts the number of heads that appear. Beth flips a fair coin 6 times and also counts the number of heads that appear. Compute the probability Andrew counts at least as many heads as Beth.
Answer: $\frac{1}{2}$
Solution: Consider the three possible cases right before Beth flips her last coin (at this point Andrew and Beth have each flipped the coin 5 times):
2. Andrew has more heads than Beth.
3. Beth and Andrew have the same number of heads.
4. Beth has more heads than Andrew.

Let x be the probability of case 2 . As we'll see, we won't actually need to compute x. Then the first and last cases are symmetric, so they must each have probability $\frac{1-x}{2}$.
Now, consider what happens when Beth flips her last coin in each of these cases. Case 1 will satisfy the problem regardless of the result of this flip, case 2 will satisfy it half the time (only when Beth flips tails), while case 3 will never satisfy the problem.
Hence, the probability that Andrew counts at least as many heads as Beth is

$$
\frac{1-x}{2} \cdot 1+x \cdot \frac{1}{2}+\frac{1-x}{2} \cdot 0=\frac{1-x}{2}+\frac{x}{2}=\frac{1}{2} .
$$

2. How many alphabetic sequences (that is, sequences containing only letters from $a \ldots z$) of length 2013 have the letters in alphabetic order?
Answer: $\binom{2038}{25}$
Solution: Map the 26 letters to the integers from 0 to 25 . Construct an instance of stars and bars with 25 stars and 2013 bars. For any possible ordering of 25 stars and 2013 bars, the i th letter in our constructed sequence should correspond to the number of stars to the left of the i th bar. There is a bijection between every valid alphabetic string with the letters in alphabetic order and this construction, so therefore the answer is $\binom{2013+25}{25}=\binom{2038}{25}$.
3. Suppose two equally strong tennis players play against each other until one player wins three games in a row. The results of each game are independent, and each player will win with probability $\frac{1}{2}$. What is the expected value of the number of games they will play?
Answer: 7
Solution: Since we don't care who wins, we can set up a recurrence based on just the length of the current winning streak. After one game is played, one player will be on a 1-game winning streak. If he wins the next game, it will become a 2-game winning streak; otherwise it will remain a 1-game winning streak (but for his opponent). Similarly, from a 2-game winning streak, if the streaking player wins, it will become a 3 -game streak, and if she loses, it will revert to a 1 -game streak for her opponent. If we have a 3 -game winning streak, we're done.
Hence, let e_{1}, e_{2}, e_{3} be the expected number of games left to be played from a 1-game, 2-game, and 3 -game winning streak, respectively. We know $e_{1}=1+\frac{1}{2} e_{2}+\frac{1}{2} e_{1}, e_{2}=1+\frac{1}{2} e_{3}+\frac{1}{2} e_{1}$, and $e_{3}=0$. Solving, we find that $e_{2}=4$ and $e_{1}=6$. Hence, after playing the first game, it will take an average of 6 more games for the match to finish, so the total expected value is 7 .
