1. Andrew flips a fair coin 5 times, and counts the number of heads that appear. Beth flips a fair coin 6 times and also counts the number of heads that appear. Compute the probability Andrew counts at least as many heads as Beth.

Answer: $\frac{1}{2}$

Solution: Consider the three possible cases right before Beth flips her last coin (at this point Andrew and Beth have each flipped the coin 5 times):

- 1. Andrew has more heads than Beth.
- 2. Beth and Andrew have the same number of heads.
- 3. Beth has more heads than Andrew.

Let x be the probability of case 2. As we'll see, we won't actually need to compute x. Then the first and last cases are symmetric, so they must each have probability $\frac{1-x}{2}$.

Now, consider what happens when Beth flips her last coin in each of these cases. Case 1 will satisfy the problem regardless of the result of this flip, case 2 will satisfy it half the time (only when Beth flips tails), while case 3 will never satisfy the problem.

Hence, the probability that Andrew counts at least as many heads as Beth is

$$\frac{1-x}{2} \cdot 1 + x \cdot \frac{1}{2} + \frac{1-x}{2} \cdot 0 = \frac{1-x}{2} + \frac{x}{2} = \boxed{\frac{1}{2}}.$$

2. How many alphabetic sequences (that is, sequences containing only letters from $a \dots z$) of length 2013 have the letters in alphabetic order?

Answer: $\binom{2038}{25}$

Solution: Map the 26 letters to the integers from 0 to 25. Construct an instance of stars and bars with 25 stars and 2013 bars. For any possible ordering of 25 stars and 2013 bars, the *i*th letter in our constructed sequence should correspond to the number of stars to the left of the *i*th bar. There is a bijection between every valid alphabetic string with the letters in alphabetic

order and this construction, so therefore the answer is $\binom{2013+25}{25} = \binom{2038}{25}$.

3. Suppose two equally strong tennis players play against each other until one player wins three games in a row. The results of each game are independent, and each player will win with probability $\frac{1}{2}$. What is the expected value of the number of games they will play?

Answer: 7

Solution: Since we don't care who wins, we can set up a recurrence based on just the length of the current winning streak. After one game is played, one player will be on a 1-game winning streak. If he wins the next game, it will become a 2-game winning streak; otherwise it will remain a 1-game winning streak (but for his opponent). Similarly, from a 2-game winning streak, if the streaking player wins, it will become a 3-game streak, and if she loses, it will revert to a 1-game streak for her opponent. If we have a 3-game winning streak, we're done.

Hence, let e_1, e_2, e_3 be the expected number of games left to be played from a 1-game, 2-game, and 3-game winning streak, respectively. We know $e_1 = 1 + \frac{1}{2}e_2 + \frac{1}{2}e_1$, $e_2 = 1 + \frac{1}{2}e_3 + \frac{1}{2}e_1$, and $e_3 = 0$. Solving, we find that $e_2 = 4$ and $e_1 = 6$. Hence, after playing the first game, it will take an average of 6 more games for the match to finish, so the total expected value is $\boxed{7}$.