
SMT 2013 Calculus Test Solutions February 2, 2013

1. Compute lim
x→3

x2 + 2x− 15

x2 − 4x+ 3
.

Answer: 4

Solution: Note that
x2 + 2x− 15

x2 − 4x+ 3
=

(x− 3)(x+ 5)

(x− 3)(x− 1)
=
x+ 5

x− 1
. Then lim

x→3

x+ 5

x− 1
=

3 + 5

3− 1
= 4 .

2. Compute all real values of b such that, for f(x) = x2 + bx− 17, f(4) = f ′(4).

Answer: 3

Solution: We have that f(4) = 4b− 1 and f ′(4) = 2(4) + b = b+ 8. Setting these equal to each
other, we see that b = 3 .

3. Suppose a and b are real numbers such that

lim
x→0

sin2 x

eax − bx− 1
=

1

2
.

Determine all possible ordered pairs (a, b).

Answer: (2, 2) and (−2,−2)
Solution: Since this is in an indeterminate form, we can use L’Hôpital’s Rule to obtain

lim
x→0

sin 2x

aeax − b
=

1

2
.

However, the numerator goes to zero, so the denominator must also go to zero to give us another
indeterminate form. This implies that a = b. Using L’Hôpital’s Rule again, we have that

lim
x→0

2 cos 2x

a2eax
=

1

2
.

The numerator goes to 2, so the denominator must go to 4. Therefore, a = b = ±2, giving us

(a, b) = (2, 2) and (−2,−2) .

4. Evaluate

∫ 4

0
e
√
x dx.

Answer: 2e2 + 2

Let w =
√
x so that w2 = x and dx = 2w dw. Then the integral becomes 2

∫ 2

0
wew dw.

To find this integral, use integration by parts:

u = w → du = dw; dv = ew dw → v = ew∫
wew dw = uv −

∫
v du

= wew −
∫
ewdw

= (w − 1)ew.

Evaluating 2(w − 1)ew at our limits of integration yields 2e2 + 2 .
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5. Evaluate lim
x→0

sin2(5x) tan3(4x)

(log(2x+ 1))5
.

Answer: 50

Solution 1: For any function f with f(0) = 0, we know that

lim
x→0

f(x)

x
= lim

x→0

f(x)− f(0)

x
= f ′(0).

sin(5x), tan(4x), and log(2x + 1) are all 0 at x = 0, and their derivatives at 0 are 5, 4, and 2,
respectively. So, divide numerator and denominator by x5 and re-arrange to get

lim
x→0

sin2(5x) tan3(4x)

(log(2x+ 1))5
= lim

x→0

(
sin(5x)
x

)2
·
(
tan(4x)

x

)3
(
log(2x+1)

x

)5 =
52 · 43

25
= 50 .

Solution 2: Recall from Taylor series that if f(0) = 0, then f(x) ≈ f ′(0)x when x is small.
This allows us to write

lim
x→0

sin2(5x) tan3(4x)

(log(2x+ 1))5
= lim

x→0

(5x)2(4x)3

(2x)5
= 50 .

6. Compute
∞∑
k=0

∫ π
3

0
sin2k x dx.

Answer:
√
3

Bring the sum into the integral, so we have∫ π
3

0

∞∑
k=0

sin2k x dx.

The integrand is a geometric series, so the answer is∫ π
3

0

1

1− sin2 x
dx =

∫ π
3

0
sec2 x dx = tan

(π
3

)
− tan(0) =

√
3 .

7. The function f(x) has the property that, for some real positive constant C, the expression

f (n)(x)

n+ x+ C

is independent of n for all nonnegative integers n, provided that n + x + C 6= 0. Given that

f ′(0) = 1 and

∫ 1

0
f(x) dx = C + (e− 2), determine the value of C.

Note: f (n)(x) is the n-th derivative of f(x), and f (0)(x) is defined to be f(x).

Answer:
√
3− e

Solution: Since f (n)(x)/(n + x + C) is independent of n, we can say that it is equal to g(x).
Multiplying by (n+ x+ C), we have that

f (n)(x) = (n+ x+ C)g(x).
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Taking a derivative with respect to x, we obtain

f (n+1)(x) = (n+ x+ C)g′(x) + g(x).

However, this is equal to (n + 1 + x + C)g(x) by the problem statement. Canceling terms, we
obtain that g(x) = g′(x). The only class of functions that is its own derivative is aex, so we have
that g(x) = aex (for some constant a). Now, f ′(x) = (x+ C + 1)aex, so f ′(0) = 1 gives us that
a = 1/(C + 1). We also have that∫ 1

0
f(x) dx =

∫ 1

0

x+ C

C + 1
· ex dx = C + (e− 2).

Integration by parts gives us
(e− 1)C + 1

C + 1
= C + (e− 2),

which simplifies to
C2 = 3− e,

from which it follows that the answer is
√

3− e .

8. The function f(x) is defined for all x ≥ 0 and is always nonnegative. It has the additional
property that if any line is drawn from the origin with any positive slope m, it intersects the
graph y = f(x) at precisely one point, which is 1√

m
units from the origin. Let a be the unique

real number for which f takes on its maximum value at x = a (you may assume that such an a

exists). Find

∫ a

0
f(x) dx.

Answer: 1+log(2)
4

Solution 1: First, express x and y as functions parametrized by m. We have the system

y = mx

x2 + y2 =
1

m
.

Solving for y, we get y =
√

m
1+m2 . Hence, maximizing y is equivalent to maximizing m

1+m2 . By

differentiating with respect to m, we see that the maximum occurs when m = 1, at the point
( 1√

2
, 1√

2
).

Now, we just need to compute the integral. However, this parametric form is not convenient.
Instead, by drawing the line y = x, we notice that the integral splits up into a right isosceles
triangle, and a region between the line y = x and the y-axis. This suggests that we should
convert to polar coordinates. In fact, f(x) is equivalent to the graph r(θ) = 1√

tan(θ)
, since a line

at angle θ to the x-axis has slope tan(θ). The area we wish to compute is∫ π/2

π/4

1

2
r(θ)2 dθ =

1

2

∫ π/2

π/4
cot(θ) dθ

=
1

2
[log(sin(θ))]

π/2
π/4

=
1

2
(0− log(1/

√
2))

=
1

4
log(2).
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We add this area to the area of the triangle, which is 1
2

(
1√
2

)2
= 1

4 , so our final answer is

1 + log(2)

4
.

Solution 2: We begin as before to find a, but present a different method of computing the
integral.

Solving for x in terms of y, we get that

x2 + y2 = x/y =⇒ yx2 − x+ y3 = 0 =⇒ x =
1±

√
1− 4y4

2y
.

We only care about the region where 1±
√

1− 4y4 = 2xy ≤ 1, since x, y ≤ 1√
2
. Hence, we take

x =
1−
√

1−4y4
2y .

Notice that we can compute the desired quantity as(
1√
2

)2

−
∫ 1√

2

0

1−
√

1− 4y4

2y
dy,

since within the square bounded by the coordinate axes and x, y ≤ 1√
2
, the area between the

curve and the x-axis plus the area between the curve and the y-axis sum to the area of the whole
square.

Now, using the substitution u =
√

1− 4y4, we get∫ 1√
2

0

1−
√

1− 4y4

2y
dy =

∫ 0

1

(1− u)u

4u2 − 4
du

=
1

4

∫ 1

0

(1− u)u

(1− u)(1 + u)
du

=
1

4

∫ 1

0

u

1 + u
du

=
1

4

∫ 1

0
1− 1

1 + u
du

=
1

4
[u− log(1 + u)]10

=
1− log(2)

4
.

The answer is 1
2 minus this quantity, so report

1 + log(2)

4
.

9. Evaluate

∫ π/2

0

dx(√
sinx+

√
cosx

)4 .
Answer: 1/3

Solution 1: Observe that by pulling a factor of cos2 x out of the denominator, we can write the
given integral as ∫ π/2

0

dx

(1 +
√

tanx)4 cos2 x
=

∫ π/2

0

sec2 x dx

(1 +
√

tanx)4
.
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We now substitute u =
√

tanx+ 1:

du =
sec2 x

2
√

tanx
dx =

sec2 x

2(u− 1)
dx.

Thus, our integral is equal to∫ ∞
1

2u− 2

u4
du =

∫ ∞
1

2u−3 − 2u−4 du,

which simplifies to [
−u−2 +

2

3
u−3

]∞
1

=
1

3
.

Solution 2: Let I be the value of the given integral. Note that

1

2
I =

1

2

∫ π/2

0

((√
sin(x) +

√
cos(x)

)−2)2

dx,

which is the polar area bounded by the curve r(θ) =
(√

sin(θ) +
√

cos(θ)
)−2

and the x and y

axes for θ ∈ [0, π/2]. Converting to Cartesian coordinates, we get

1 = r
(√

sin(θ) +
√

cos(θ)
)2

=
(√

r sin(θ) +
√
r cos(θ)

)2
=⇒

√
x+
√
y = 1

=⇒ y = (1−
√
x)2 = 1 + x− 2

√
x.

Therefore,

1

2
I =

∫ 1

0
1 + x− 2

√
x dx

=

[
x+

x2

2
− 4

3
x3/2

]1
0

= 1 +
1

2
− 4

3
=

1

6

=⇒ I =
1

3
.

10. Evaluate lim
n→∞

[(
n∏
k=1

2k

2k − 1

)∫ ∞
−1

(cosx)2n

2x
dx

]
.

Answer: π 2π

2π−1

Solution 1: Observe that (cosx)2n looks like a bunch of spikes, centered at 0, π, 2π, . . . , each

with area In =
∫ π/2
−π/2(cosx)2n dx.
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We can integrate by parts to see that

Ik =

∫ π/2

−π/2
(cosx)2k dx =

[
(cosx)2k−1 sinx

]π/2
−π/2

+ (2k − 1)

∫ π/2

−π/2
(cosx)2k−2 sin2 x dx

= (2k − 1)

∫ π/2

−π/2
(cosx)2k−2(1− cos2 x) dx = (2k − 1)(Ik−1 − Ik).

Therefore,

Ik =
2k − 1

2k
Ik−1 =⇒ In =

(
n∏
k=1

2k − 1

2k

)
I0 = π

n∏
k=1

2k − 1

2k
.

As n → ∞, the spikes get sharper and sharper; this means that the denominator 2x of the
integrand gets concentrated at x = 0, π, 2π, . . . . Therefore, we expect that as n→∞,(

n∏
k=1

2k

2k − 1

)∫ ∞
−1

(cosx)2n

2x
dx→

(
n∏
k=1

2k

2k − 1

) ∞∑
k=0

In
2kπ

= π
1

1− 2−π
= π

2π

2π − 1
.

Solution 2: We present a more rigorous approach here. First, rewrite the problem into the
following form:

For each positive integer n, let an =

∫ ∞
−1

√
n(cosx)2n

2x
dx. Additionally, let c =

lim
n→∞

√
n

n∏
k=1

(1− 1

2k
), which is a positive finite constant. Evaluate

1

c
lim
n→∞

an.

Let B = {0, π, 2π, . . . }. The idea is that the numerator of the integrand approaches a function
with cπ area concentrated infinitely closely to each point in B. Therefore, the limit should be

lim
n→∞

∫ ∞
−1

√
n(cosx)2n

2x
dx =

∑
x∈B

cπ

2x
= cπ

2π

2π − 1
,

where the last equality follows by the formula for summing geometric series.

We will soon get to a more precise way of thinking about the area being concentrated infinitely
closely to points in B, but first let’s see why the numerator should have cπ area around each
point in B. Since the area around each point in B is the same (cos2n is periodic), we need only
consider the area around 0. We can apply integration by parts to find a formula for the area
around 0 in each term of the sequence. The recurrence is∫ π/2

−π/2

√
n(cosx)2n dx = (1− 1

2n
)

∫ π/2

−π/2

√
n(cosx)2(n−1) dx.

Repeatedly applying this formula, we get∫ π/2

−π/2

√
n(cosx)2n dx = π

√
n

n∏
k=1

(
1− 1

2k

)
.

Taking the limit as n→∞, the area around 0 goes to cπ. So the answer makes sense. Now we
will prove it more rigorously.
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For x /∈ B, the integrand
√
n(cosx)2n

2x goes to 0 as n→∞ because cosx < 1. So for any open set
S sufficiently disjoint from B, we might guess that

lim
n→∞

∫
S

√
n(cosx)2n

2x
dx = 0.

If we require that every point in S is at least ε > 0 away from any point in B, then this is indeed
true. There are two ways to see this.

The fanciest way to see it is to use the “dominated convergence theorem”, which says that if
a sequence of functions fn converges pointwise to a funciton f and if there is some function ϕ
with |fn(x)| < ϕ(x) for all x ∈ S and

∫
S ϕ < ∞, then limn→∞

∫
S fn =

∫
S f . To apply this

theorem, we let fn be the integrand of the n-th term of the sequence. To construct ϕ, notice
that since every point in S is at least ε away from every point in B, there is some δ < 1 so that
| cosx| < δ for all x ∈ S. So

√
n(cosx)2n is bounded by

√
nδ2n for all x ∈ S. Since

√
nδ2n has

a finite limit as n → ∞,
√
n(cosx)2n is bounded by some finite number B for all x ∈ S. So we

can let ϕ(x) = B/2x. Then |fn(x)| < ϕ(x) for all x ∈ S and
∫
S ϕ <∞, just as we need in order

to apply the theorem. So we apply the theorem to get

lim
n→∞

∫
S

√
n(cosx)2n

2x
dx =

∫
S

lim
n→∞

√
n(cosx)2n

2x
dx =

∫
S

0 dx = 0.

But we of course don’t expect you to know the dominated convergence theorem, so we can also
prove this using a “bare hands” method that is actually easier. (Bare hands is usually much
harder than the dominated convergence theorem proof. That is why people use the dominated
convergence theorem. But we have arranged for this problem to work with bare hands.) As we
argued above, there is some δ < 1 so that cosx < δ for all x ∈ S. Then

√
n(cosx)2n <

√
nδ2n

for all x ∈ S. So we have a bound∫
S

√
n(cosx)2n

2x
dx ≤

√
nδ2n

∫
S

1

2x
dx.

Since the integral
∫

1
2x converges, this goes to 0 as n→∞ so we again have the desired result.

The upshot of all this is that we can now define Bε to be the points in [−1,∞) that are within
ε of B and have

lim
n→∞

∫ ∞
−1

√
n(cosx)2n

2x
dx = lim

n→∞

∫
Bε

√
n(cosx)2n

2x
dx.

To calculate the integral on the right, notice that it is just the sum over all integers k ≥ 0 of∫ kπ+ε

kπ−ε

√
n(cosx)2n

2x
dx =

1

2kπ

∫ ε

−ε

√
n(cosx)2n

2x
dx.

By the formula for summing geometric series, the sum of this over all integers k ≥ 0 is

lim
n→∞

∫ ∞
−1

√
n(cosx)2n

2x
dx =

2π

2π − 1

∫ ε

−ε

√
n(cosx)2n

2x
dx. (1)

So we have reduced the problem to calculating the following limit:

lim
n→∞

∫ ε

−ε

√
n(cosx)2n

2x
dx.
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To do this, bound the limit above and below by taking the highest and lowest possible values of
2x out of the integral:

2−ε lim
n→∞

∫ ε

−ε

√
n(cosx)2n dx ≤ lim

n→∞

∫ ε

−ε

√
n(cosx)2n

2x
dx ≤ 2ε lim

n→∞

∫ ε

−ε

√
n(cosx)2n dx.

By a very similar argument as above, nothing outside (−ε, ε) contributes to the integrals in our
bounds and therefore

lim
n→∞

∫ ε

−ε

√
n(cosx)2n dx = lim

n→∞

∫ π/2

−π/2

√
n(cosx)2n dx.

We have already calculated the right hand side: it is cπ. So we can plug this back into our
bounds to get

2−εcπ ≤ lim
n→∞

∫ ε

−ε

√
n(cosx)2n

2x
dx ≤ 2εcπ.

Plugging this bound into (1) gives

2−εcπ
2π

2π − 1
≤ lim

n→∞

∫ ∞
−1

√
n(cosx)2n

2x
dx ≤ 2εcπ

2π

2π − 1
.

Since ε was arbitrary, taking ε→ 0 forces

lim
n→∞

∫ ∞
−1

√
n(cosx)2n

2x
dx = cπ

2π

2π − 1
,

as desired.

Finally, you might be interested in knowing why c is a positive finite constant. (This is not
necessary to solve the problem, but it is necessary to be sure that the problem makes sense.
And it is interesting.) To see this, let bn =

√
n
∏n
k=1(1−

1
2k ). Then

log bn =
1

2
log n+

n∑
k=1

log

(
1− 1

2k

)
=

1

2
log n+

n∑
k=1

(
− 1

2k
+O

(
1

k2

))
.

Here O( 1
k2

) denotes some function of k whose absolute value is always less than C 1
k2

for some C
big enough. The fact that log(1− 1

2k ) = − 1
2k + O( 1

k2
) follows from the Taylor expansion of log

around 1. It is well known that
∑n

k=1
1
k = log n+ γ +O( 1

n) where γ is some constant. Plugging
this in gives

log bn =
1

2
log n− 1

2
log n− 1

2
γ +O

(
1

n

)
+

n∑
k=1

O

(
1

k2

)
= −1

2
γ +O

(
1

n

)
+

n∑
k=1

O

(
1

k2

)
.

Since
∑∞

k=1
1
k2

converges to some constant,
∑n

k=1O( 1
k2

) converges to some finite constant α as
n→∞. Therefore log bn → −1

2γ+α as n→∞. This is some finite number, so c = exp(−1
2γ+α)

is a positive finite number, as desired.


