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Outline 

Talk:   
               -Real-space multiple-scattering (RSMS) Theory 
                  aka  Real-space Green’s function (RSGF)  theory   
               -Implementation of RSMS  in  FEFF 
 
      Key approximations and limitations  
      Effects of structure and disorder 
       Some advanced developments 



Full spectrum XAS: Expt. Vs Theory 
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The devil is in the details: edges, fine-structure … 
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 BUT needed to calibrate experiment with “Standard” 

  

 Short range order theory 

  → X-ray Microscope! 
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    EXAFS Fourier Transform 
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 Shifted  Radial Distribution 
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Historical interpretation of EXAFS*  
  *Stern Sayers Lytle, UW 1971 



 EXAFS Theory 

J. J. Rehr & R.C. Albers 
Rev. Mod. Phys. 72, 621 (2000) 

Quantitative theory of EXAFS:   
 
 Theory behind FEFF6 
  
 
 
       



 Advances in Theory – FEFF9 

               Update of Rehr & Albers: Advanced techniques  
   and ab initio treatment of many-body effects 



 Other references: 



Atomic models: 
 e.g. de Groot.  Atomic cross-sections, multiplet s   
 theory with fitted parameters, crystal field model Hamiltonians 
DFT (Density Functional Theory): 
 WIEN2k, ABINIT, VASP, CASTEP , StoBe, Orca …, 
 Accurate for ground-state properties, not reliable for excited states,
 Delta-SCF “Final State Rule” with core-hole 
Quasi-particle Green’s Function Theory: FEFF9 
            Appropriate for excited states, NOT full potential 
BSE (Bethe-Salpeter Equation): 
 Exc!ting, OCEAN, AI2NBSE.   Accurate but demanding. 
 Less  user friendly. Misses excitations & satellites  
QC methods: 
 MRCI, MRCC, CASPT2, QMC, etc, highly accurate but 
 mostly intractable except in small molecules 
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RSGF in the hierarchy of spectroscopy methods 

 



”Pretty good” spectra  
 
Advantages: 
 Real-space 
 Fully relativistic, all-electron 
 Semi-automated, user-friendly, easy to use 
 Built for EXAFS and related x-ray spectroscopies 
              Applicable to materials throughout the periodic table     
 
Disadvantages: Not always the best tool: 
 Spherical potentials – can lose accuracy near edges 
 Quasi-particle theory only – ignores multiplets, satellites 
  

FEFF development philosophy 



FEFF quantitative XANES theory in one Feynman diagram 
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        “Can you write an equation 
               
                   for the theory?” 
                                   
                                P.A.M. Dirac 
   
 
    
                                     

 



       

 S0
2 

 λk  σ2 
Mean free  
    path  

Mean square  
 vib amplitude 

Many body  
amplitude factor 

Effective Scattering Amplitude feff  

Answer: Exact EXAFS Equation* 
 

*JJR, RC Albers, CR Natoli, EA Stern,  Phys Rev B34, 4350 (1986)  

  EXAFS measures local structure &  disorder 
 
  Distance R      Coordination N     Disorder σ2 



     
    BUT: need many parameters ! 
 
 
   Question: Can the EXAFS parameters 
                k  feff    Φk    σ2    λk    S0

2  
 

                      be calculated theoretically ? 
   
                                   
                                    
   
 
    
                                     

 



Many-body Fermi’s 
Golden Rule 

Effective Single particle 
Fermi’s Golden Rule 

XAS absorption coefficient 

FEFF: Many-body → effective single particle 
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FEFF: From sum-over-states to Green’s function 

Effective Single particle 
Fermi’s Golden Rule 
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FEFF: From sum-over-states to Green’s function 

Effective Single particle 
Fermi’s Golden Rule 

Density Matrix 
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FEFF: From sum-over-states to Green’s function 

Effective Single particle 
Fermi’s Golden Rule 

Density matrix from 
Green’s function 
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Substitute sum over 
final states with 
Green’s function 

FEFF: From sum-over-states to Green’s function 

Effective Single particle 
Fermi’s Golden Rule 
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What’s a Green’s function? 

  Wave function in QM             H Ψ = E Ψ  
 
    Ψ(r)  = Amplitude to find particle at  r        
 
  Green’s function         (H – E) G  = - δ(r-r’) 
 
      G(r,r’,E)  =    aka  Propagator 
 
        =  Amplitude to go from r to r’ 
 

  
 



FEFF: Local basis and matrix elements 

Insert complete set of states 
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FEFF: Local basis and matrix elements 

Insert complete set of states 
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FEFF: Local basis and matrix elements 

Insert complete set of states 

Matrix elements 

Green’s Function 
matrix 
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Getting G: Multiple Scattering Theory 

Dyson’s equation: 

Iterating: 



Getting G: Multiple Scattering 

Dyson’s equation: 

Iterating: 



Getting G: Multiple Scattering 

Dyson’s equation: 

Iterating: 

Atomic pot. 
partition 



Getting G: Multiple Scattering 

Dyson’s equation: 

Iterating: 

Atomic pot. 
partition 

Site scatt. 
matrix 



Getting G: Multiple Scattering 

Dyson’s equation: 

Iterating: 

Atomic pot. 
partition 

Site scatt. 
matrix 



Getting G: Multiple Scattering 



Getting G: Multiple Scattering 

Central atom 
contrib. 

EXAFS 



Getting G: Multiple Scattering 

Central atom 
contrib. 

EXAFS 

Graphically: 
Path expansion 



Getting G: Full Multiple Scattering 



Getting G: Full Multiple Scattering 

Total scatt. 
matrix 



Getting G: Full Multiple Scattering 

Total scatt. 
matrix 

Sum and invert 

XANES 



Implementation: FEFF Code 

BN 

Core-hole, SCF potentials 

             Essential! 

89 atom cluster  



    No peak shift!   

  

Path Expansion 15 paths      

Rnn= 2.769  fcc   Pt 

  *Theoretical phases      accurate distances to < 0.01 Å 

χ(R) 

R (Å) 

 Example: Pt  EXAFS – path expansion 

Phase  Corrected EXAFS Fourier Transform *  
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Example: Pt XANES full multiple-scattering 
Pt L3-edge Pt L2-edge   (S. Bare, UOP) 

• Relativistic FEFF8 code reproduces all spectral features, including 
absence of white line at L2-edge. 

• Self-consistency essential: position of Fermi level strongly affects  
white line intensity. 



Green’s Functions and Parallel Computation 

  

     “Natural parallelization” 

  Each CPU does one energy  
1/NCPU 

         Energy   E      
  is just a parameter ! 



Spectrum: 
Golden Rule 

Self-consistent Densities and Potentials 



Dirac-Fock relativistic atomic states  ;  
             semi-relativistic scattering states   
 
Spherical overlapped muffin-tin potentials: 
 Huge simplification of the problem 
   
Quasi-particle approximation: 
 Electron propagates in lossy medium described by  
 Approximate self-energy  
 
Core-hole treatment: 
 RPA or DFT-Screened core-hole 
  

Key approximations in FEFF 



The muffin-tin potential 

Scattering potential partition into muffin-tins 



The overlapped muffin-tin potential  (~ 10% ) 

Nuclei 
Muffin-tin 
potential 

Overlap 
Region 

Improved density: 
 Resembles “bonding” 
 Charge redistribution 
               Charge neutrality  built in 
                ? Spherical approximation ? 



FEFF Density of States vs full potential codes 



FEFF electron density in real space vs full potential codes  



Disorder and Debye-Waller factors 

DW factors: 
 Crucial for EXAFS 
 Very little effect in XANES region 
 Can be included anyway in single-scattering approx. 
 Both ab initio and model forms 
 
Static Disorder: 
 May be important in XANES 
 Need external input for FEFF simulations 
 Methods MD trajectories, MC sampling … 
    



Average commonly expressed in 
terms of the cumulant expansion 

Leading cumulants 

χ(
R)

 

R (Å) 

FT of Ge EXAFS χ(k) 

J. Kas et al. (2007) 

2σ

(1)σR +

Multiple Scattering Path 
XAFS DW Factor 

Quick intro to DW factors 



Expt: Fornasini et al. (2004) 

EXAFS near-neighbor DW Factor of Cu 

CD (Correlated Debye): 
 Standard FEFF 
 
LDA, hGGA: 
 Ab initio DW 
 
Isotropic bonding: 
 Good CD results 



Expt: Dalba et al. (1999) 

EXAFS near-neighbor DW Factor of Ge 

CD (Correlated Debye): 
    Default in FEFF 
 
LDA, hGGA: 
 Ab initio DW 
 
Directional bonding: 
 Needs AIDW 



XAFS DW Factor for path R: 

VDOS expressed as imaginary 
part of the phonon propagator 

Seed state: Displacement 
along path 

Dynamical Matrix: Calculated using ab initio 
methods (Abinit, Gaussian, VASP, etc) 

Ab Initio DW factors: Lanczos algorithm 



Ab Initio DW Factors in Metal-Ligand Complexes 

Path Theory Exp Theory Exp.
2.08 2.49
2.04 2.32
2.10 2.60
2.09 2.50

Ru-N(AP) 2.14 2.10±0.03 2.61 4±3
Ru-O 2.22 2.06±0.05 4.93 9±7

Ru-N(bpy) 2.05±0.01 2.6±0.9

RM-L (in Å) σ2 (in 10-3 Å2)
Ru 

N(bpy) 

N(AP) 

O 

Ru(bpy)2(AP)(H2O)++ 

Good agreement for tight ligands (bpy) 

Useful agreement for weak ligands (AP and H2O) 
 Still within error margin 

Expt: Salassa et al., J. of Physics: Conference Series 190, 012141 (2009) 



BN 89 atom cluster 

 

Ground state potential: 

 Usually insufficient 

 Need QP effects 

          and SCF potentials 

Beyond DFT: Quasi-particle Self-Energy Effects 

Quasi-particle (QP) effects: 



 
 
Treatment of the core hole: 
 Screening DFT or RPA 
 Chemical shifts 
 
Self-energy approximations: 
 Need more than single-pole self-energy 
 
Many-body effects:  
 Multi-electron excitations  
          Charge transfer excitations: 
   

 Improvements to the theory: key many body effects 
   Lecture III. Inelastic losses and Manybody effects 

S0
2 



Quick overview of other FEFF capabilities: 
 XES 
 RIXS 
 Compton Profiles 
 Reciprocal space: EELS and impurity GF 
 Hubbard U method 

Other FEFF capabilities 



Non-resonant X-ray Emission (XES) 

Vila et al., J. Phys. Chem. A 2011, 115, 3243 

RDX 
(High explosive) 



RIXS  and COMPTON Resonant Inelastic X-ray Scattering (RIXS) 

TiO2 (Ti Kα) 

FEFF Expt. 



Compton Profiles 



Strongly correlated systems: Hubbard GW+U 

Phys. Rev. B 85 165123 (2012) 

U calculated using  
   constrained RPA within RSMS 
  

(Nearly) parameter free 

 

MnO 



Further information 

The FEFF Project website: 
 URL: feffproject.org 
 
The FEFF Users Guide: 
 URL: feffproject.org/feffproject-feff-documentation.html 
 
Developers contact: 
 URL: feffproject.org/feffproject-contact.html 



Summary 

  Take away messages  
   
 Know the basics of RSMS/RSGF theory   
 Understand the key approximations in FEFF  
 Know  some of FEFF’s advanced capabilities 
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