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Perfecting the theory of x-ray spectra:   
many body effects and inelastic losses 



     Key many-body effects 

●  Core-hole effects   ----     Excitonic effects, Screening  

● Self-energy  Σ(E)    ----      Mean-free path, energy shifts  

●  Phonons, disorder ----     Debye-Waller factors 

●  Excitations             ----      Inelastic losses & satellites   

 

 

 

 I. Introduction:  



 
                     

   “ You can judge  a many-body theory 

           by how it treats the satellites. ”  

                                   

                                  Lars Hedin   (1995) 

       

             



 
Mini-review 

 
 

Quasi-particletheory 
 of XAS 

 
 

 
      
 
 
 
 
 

JJR et al., Comptes Rendus 
  Physique 10, 548 (2009) 

 
   

Theoretical Spectroscopy 
   L. Reining, (Ed, 2009) 

 



  Ground-state DFT 
     Excited State 
         Expt  

Ground state  No damping 
           LARGE ERRORS! 

 NEED:   energy dependent damping   

 Motivation: Failure of ground-state DFT in XAS;  
need for inelastic losses  



Golden rule for XAS via Wave functions 

Golden rule via Green’s Functions G = 1/( E – h′ – Σ )  

   Golden rule for XAS via Wave Functions 

Ψ 
Paradigm shift:  

         
  Final state h′ includes core-hole AND 
  energy dependent self energy Σ(E)      

Starting point for core-XAS calculations:   
Quasi-particle final state Green’s function 



 Efficient GW approximation for 
        “Extrinsic Losses” 
 
Sum of plasmon-pole models  
   matched to loss function 
 
 
                W = ε-1 v  
Extension of  Hedin-Lundqvist 
 GW plasmon-pole model  
 
 
 
*J.J. Kas et. al, Phys Rev B 76, 195116 (2007) 

LiF loss fn 

 - Im ε-1 

Σ(E)= iGW = Σ′ - i Γ 

  
Many-pole GW Self-energy  Σ(E)*       

 



*J. J. Kas, J. Vinson, N. Trcera, D. Cabaret, E. L. Shirley, and J. J. Rehr,   
    Journal of Physics: Conference Series 190, 012009  (2009) 
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GW- Self-energy 

   MgAl2O4 

      DFT 

Self-energy fixes systematic shifts & broadening 
due to self-energy in XAS 

 



  

RPA  a lá Stott-Zaremba 

Fully screened FEFF8 

Unscreened 

Tungsten metal  (Y. Takimoto) 

RPA 

 cf.  Screened core hole W in Bethe-Salpeter Eq   
 
  Improves on final state rule,  Z+1, half-core hole 

  
Core-hole potential -  RPA W 
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*Phys. Rev.  B 76, 014301  (2007) 

Ψ 

Many pole model 

   for phonons 

* 

   VDOS 

 D  dynamical matrix <  ABINIT 

e-2σ2k2  

 Phonon effects: Debye Waller factors in XAS 



       S0
2 ~ 0.9 

PROBLEM: Amplitude discrepancy in EXAFS 
      Observed fine structure smaller than QP theory 
 



 
  Q   How to treat losses beyond the 
       GW-quasi-particle approximaton ?    
 
  Approach:   Improved  Green’s function G(E)    
  including satellites in spectral function  
   
               A(ω)  = (1/π) Im G(E) 
 
   Two methods:  GW + Dyson Eq.  
                           Cumulant expansion 
 

  
II. Inelastic losses and satellites 
 



                 GW + Dyson   vs   Cumulant* 

*Recent review and new derivation, see J. Zhou et al.  J. Chem. Phys. 143, 184109  (2015). 

G(ω) = G0+ G0 Σ G                 G(t) = G0 (t) eC(t) 
                 GW                                  Cumulant 

ΣGW =iGW 

  No vertex   Γ = 1  
   
 Implicit vertex 

C ~ |Im ΣGW |  

  
Which Green’s function ?   

 



    Phys Rev Lett 77, 2268 (1996)  

   Quasi-particle peaks of both 
   GW and C agree  with XPS expt  

 GW fails for satellites: only one    
      satellite at wrong energy 

       Na XPS 

GW 
   C 

QP 

    C   Cumulant model agrees with     
 experiment: multiple satellites  
                        ωp apart 
    

   2ωp ωp 

  
Answer: XPS expt: Cumulant wins 

 



 Reviews & references for cumulant Green’s fn  



Theorem:*  Cumulant representation of core-hole Green’s 
function is EXACT for electrons coupled to bosons 
      *D. C. Langreth, Phys. Rev. B 1, 471  (1970) 
 
Corollary:  also valid for valence with recoil approximation. 

IDEA: Neutral excitations - plasmons, phonons, etc. 
             can be represented as bosons    

  Physics:** GW approximation describes an electronic-polaron:  
  electrons coupled to density fluctuations modeled as bosons 
 

**B. I. Lundqvist, Phys. Kondens. Mater. 6 193 (1967) 

 Why does it work: Quasi-boson approximation 



*For diagrammatic expansion of higher order terms, see e.g.  
 O. Gunnarsson et al., Phys. Rev. B 50, 10462 (1994) 
 

                                       Landau formula for C(t) 
     
Excitation spectra  (GW  Σ) 
 
 Spectral Function  

  
Cumulant expansion properties 

 



Retarded GF formalism 

GC 
TO 
GW 

   Spectral function 
plasmaron 

Retarded cumulant builds in particle-hole symmetry 

  
 Retarded Cumulant Approximation* 

 



Z 

   Retarded cumulant has good nk  and Z, 
             & pretty good correlation energies  
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 Electron-gas quasi-particle properties* 

 



 Multiple Satellites 

 Quasiparticle peaks 

                      

Lucia Reining 

Problems  GW: only one broad satellite at wrong position 
              C:  position ok but intensity too small   

 Si 

  
Example: Multiple satellites in XPS of Si 

 



  
       Q:  How to calculate all inelastic losses and  
             satellites in x-ray  spectra ? 
   

 Extrinsic  +   Intrinsic  -      2 x  Interference  

+ - - 

Problem: Single-particle cumulant in XPS (or 
XAS) only has intrinsic (or extrinsic) losses and  
ignores interference: Need to include all losses. 

 III. Particle-hole cumulant theory 



  Explanation of XAFS many-body amplitude factor:*  χexp = χth * S0
2                                           

*J.J. Rehr, E.A. Stern, R.L. Martin, and E.R. Davidson,  Phys. Rev. B 17,560 (1978) 

  
Hedin suggestion: quasi-boson method  
with intrinsic, extrinsic and interference 

 



  Ingredients:     Particle-Hole Hamiltonian 
     H = he - hh  +  Veh          he/h = εnk  + Σnk        
           Σ     GW self-energy 
            Veh = Vx + W    Particle-hole interaction 

 Starting point: GW/BSE  
  Particle-hole Green’s function w/o satellites 



 *Obtaining Core Excitations 
      from ABINIT and NBSE 
  
          PW-PP + PAW  
        + MPSE + NBSE                  

LiF: F K edge  

*J. Vinson et al. Phys. Rev. B83, 115106 (2011) 

    Exp 

    OCEAN   

    FEFF9 

 OCEAN: core-level GW/BSE code 



               Europhys J. B 85, 324 (2012) 

*L. Hedin, J. Michiels, and J. Inglesfield, Phys. Rev. B 58, 15 565 (1998). 

Kernel γ(ω) with extrinsic, intrinsic and interference terms  
 

 Particle-hole cumulant in XPS* 



 * L. Hedin, J. Michiels, and J. Inglesfield, Phys. Rev. B 58, 15 565 (1998) 
     

Partition contributions into Intrinsic + Extrinsic + Interference 

     Vn  → -Im ε-1(ωn,qn)       

   fluctuation potentials*   

 Quasi-boson method for particle-hole GF* 



 Multiple Satellites 
 Quasiparticle peaks 

Success for particle-hole cumulant: good agreement    
    only if extrinsic and interference terms are included 

 Si 

 Example: Satellites in XPS of Si again 



Particle-hole cumulant for XAS* 
 

* cf. L. Campbell, L. Hedin, J. J. Rehr, and W. 
Bardyszewski, Phys. Rev. B 65, 064107 (2002) 

All losses in particle-hole 
spectral function AK 

 NiO 

 Particle-hole cumulant in XAS* 



• Many-body XAS ≈ Convolution    
 
 

 
 

• Explains  crossover:  adiabatic   S0
2(ω)  = 1  

                             to   sudden    transition   S0
2(ω)  ≈ 0.9      

             |gq |2=  |gq
ext |2 

+ | gq
intrin |2 

-  2 gq
ext gq

intrin 

 

 
 

≈  μqp(ω) S0
2(ω) 

Interference reduces loss! 

 Theory of many-body amplitude factor  



 Many-body amplitude factor S0
2 

MS Nano Proceedings, Springer (in press 2017) 
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 Langreth cumulant in time-domain* 

TiO2 

*D. C. Langreth, Phys. Rev. B 1, 471 (1970) 

 Intrinsic losses: real-time TDDFT cumulant 

CT satellite 



  RT TDDFT Cumulant   
        Theory vs  XPS 

Interpretation: satellites arise from charge density fluctuations between 
ligand and metal at frequency  ~ ωCT  due to suddenly  turned-on core-hole  

Charge transfer fluctuations   

ωct  

 Satellites and real-space interpretation 



Satellite strengths  XAS of Al 

Particle-hole cumulant explains cancellation of 
extrinsic and intrinsic losses at threshold and 
          crossover:       adiabatic  
                         to        sudden         approximation   

 Extrinsic, intrinsic and interference terms 



XPS 

F. Fossard, K. Gilmore, G. Hug, J J. Kas, J J Rehr, E L Shirley and F D Vila  

 Phys. Rev. B 95, 115112 (2017)  

  RT-TDDFT intrinsic cumulant 

 Particle-hole cumulant 

 Examples: high accuracy XPS and XAS 



RIXS  and COMPTON Resonant Inelastic X-ray Scattering (RIXS) 

TiO2 (Ti Kα) 

FEFF Expt. 



Compton Profiles 



Usual approximation: Hubbard-model 

V U (r; E) = V SCF (r) + §GW (E) + §Ulm¾(E)

cf. H. Jiang, Rinke  et al. Phys. Rev. B 82, 045108 (2010). 

 Hubbard U as self-energy correction    

O  K-edge MnO 

 Correlated systems 



 Question:  Does the particle-hole cumulant 
method work for correlated d- and f- systems ? 

   Hedin’s answer *   MAYBE 
 
   “Calculation similar to core case  … but with more  
           complicated fluctuation potentials … 
  
 
  … not question of principle,  but of computational work...” 
 
      

 * L. Hedin, J. Phys.: Condens. Matter 11, R489 (1999)  

                         Vn  → -Im ε-1(ωn,qn)      

 Alternative approach: cumulant  



  Ce L3 XAS of CeO2 

     Spectral function 

  Spectral weights 

  Ce 5s XPS of CeO2 

 Particle-hole cumulant for CeO2
* 

 *J. Kas et al. Phys Rev B 94, 035156 (2016) 



   Low energy particle-hole excitations in cumulant     
    explain edge singularities in XPS and XAS of metals 

Excitation spectrum 

 X-ray Edge Singularities in metals 

cf Doniach-Sunjic line-shape in XPS 



Many-body corrections including self-energy shifts, and inelastic 
losses, and Debye-Waller factors yield near-quantitative 
agreement with experimental x-ray spectra 
 
Particle-hole cumulant theory approximation can explain all 
bosonic losses (extrinsic, intrinsic and interference) in x-ray 
spectra, even in some correlated materials.  
 
All losses can be lumped into a spectral function AK(ω)   
                  AND can be added ex post facto 
   

 Conclusions   
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