Chemical Engineering Program

From Undergraduate Engineering Handbook

Revision as of 16:40, 15 December 2011 by Dlazar (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
ABET Accreditation Criteria Apply

Chemical Engineering is a discipline that relates to numerous areas of technology. In broad terms, chemical engineers are responsible for the conception and design of processes for the purpose of production, transformation, and transport of biochemicals, chemicals, energy, and materials. More recently, chemical engineers are increasingly involved in the design of new products that are enabled by emerging process technologies. These activities begin with experimentation in the laboratory and are followed by implementation of the technology to full-scale production. The mission of the Chemical Engineering department at Stanford is to provide professional training, development, and education for the next generation of leaders in chemical sciences and engineering.

The large number of industries that depend on the synthesis and processing of chemicals and materials place the chemical engineer in great demand. In addition to traditional examples such as the chemical, energy and oil industries, opportunities in biotechnology, pharmaceuticals, electronic materials and device fabrication, and environmental engineering are increasing. The unique training of the chemical engineer becomes essential in these areas whenever processes involve the chemical or physical transformation of matter. For example, chemical engineers working in the chemical industry investigate the creation of new polymeric materials with important electrical, optical, or mechanical properties. This requires attention not only to the synthesis of the polymer, but also to the flow and forming processes necessary to create a final product. In biotechnology, chemical engineers have responsibilities in the design of production processes and facilities to use microorganisms and enzymes to synthesize new drugs. Chemical engineers also solve environmental problems by developing technology and processes, such as catalytic converters and effluent treatment facilities, to minimize the release of products harmful to the environment.

To carry out these activities, the chemical engineer requires a complete and quantitative understanding of both the scientific and engineering principles underlying these technological processes. This is reflected in the curriculum of the chemical engineering department, which includes the study of applied mathematics, material and energy balances, thermodynamics, fluid mechanics, energy and mass transfer, separations technologies, chemical reaction kinetics and reactor design, biochemical engineering and process design. Courses are built on a foundation in the sciences of chemistry, physics, and biology.

The individual student’s mathematics and science course preparation for the chemical engineering major depends on his or her previous background in these areas. Following are six representative sequences or 4-year plans. Recommended plans 1A, 1B, 2, or 3 or alternative math plans 5 and 6 start at different points but all conclude with the same in-the-major depth requirements and completion of degree requirements. Plan 4 is representative of the schedule of courses for students approved for honors research, which requires a minimum of 12 units in addition to the normal requirements for the major.

Representative programs with the recommended engineering math (CME) courses:
#1A Little preparation in math and chemistry: This plan starts with MATH 19, 20, 21, and
CHEM 31A & 31B.
#1B Little preparation in math; strong chemistry: This plan starts with MATH 19, 20, 21 and
#2 No AP math credits, prepared to start with MATH 40 series, then move to CME math series. Strong chemistry preparation; start with CHEM 31X.
#3 AP math credits, prepared to start with the CME math series, which is recommended instead of the MATH 50 series. Start with CHEM 31X.
#4 Same preparation as #3, but with a degree goal of a B.S. with Honors in Chemical Engineering. This departmental Honors Program is by application only; see departmental student services. This plan is for students interested in an in-depth research experience in addition to the normal coursework for the major.

Alternative programs with MATH 50 series courses (require and additional 5 units of math):
#5 No AP math credits, starting with MATH 40 series and continuing preparation with MATH 50 series.
#6 AP math credits for MATH 40 series; start with MATH 50 series.

Our departmental website is at and that of our student chapter of the American Institute of Chemical Engineers is at http://www.stanford. edu/group/aiche/. Our faculty, staff, and students would be glad to talk with you about majoring in Chemical Engineering. If you would like more information about this major, please contact our departmental student services staff in Stauffer III, room 113. Alternatively, you may phone (650-723-4306) or email Pamela R. Dixon at
1. Principles and Skills: Provide a basic understanding of chemical engineering principles along with analytical problem-solving and communication skills necessary to succeed in diverse careers, including chemical engineering practice and academic research.
2. Preparation for Changing and Diverse Practice: Prepare students for successful practice in a field whose focus is constantly changing and growing with a long-term perspective that takes into account new tools, new means of dispersing and controlling information, new focus areas such as biotechnology and molecular engineering, and increasingly complex professional and societal expectations.
3. Preparation for Graduate Study: Prepare students for graduate study coupled with short-term and/or long-term career research in the chemical sciences and chemical engineering.
4. Preparation for Service: Prepare and develop students’ skills, awareness, and background to become responsible citizens, employees, and leaders in our communities and in the field of chemical science.
(a) A proficiency in and ability to apply knowledge of engineering, mathematics through differential equations, probability and statistics, and science including physics, chemistry, and biology.
(b) An ability to design and conduct experiments, as well as to analyze and interpret data
(c) An ability to design a system, component, or process to meet desired needs
(d) An ability to function on multi-disciplinary teams
(e) An ability to identify, formulate, and solve engineering problems
(f) An understanding of professional and ethical responsibility
(g) An ability to communicate effectively
(h) The broad education necessary to understand the impact of engineering solutions in a global and societal context
(i) A recognition of the need for, and an ability to engage in life-long learning
(j) A knowledge of contemporary issues
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
(l) Background for admission to engineering or other professional graduate programs

1. Contact Chemical Engineering Student Services. Drop-in visits are encouraged, especially Wed/Thurs/Fri from 2:30 and 4:00 p.m. in Stauffer III, room 113. To make an appointment with the student services administrator, send an email to Pamela R. Dixon at We encourage you to let the department know that you are considering the major so we can give you an opportunity to ask questions and get more information about chemical engineering, our advising program, summer internships, year-round research opportunities, and so forth.
2. Participate in the annual ChemE advising workshop the first week of classes, autumn quarter.
3. Attend quarterly departmental advising sessions.
4. Meet one-on-one with chemical engineering faculty and/or students.

Personal tools