Electrical Engineering Program

From Undergraduate Engineering Handbook

Revision as of 16:43, 17 December 2012 by Dlazar (Talk | contribs)
Jump to: navigation, search


2012-13 UG Electrical Engineering Major Program

  • UG Director: Dwight Nishimura, 255 Packard, vicechair@ee.stanford.edu
  • Student Services: Amy Duncan, 177 Packard, aduncan@stanford.edu
  • Dept Chair: Abbas El Gamal, abbas@ee.stanford.edu
  • Student Advisor: 110 Packard, undergradta@ee.stanford.edu, 725-3799


The mission of the Department of Electrical Engineering is to augment the liberal education expected of all Stanford undergraduates, to impart a basic understanding of electrical engineering, and to provide majors in the department with knowledge of electrical engineering principles along with the required supporting knowledge in mathematics, science, computing, and engineering fundamentals.

Choices in specialization topics are Bioelectronics and Bioimaging, Circuits and Devices, Compter Hardware, Computer Software, Music, Signal Processing, Communications and Controls, and Solid State, Photonics and Electromagnetics.

Students are encouraged to consult with thri faculty advisor, are encouraged to consult the EE student advisor, and may find it useful to consult other students when designing their prog

Objectives and Outcomes for Electrical Engineering

1. Technical Knowledge: Provide a basic knowledge of electrical engineering principles along with the required supporting knowledge of mathematics, science, computing, and engineering fundamentals. The program must include depth in at least one specialty area, currently including Bioelectronics and Bioimaging, Circuits and Devices, Computer Hardware, Computer Software, Controls, Fields and Waves, Signal Processing and Communication,, and Solid State and Photonic Devices.
2. Laboratory and Design Skills: Develop the basic skills needed to perform and design experimental projects. Develop the ability to formulate problems and projects and to plan a process for solutions taking advantage of diverse technical knowledge and skills.
3. Communications Skills: Develop the ability to organize and present information, and to write and speak effective English.
4. Preparation for Further Study: Provide sufficient breadth and depth for successful subsequent graduate study, post-graduate study, or lifelong learning programs.
5. Preparation for the Profession: Provide an appreciation for the broad spectrum of issues arising in professional practice, including teamwork, leadership, safety, ethics, service, economics, and professional organizations.

(a) An ability to apply knowledge of mathematics, science, and engineering
(b) An ability to design and conduct experiments, as well as to analyze and interpret data
(c) An ability to design a system, component, or process to meet desired needs
(d) An ability to function on multi-disciplinary teams
(e) An ability to identify, formulate, and solve engineering problems
(f) An understanding of professional and ethical responsibility
(g) An ability to communicate effectively
(h) The broad education necessary to understand he impact of engineering solutions in a global and societal context
(i) A recognition of the need for, and an ability to engage in, life-long learning
(j) A knowledge of contemporary issues
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
(l) Background for admission to engineering or other professional graduate programs

For updated information, visit the EE website

Research Experience for Undergraduates

The Electrical Engineering Department at Stanford University invites undergraduates majoring in EE to participate in its REU Summer Program from June to August. The program is designed to give undergraduates an opportunity to work with members of the EE Faculty and their research groups on advanced research topics.

Program Structure
The program is designed to give both an in-depth research experience on a particular topic, as well as a broad hands-on exposure to various areas within EE.

Bi-weekly seminars are offered to cover a wide range of topics. The seminar series lecturers are comprised of EE faculty and guests. Discussions will include topics such as graduate education, internships and career opportunities.

The last week of the summer program will be devoted to writing a final report and creating a poster on the research project. The students will present their projects at a poster fair, to which the EE community will be invited.

Each student receives a summer stipend. Students are required to reside in undergraduate housing with the Summer Research College. A meal plan is also provided.

Application Procedure: For information about our application process, please go to ee.stanford.edu/reu.
1. The application has two steps. You can re-submit both steps at any point up to the deadline. The deadline for students to apply is in early February, with exact date to be announced.
2. If you have any questions about the application, email gradta@stanford.edu
If you have any questions about the logistics of the REU program, email reumentor@ee.stanford.edu.

REU Requirements
Students must declare EE as their undergraduate major. With the exception of co-terms, in order to be eligible students may not be seniors when they apply. In the event the number of applicants exceeds the number of spaces available, preference is given to first time participants. If you have any questions regarding this information, please email reumentor@ee.stanford.edu.


The Departmental Requirements for a BS degree in Electrical Engineering include a core set of courses required of every major and a set of specialty areas from which one sequence must be chosen. Each program of study is also expected to include physics as part of science, and calculus, linear algebra, and ordinary differential equations as part of mathematics. The math requirement also includes a course in basic probability and statistics. Specific math and science requirements for EEs are listed below. Other program requirements detailed below include Technology in Society (one course) and one and one half years of Engineering Topics (68 minimum required), which include Engineering Fundamentals and Depth, which in turn includes a selection of electrical engineering core courses, a specialty sequence, electrical engineering electives, and a design course from an approved list. To be considered electrical engineering courses, courses must either be listed in the Stanford Bulletin as EE courses or as "EE related courses” (courses considered by the Department of EE to be programmatically equivalent to EE courses).The design course is intended to culminate the substantial design experience distributed throughout the curriculum. Students are required to pass a writing-intensive course (WIM) within their major (those who double-major will have to take two WIM courses). The WIM course for the Electrical Engineering Major is either EE 100X or EE 108A taken concurrently with ENGR 102E. Students are required to have a program planning sheet approved by their advisor and the department prior to the end of the quarter following the quarter they declare their major and at least one year prior to graduation. Programs may be changed at anytime except during the final quarter before graduation by submitting and having approved a new program sheet. Program sheets for the general EE requirements and for each of the EE specialty sequences may be found on the Program Sheets page of this site. Four-Year Plans for each EE specialty can be found on the 4-Year Plans page of this site.

Math and Science Requirements:

Minimum 45 units of mathematics and science combined
Math (required courses)

  • MATH 41, 42 or 10 units AP Calculus, 10 units (req'd)
  • MATH 51 & 52 OR CME 100 & CME 104, 10 units (req'd)
  • MATH 53 or CME 102, 5 units (req'd)
  • Statistics: Choose an option based upon your interest and preferences. The EE STATS and MATH options each have differneces in theoretical perspectives, the CME option is more application-oriented: EE178 or STATS 116 or MATH 151 or CME 106 or CS 109, 4-5 units (req'd)

Science (minimum 12 units required)

  • PHYSICS 41 or 61 or score of 4-5 for AP Physics C. Mechanics, 4 units (req'd)
  • PHYSICS 43 or 63 or score of 4-5 for AP Physics C. Electricity and Magnetism, 4 units(req'd)
  • Approved science elective; see Approved Courses page

Technology in Society
See the Approved Courses page for courses that fulfill the TiS requirement.

Engineering Topics(Fundamentals+Core+Specialty Sequence+Design+EE Electives)

 -- Minimum 68 units total of Fundamentals and Depth courses required --

Engineering Fundamentals (three courses required)

  • CS 106B or X (same as ENGR 70B or X). Programming Abstractions (or Accerlerated version); required, 5 units
  • At least two additional Fundamentals from Approved List; Recommended: ENGR 40 or 40N or 40P; CS 106A or second E40-series course not allowed, 3-5 units

Writing in the Major (WIM) (One course required)

EE 109 or EE 133 or EE 134 or EE 168 or CS 194W or EE 191W (may satisfy WIM if used for Honors thesis, REU, or a research project; written report revised with the help of an advisor is required; Writing Center advisor recommended.)

EE Core

  • EE 100. The EE Profession (does not count toward 68-unit minimum)
  • EE 101A & EE 101B. Circuits I & II
  • EE 102A & EE 102B. Signal Processing and Linear Systems I & II
  • EE 108A & EE 108. Digital Systems I & II
  • Select one: EE 41. Physics in Electrical Engineering* OR EE 141. Engineering Electromagnetics**

Note *: EE 41(same as ENGR 40P) can meet the Physics in EE core requirement only if it is not used to fulfill the Engineering Fundamentals requirement.

Note **: This option is recommended for those with strong interest in advanced topics in the field or in graduate studies

Specialty Areas (three courses required from one area listed below; 9-12 units):

  • Bioelectronics & Bioimaging: EE 122B, EE 124, EE 134 (WIM), EE 168 (WIM), EE 169, EE 202, EE 225
  • Circuits and Devices: EE 114, EE 116, EE 122A, EE 133 (WIM), EE 152, EE 212, EE 214B, EE 216, EE 271
  • Computer Hardware: EE 109 (WIM), EE 152, EE 271, EE 273, EE 282; CS 107
  • Computer Software: CS 107, CS 108, CS 110, CS 140, CS 143, CS 145, CS 148, CS 194W (WIM), EE 152, (EE 284 or CS 144)
  • Music: EE 109 (WIM), EE 122A, EE 261, (EE 264 or 265); MUSIC 256A, MUSIC 265B, MUSIC 420A, MUSIC 420B, MUSIC 421A, MUSIC 421B, MUSIC 424 
  • Signal Processing, Communications and Controls: EE 124, EE 133 (WIM), EE 168 (WIM), EE 169, EE 179, EE 261, EE 262, EE 263, (EE 264 or EE 265), EE 276, EE 278B, EE 279; ENGR 105, ENGR 205
  • Solid State, Photonics, & Electromagnetics: EE 116, EE 134 (WIM), EE 136, EE 141, EE 216, EE 222, EE 223, EE 228, EE 235, EE 242, EE 268

Note: EE 141 can be included in a specialty sequence only if it is not used to fulfill the Physics in EE core requirement.
Capstone Design Course: At least one of the following design projects must be included in each program:
EE 109, EE 133, EE 134, EE 152, EE 168, CS 194W. Also, EE 262 or EE 265 may be used for the Capstone but do not fulfill WIM without taking a dedicated section of EE 191W in addition.

EE Depth Electives (9-20 units):
To reach a total of 68 units of engineering coursework, you may add to the above requirements any graded EE or EE cognate courses, any CS 193 courses, or a maximum of two additional Engineering Fundamentals. Freshman and Sophomore seminars, EE 100, EE 100X, ENGR 102E, and CS 106A do not count toward the 68 units. Up to 10 units of EE 191 (Special Studies with Reports) can count toward the 68 Engineering Topics units (ask the 191 instructor to determine the number of Topics units that can be applied and have them sign off on your program sheet). Freshman seminars do not in general count towards the 68 units. A partial list of EE-related courses is given below (those likely relevant to undergraduate majors). For a complete EE-related course list, go to the MS degree page in the EE Graduate Handbook.

Below are courses taught outside the EE department that may be used as EE electives.
Related Courses to Count Toward EE Depth

AA 272C Global Positioning Systems
AA 278 Optimal Control and Hybrid Systems
APPPHYS 207 Laboratory Electronics
APPPHYS 208 Laboratory Electronics
APPPHYS 226 Physics of Quantum Information
APPPHYS 227 Applications of Quantum Information
APPPHYS 272 Solid State Physics I
APPPHYS 273 Solid State Physics II
CS 107 Computer Organization and Systems
CS 108 Object-Oriented Systems Design
CS 110 Principles of Computer Systems
CS 140 Operating Systems and Systems Programming
CS 143 Compilers
CS 144 Introduction to Computer Networking
CS 145 Introduction to Databases
CS 148 Introductory Computer Graphics and Imaging
CS 194 Software Project
CS 205A Mathematical Methods for Robotics, Vision, and Graphics
CS 221 Artificial Intelligence: Principles and Techniques
CS 223B Introduction to Computer Vision
CS 228 Structured Probabilistic Models: Principles and Techniques
CS 229 Machine Learning
CS 240 Advanced Topics in Operating Systems
CS 242 Programming Languages
CS 248 Introduction to Computer Graphics
CS 255 Introduction to Cryptography
ENGR 105 Feedback Control Design
ENGR 205 Introduction to Control Design Techniques
ENGR 206 Control System Design
ENGR 207A Modern Control Design I
ENGR 207B Modern Control Design II
ENGR 209A Analysis and Control of Nonlinear Systems
ENGR 209B Advanced Nonlinear Control
ENGR 210B Advanced Topics in Computation for Control
ENGR 240 Introduction to Micro- and Nanofabrication Technologies
GEOPHYS 140 Introduction to Remote Sensing
MATSCI 199/209 Electronic and Optical Properties of Solids
MATSCI 323 Thin Film and Interface Microanalysis
MATSCI 347 Introduction to Magnetism and Magnetic Nanostructures
ME 358 Heat Transfer in Microdevices
MS&E 237 Progress in Worldwide Telecommunications
MS&E 246 Game Theory with Engineering Applications
MS&E 251 Stochastic Decision Models

Declaring EE as a Major

1. Declare a major in EE on Axess. Do not declare Honors on Axess until an application has been filled out with signatures from your thesis adviser and a second reader, one of whom must be a member of the EE faculty, and the application has been submitted to the department along with the thesis proposal.
2. Fill out a copy of the Undergraduate Sign-Up Sheet. The "Area of Specialization" is particularly important to assist in the choice of a faculty advisor. It can always be changed.
3. Meet with the Vice Chair in Packard 172. You can check on office hours by sending email to vicechair@eemail.stanford.edu. In the Vice Chair's absence, see the Director of Student and Academic Services in Packard 170. Make sure to bring your Undergraduate Sign-up Sheet, unofficial transcript, and academic file (if available from your previous advisor) to the meeting. The purpose of the meeting is to go over the basics in getting a BS in EE, and to assign an EE faculty adviser to be your major advisor.
4. After the meeting, leave your academic file and Undergraduate Sign-up Sheet with the EE Degree Progress Officer in Packard 177, who will certify your Axess declaration within a working day. This completes the formal declaration.
5. Subscribe to both the EE undergrad mailing list and the general EE student mailing list. To do this, go to the http://mailman.stanford.edu Website and follow the instructions for subscribing to the lists ee-students and ee-undergrad. These lists are used for announcements about seminars, research opportunities, and other events.

Personal tools