Analysis of RNA-Seq Data

Wing Hung Wong Stanford University

JSM-2010

Outline

- Scientific background
- Mapping of reads
- Read rates modeling
- Quantification of expression
- Splice junction discovery
- Isoform discovery
- Future outlook

Cells are basic units of life

Schematic illustration of a eukaryotic cell

Basic working of a cell

- DNA contains genetic information
- Proteins (with RNA, lipids,..) self-assemble into the functional components of the cell.
- DNA replicates during cell division, so genetic information is passed to daughter cells
- Central dogma dictates how genetic information is utilized

The Central Dogma of Molecular Biology

Different proteins may be made in different cell types

- Hemoglobin in red blood cells
- Myosins in muscle cells
- Albumin in liver cells

Cell types are different mainly because of <u>differential gene expression</u>.

In particular, gene not needed are not transcribed

Alternative splicing

Multiple mRNA "isoforms" may be produced from the same genetic locus

This allows a single gene to create multiple proteins

Measurement of gene expression by microarray

Expressoin pattern

Gene	Level
a	high
Ъ	Medium
с	low
:	

Probe array

Measurement of gene expression by RNA sequencing

Revolution in sequencing

- Starting around 2004, new technologies have increased sequencing capacity at a rate faster than Moore's law.
- In 2008, a Solexa run could produce about 48 million x 32 bp . Just two years later, it is 480 million x 200 bp.
- RNA-Seq allows us to leverage this capacity for transcriptome analysis.

Outline

- Scientific background
- Mapping of reads
- Read rates modeling
- Quantification of expression
- Splice junction discovery
- Isoform discovery
- Future outlook

Solexa sequencing

Monitor single base extension by imaging

Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

4. FRAGMENTS BECOME DOUBLE STRANDED

2. ATTACH DNA TO SURFACE

Bind single-stranded fragments randomly to the inside surface of the flow cell channels.

5. DENATURE THE DOUBLE-STRANDED MOLECULES

Attached

Add unlabeled nucleotides and enzyme to initiate solid-phase bridge amplification.

6. COMPLETE AMPLIFICATION

Attached terminus Attached Free terminus terminus

The enzyme incorporates nucleotides to build double-stranded bridges on the solidDenaturation leaves single-stranded templates anchored to the substrate.

Attached

Several million dense clusters of doublestranded DNA are generated in each channel

From: www.illumina.com

Sample preparation to imaging cycle takes about 3-4 days

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

9. DETERMINE SECOND BASE

Second chemistry cycle: to initiate the next sequencing cycle, add all four labeled reversible terminators and enzyme to the flow cell.

10. IMAGE SECOND CHEMISTRY CYCLE

sequencing cycle, add all four labeled reversible

terminators, primers and DNA polymerase

enzyme to the flow cell.

11. SEQUENCE READS OVER MULTIPLE CHEMISTRY CYCLES

GCTGA.

12. ALIGN DATA

From: www.illumina.com

What does the data look like?

Base calling

AAAAATCTCTTCCTGAACCATTCAGAAAATGC AACAGACCTAAAATCGCTCATTGCATATTCTT AACCAGGCGACCTGCGACTCCTTGACGTTGAC ATGTTAGGGTTGTACGGTAGAACTCCTATTAT ATTGCCCAGAAAGTACCTGAGCTATCAGTGAT ATCCCGATCCCGGTTACAGAGTCCATTGTAGA ACCACCCAACAATGACTAATCAAACTAACCTC ATGGGGGAAATATTGCAATTATGTAAAGGTAA ATGTTTAAAAGTCCACTTTTAAAACTATATTT ATATAACTCTCTTCCCCTCTCACTCTTTCTCTC AGGGAACTACTCCCACCCTGGAGCCTCCGTAG AAAAGATATATATATATATATATATATATATA AGTCGACCCTGCACCTGGTCCTGCGTCTGAGA ATTTGGTGAGTAATTAAAGAGAGTAGTAGCAT GGTCTGTTTGTCGTATGCCGTCTTCTTCTTT ATTGAAAGAAGTCTTTCTAGAAATGTTAAATA AGGGACTGAAGCTGCTGGGGGCCATGTTTTTAG AGAAAATATTAAAATCTTTGAAGAAGAAGAAGAAG AAGGGGATTTAGAGGGTTCTGCGGGCAAATTT AGAACCCTCCATAAACCTGGAGTGACTATATG AATAAGTCGGTTCAGGAGATCCAAGGAACCTT ATTGGGTTTGGCTGTATCCCACCCCGTTACAA CGGGGATAAGTGTGGTTTCGAAGAAGATATAA

Stages of data analysis

- Stage 1:
 - Base calling (Illumina, ABI, Phil Green)
- Stage 2:
 - Sequencing mapping (for known genome)
 - SNP calling, variation detection (for known genome)
 - De novo assembly (for unknown genome)
- Stage 3:
 - Gene transcription analysis (for RNA-Seq)
 - Discovery of novel splices & isoforms
 - Comparative analysis, etc

Sequence mapping

Find all the matches for a read in the genome

A DNA Sequence: ACATAGGATCATGAAGTACCCATATCTAGTGGG reads: AGGA, CATC, ATAT, TTTG, GTGT

Matched Results: Perfect Match: 1bp Mismatch:

Efficiency is crucial: >200 millions reads per run

Basic approaches to mapping

- Index the genome (or the reads)
- Mapping algorithms
 - Seed-based algorithms (BLAT)
 - Pigeonhole principle
 - Suffix tree/array, BWT (Burrows-Wheeler transform)

Simple example

An example of mismatch = 1

Simple example

Simple example

Query sequence

AATTGC

split into two parts

AAT-TGC

look up in both lists, find match

List 1

AAA-TGC

ATT-CCG

CGT-ATG

&

GAT-ATT

GGA-CTA

TAC-TGT

TTC-CTT

List 2 CGT-ATG GAT-ATT ATT-CCG GGA-CTA TTC-CTT AAA-TGC

TAC-TGT

Some short-read mapping tools

Software	Max.	Gap	Max. read	Report All	Reference
	mismatches		length	matches	
ELAND	2	No	32	Ν	A. Cox (Illumina)
SOAP	2	1	60	Ν	R. Li (2008)
RMAP	>4	No	64	Ν	A. D. Smith (2008)
SeqMap	>4	>4	>200	Y	H. Jiang (2008)
ZOOM!	>4	1	64	Y	H. Lin (2008)
MAQ	3	No	64	Ν	H. Li (2008)
Bowtie	3	No	>200	Y	B. Langmead (2009)

For 100 million reads of 50 bp each, mapping to human genome: BOWTIE takes ~ 40 minutes on a 24-core server with large memory. BLAT (with short seed length to ensure sensitivity) takes ~400 minutes

Challenge: storage and processing power

Outline

- Scientific background
- Mapping of reads
- Read rates modeling
- Quantification of expression
- Splice junction discovery
- Isoform discovery
- Future outlook

Read are non-uniformly distributed, but same pattern across tissues with large differences in expression levels.

Example: read counts along the transcript of the Apoe gene in mouse. Modeling read rates: n_{ij} = count at nucleotide j of gene iAssume $n_{ij} \sim Poisson(\mu_{ij})$ $\log(\mu_{ij}) = \nu_i + \alpha + \sum_{k=1}^{K} \sum_{h \in \{A,C,G\}} \beta_{kh} I(b_{ijk} = h)$

Results (Jun Li et al 2010):

- Local sequence predicts read rate variation. (see also <u>Hansen et al 2010</u>)
- Model is platform dependent
- Nonlinear models (e.g. MART) predict even better (R² ~ 50%-70%)

Outline

- Scientific background
- Mapping of reads
- Read rates modeling
- Quantification of expression
- Splice junction discovery
- Isoform discovery
- Future outlook

Expression level is revealed by the counts of reads mapped to the gene

RPKM as gene-level expression index

- More reads mapped to gene if transcript is long
- More reads mapped to gene if sequencing is deep
- Expression index (Mortazavi et al 2008, Wold Lab) Let l = size of transcript in kb
 N= total # of mappable reads
 then the gene expression index is
 RPKM = (# reads mapped to gene)/ (l * N)
 "reads per kb per million reads"
 1 RKPM ~ 0.3 to 1 transcript per cell

Consistency with microarray

(Wold data, exon array indexes by Karen Kapur)

Log-Log Correlation Sequencing/Exon Array

Tissue	Log-Log Correlation
Liver	0.8350
Muscle	0.8247
Brain	0.7566

Isoform expression estimation

- In the future, <u>estimation</u> experiments may be done separately from <u>discovery</u> experiments
- Assuming the set of isoforms is given, how to estimate the RPKM for each of the isoform?

Simple RPKM computation may fail in many cases

Model-based approach

(Jiang & Wong, 2008)

- Assume each read is sampled uniformly along the length of each transcript in the sample, and that longer transcripts are proportionally more likely to be sampled.
- Under this model, n₁, n₂, .. are independent Poisson variables.
- Draw inference on x₁, x₂,... from the likelihood or the posterior distribution

Concavity of log-likelihood

• Let A_{ij} = Indicator {isoform j contains exon i }

$$f = \log lik = \sum_{i} \left(n_{i} \log \sum_{j} A_{ij} x_{j} \right) - n \sum_{i} \left(l_{i} \sum_{j} A_{ij} x_{j} \right)$$

• Gradient

$$\frac{\partial f}{\partial x_{k}} = \sum_{i} A_{ik} \left(\frac{n_{i}}{\sum_{j \in A_{i}} x_{j}} - n l_{i} \right)$$

• Hessian

$$\frac{\partial^{2} f}{\partial x_{k} \partial x_{l}} = -\sum_{i} A_{ik} A_{il} \left(\frac{n_{i}}{\left(\sum_{j \in A_{i}} x_{j}\right)^{2}} \right)$$

Concavity

Hessian in matrix form

$$Hf = \frac{\partial^2 f}{\partial X^2} = -A'DA$$

- Where $A = \{A_{ij}\}, D$ is a diagonal matrix, with $D_{ii} = n_i / \left(\sum_{j \in A_i} x_j\right)^2 \ge 0$
- Thus Hessian is negative semidefinite, and f is concave. It suffices to find local maximum

Numerical optimization

- Iterative method (hill climbing)
 - For the 1510 genes that have multiple isoforms, max(num_it) = 1805, mean(num_it) = 32.87, median(num_it) = 15

Example

Tissue	Isoform 1	Isoform 2	Isoform 3
Brain	5.05	0.42	0
Muscle	1.91	238.67	14.89
Liver	7.96	0.12	0

Statistical inference

- Multiple isoforms
 - Correlated expression
 - Asymptotics of the MLE $\hat{\theta} \sim N(\theta, I(\theta)^{-1})$
 - Fisher information matrix

$$I_{jk} = Cov\left(\frac{\partial}{\partial\theta_j}\log f(X;\theta), \frac{\partial}{\partial\theta_k}\log f(X;\theta)\right) = -E_{\theta}\left[\frac{\partial^2}{\partial\theta_j\partial\theta_k}\log f(X;\theta)\right]$$

Statistical inference

- <u>Difficulty</u>: when some isoform(s) are not expressed, Fisher Information becomes singular
- <u>Our approach</u>: Use importance sampling to draw from the posterior, starting with a proprosal density related to the asymptotic distribution
- Summarize marginal inferences for single or pairs of isoform expressions

Example – 95% probability interval

Tissue	Isoform 1	95% Interval	Isoform 2	95% Interval
Brain	3.87	(2.22, 6.76)	580.68	(559.52, 601.86)
Muscle	1.04	(0.39, 3.04)	330.64	(314.02, 347.24)
Liver	0.32	(0.08, 1.82)	1376.04	(1343.51, 1408.42)

Gene level expression

• Gene expression is obtained by summing isoform expressions

$$g = \sum_{i} t_{i}$$
, where $t = \hat{\theta}_{i}$

- Marginal posterior for g can be obtained from that of heta
- In many cases we may have tight inference for the gene level expression but yet have great uncertainty about the expression for individual isoforms

Example – gene level expression

	Expression	95% interval
Isoform 2 (upper)	6.60	(4.20, 7.28)
Isoform 1 (lower)	0.48	(0.05, 3.01)
Gene level	7.09	(6.52, 7.84)
(Isoform 1 + Isoform 2)		

Marginal inference

Another example

	Expression	95% interval
Isoform 1 (upper)	2.1	(0.05, 7.76)
Isoform 2 (middle)	35	(4, 71)
Isoform 3 (lower)	350	(316, 379)
Gene level	387	(371, 402)

Outline

- Scientific background
- Mapping of reads
- Read rates modeling
- Quantification of expression
- Splice junction discovery
- Isoform discovery
- Future outlook

Discovery of novel isoforms <u>First step</u>: detect splice junctions

SpliceMap Software (Au et. el. NAR 2010)

- do not assume known annotations
- directly find split map of reads
- customizable to balance sensitivity/specificity

fast

http://www.stanford.edu/group/wonglab/SpliceMap/index.html

Basic concept

• Split map

- if read length >=50 bp
- at least one of the halves will have non-split map

Algorithm:

Junction search:

•Residual length >= 10 bp

Canonical splicing signal GT-AG (appears in 98% splices)
Distance < 400k bp (existence of intron between two splicing exons)

The cumulative distribution function of the intron sizes

* Based on hg19 human Refseq annotation.

Paired-end filtering: (Illumina data)

Both are "good hits" (exonic, extension or junction)
Opposite sequencing direction ("bridge sequencing")
Distance < 400k bp

•Example

Parameters for junction quality

- •nR: number of reads supporting this junction
- •nNR: number of non-redundant supporting reads
- •nUM: number of uniquely mapped supporting reads
- •nUP: number of mapped reads in upstream adjacent regions (within K bp)

•nDOWN: number of mapped reads in downstream adjacent regions (within K bp)

nR of this junction is 6

The deep green reads are uniquely mapped supporting reads (nUM=4). The wheat reads are multiply mapped supporting reads. Two supporting reads are redundant, so nNR=4.

There are 4 and 3 uniquely mapped reads (grey green) in upstream and downstream adjacent regions of 40 bp respectively, so nUP=4 and nDOWN=3.

nR distribution

• Novel junctions tends to have low expression

nR	All junctions	Novel junctions*
1	47,995 (27.73%)	24,887 (73.27%)
2~5	49,118 (28.38%)	7,746 (22.81%)
6~20	44,503 (25.72%)	1,170 (3.44%)
21~50	19,055 (11.01%)	131 (0.39%)
51~200	10,464 (6.05%)	30 (0.09%)
201~1000	1,791 (1.03%)	2 (0.01%)
1000+	133 (0.08%)	0 (0%)

*Novel \Leftrightarrow not in RefSeq, KnownGene or Ensembl

Improve specificity by filters

	SpliceMap				
Optional filters *		nUM	nUP/nDOWN	nNR	nUM + nUP/nDOWN
Total junctions	173,059	171,407	151,169	122,925	150,287
Novel junctions	33,966	32,999	26,574	9,160	25,939
Junctions with EST validation	145,232	144,380	130,059	114,768	129,690
Novel junctions with EST	11,964	11,723	9,956	4,454	9,809
EST validation rate	83.92%	84.23%	86.04%	93.36%	86.29%
EST validation rate (novel)	35.22%	35.53%	37.47%	48.62%	37.82%

•"---" presents no application of any parametric filters;

•"nUM" filter requires nUM>0; "nUP/nDOWN" filter requires nUP+nDOWN>0; and "nNR" filter requires nNR>1. For all "nUP/nDOWN" filters, we set K=40.

Specificity Comparison

23,412,226 paired 50-bp reads from human brain

	SpliceMap	TopHat
Total junctions	150,287	147,712
Novel junctions	25,937	31,432
Junctions with EST validation	129,690 (86.29%)	119,835 (81.13%)
Novel junctions with EST	9,809 (37.82%)	7,967 (25.34%)

Sensitivity Comparison

Junction detection sensitivity, stratified by gene expression

	SpliceMap	TopHat
0 <rpkm<=1 (2993)<="" td=""><td>5.17%</td><td>6.20%</td></rpkm<=1>	5.17%	6.20%
1 <rpkm<=2 (1199)<="" td=""><td>33.73%</td><td>29.31%</td></rpkm<=2>	33.73%	29.31%
2 <rpkm<=5 (2049)<="" td=""><td>61.52%</td><td>53.80%</td></rpkm<=5>	61.52%	53.80%
5 <rpkm<=20 (3245)<="" td=""><td>88.89%</td><td>81.81%</td></rpkm<=20>	88.89%	81.81%
20 <rpkm<=50 (1340)<="" td=""><td>96.12%</td><td>91.38%</td></rpkm<=50>	96.12%	91.38%
50 <rpkm<=100 (522)<="" td=""><td>97.84%</td><td>94.15%</td></rpkm<=100>	97.84%	94.15%
RPKM>100 (408)	96.39%	90.08%

Sensitivity:

how complete is the junction discovery

	SpliceMap	TopHat
Number of genes detected	8774	8886
1<=p<50	1433	2072
51<=p<80	1599	1983
81<=p<100	1496	1388
p=100	4,246	3443

A gene is detected if at least one junction of the gene is detected.

p is the percentage of junctions (in the gene) detected

PCR validation

Gene name		Cassette exon	Length	Result
nNR=1	PTH1R	chr3:46912228-46912363	135	+
	ARL13A	chrX:100128440-100128546	106	+
	PIAS4	chr19:3979928-3980034	106	-
	SPAG17	chr1:118443751-118443946	195	+
nNR=2	NDUFA13	chr19:19499089-19499161	72	-
	RTKN	chr2:74508058-74508227	169	+
	BAT2L	chr9:133311608-133311850	242	+
	PSAP	chr10:73248793-73248874	81	-
nNR:3~5	OSBP2	chr22:29615476-29615623	147	+
	ARHGEF12	chr11:119805630-119805750	120	+
	GTPBP1	chr22:37453163-37453299	136	+
nNR:6~10	MYH7	chr14:22973242-22973298	56	+
	TTN	chr2:179197436-179197703	267	+
	ITGB1BP3	chr19:3892068-3892175	107	+
nNR>10	GIPR	chr19:50872420-50872481	61	+
	LAMA2	chr6:129716001-129716195	194	+
	ATG4D	chr19:10516458-10516542	84	+
	DAB2IP	chr9:123576359-123576512	153	+
FHOD3		chr18:32593078-32593102	24	+
C6orf145		chr6:3682849-3682963	114	+

2009-07-30 (62C)

Examples

Chr19:55441784-55465542

Chr19: 3578107 - 3600612

	6800000	6900000 7000000) 7100000	7200000	7300000	7400000	7500000 7	600000	7700000
RefSeq	самта1		·····	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	····		····	****	┶╤┷┷╤┷
🖻 adipose	2 15 15 12 12 15 1 2 15 1 2 1 2 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1								
🖻 brain	1 13 →→→→ 2 →→ 12 15 →→→] 9 →→→ 1 → 16							1	
🖻 colon	6 <mark>}>>>)</mark> 2 2 <mark>}>>>+ </mark> 9 11 }>>>>	H							
🖻 kidney	ンコーションションショー 17 月 1 14 ->>>- 5 6 ->>>- 14 ->>>- 2 ->>>- 2 ->>>-					1			1 1
🖻 lung	1 - 1 - 7 - - 1 4 - - 5 11 1 - - - 10 - - - -		4	1					
🗖 ovary	<pre></pre>	₩ ₩ ₩	2	→→→→→ 1 →→ 4 →→		····		8) + 4 5 4	4 →→→ 1 1 1 1 1 1

Outline

- Scientific background
- Mapping of reads
- Read rates modeling
- Quantification of expression
- Splice junction discovery
- Isoform discovery
- Future outlook

Cufflinks Software

Trapnell, Nature Biotech, 2010

Identify all compatible pairs of reads, connect them with an edge

Find a minimal set of paths that cover all the fragments in the overlap graph.

Regard the the paths as isoforms

While Cufflinks gives very useful results, the isoform discovery problem is not yet completely resolved.

With current single and pair-end protocols, isoforms are <u>non-identifiable</u> from the reads (David Hiller 2009). This raises great conceptual and practical difficulties.

Future outlook

- Data rate doubles every few months
- Computing infrastructure needs to scale
- Downstream analyses: comparing samples, allele specific expression, regulation of splicing, etc
- Beware! 3rd generation technology may change the statistical issues

Kinfai Au

SeqMap, CisG Browser, Isoform expr. Credits

Hui Jiang

John Mu

