Discussion of "Who Are the Hand-to-Mouth?" by Mark Aguiar, Mark Bils and Corina Boar

Adrien Auclert

Stanford

AEA Meetings New Orleans, January 6, 2023

The canonical model of consumption

- ightharpoonup Ex-ante identical agents with Markov income process $\Pi\left(e'|e
 ight)$
- One uncontingent asset a, all solve

$$V_{t}(a, e) = \max_{c, a'} \frac{c^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}} + \beta \mathbb{E}\left[V_{t+1}(a', e') | e\right]$$
$$c + a' = R_{t}a + Y_{t}e, \qquad a' \ge \underline{a}$$

- Extremely influential, core model for literatures on
 - consumption, savings and wealth dynamics
 - monetary and fiscal policy with HANK

The canonical model of consumption

- ightharpoonup Ex-ante identical agents with Markov income process $\Pi\left(e'|e\right)$
- ▶ One uncontingent asset *a*, all solve

$$V_{t}(a, e) = \max_{c, a'} \frac{c^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}} + \beta \mathbb{E}\left[V_{t+1}(a', e') | e\right]$$
$$c + a' = R_{t}a + Y_{t}e, \qquad a' \ge \underline{a}$$

- Extremely influential, core model for literatures on
 - consumption, savings and wealth dynamics
 - monetary and fiscal policy with HANK
- **Very few parameters**: σ , β , R, Π , \underline{a} . Infinite number of predictions!
 - Distributions of wealth, income, consumption, MPCs
 - ► Cross-household correlations, eg *Corr* $(\Delta c_{it}, \Delta y_{it})$
 - ▶ Dynamic aggregate moments, eg, $\frac{\partial C_t}{\partial Y_s}$ and $\frac{\partial C_t}{\partial R_s}$ ("iMPCs")

The canonical model of consumption

- **E**x-ante identical agents with Markov income process $\Pi(e'|e)$
- ▶ One uncontingent asset *a*, all solve

$$V_{t}(a, e) = \max_{c, a'} \frac{c^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}} + \beta \mathbb{E}\left[V_{t+1}(a', e') | e\right]$$
$$c + a' = R_{t}a + Y_{t}e, \qquad a' \ge \underline{a}$$

- Extremely influential, core model for literatures on
 - consumption, savings and wealth dynamics
 - monetary and fiscal policy with HANK
- **Very few parameters**: σ , β , R, Π , \underline{a} . Infinite number of predictions!
 - ▶ Distributions of wealth, income, consumption, MPCs
 - ▶ Cross-household correlations, eg *Corr* (Δc_{it} , Δy_{it})
 - ▶ Dynamic aggregate moments, eg, $\frac{\partial C_t}{\partial Y_s}$ and $\frac{\partial C_t}{\partial R_s}$ ("iMPCs")
- Can calibrate to hit some of these moments in data (not all jointly)

This paper

- Classifies households into three types:
 - Zeldes HTM if low net worth
 - ► Kaplan-Violante *HTM* if high net worth but low liquid assets
 - ► Not *HTM* otherwise
- Calculates new moments from PSID:
 - 1. Transitions across HTM status
 - 2. $E[\Delta c_{it}|HTM]$, with or without individual fixed effects
 - 3. $E[|\Delta c_{it}||HTM]$ and $E[|\Delta y_{it}||HTM]$ (a proxy for volatility)
 - 4. E [In Categories_{it}|HTM]
 - 5. $E[APC_{it}|HTM]$ [my personal favorite, sadly gone from new version!]
- ▶ Shows no calibration of canonical model can match these moments
- But, a calibration with ex-ante heterogeneity in (β, σ) can

My take on the paper

▶ I completely agree that:

- 1. Ex-ante homogeneity assumption in canonical model is crazy
- 2. Something like β heterogeneity is needed to explain the data
- 3. Low β is hard to tell apart from high σ
- 4. Ultimately, σ heterogeneity is probably important as well

[cf also Parker, Guvenen,...]

Rest of discussion:

- 1. How do we know for sure it's σ heterogeneity?
- 2. How does it change the big picture if it is?

- lacktriangle Many existing quantitative models already feature eta heterogeneity
 - Useful to jointly match average wealth and average MPC in data

- lacktriangle Many existing quantitative models already feature eta heterogeneity
 - Useful to jointly match average wealth and average MPC in data
- lacktriangle Paper explains very well why low eta and high σ are similar
 - ▶ Both push towards high MPCs and low target wealth

- lacktriangle Many existing quantitative models already feature eta heterogeneity
 - Useful to jointly match average wealth and average MPC in data
- lacktriangle Paper explains very well why low eta and high σ are similar
 - ▶ Both push towards high MPCs and low target wealth
- Q: What exactly favors one over the other in structural model?
 - Category adjustment fact interesting, but not used in model
 - ▶ Current calibration has type with both very low β and high σ : why?
 - ▶ Don't we need extra moment on relation b/w ΔC and ΔR to tell?

- lacktriangle Many existing quantitative models already feature eta heterogeneity
 - Useful to jointly match average wealth and average MPC in data
- lacktriangle Paper explains very well why low eta and high σ are similar
 - Both push towards high MPCs and low target wealth
- Q: What exactly favors one over the other in structural model?
 - Category adjustment fact interesting, but not used in model
 - ▶ Current calibration has type with both very low β and high σ : why?
 - ▶ Don't we need extra moment on relation b/w ΔC and ΔR to tell?
- Broader Q: what moment(s) do you want future work to calibrate σ heterogeneity to?

How does the big picture change?

- All models get some moments wrong.
 - Why is it important to hit the ones in this paper?
 - Why is it important to do this with σ heterogeneity?
- ▶ The usual procedure in the literature is:
 - Calibrate the canonical model to hit some moments, eg MPC
 - Use the model to extrapolate to other moments that matter for GE

How does the big picture change?

- ▶ All models get some moments wrong.
 - Why is it important to hit the ones in this paper?
 - Why is it important to do this with σ heterogeneity?
- ▶ The usual procedure in the literature is:
 - Calibrate the canonical model to hit some moments, eg MPC
 - Use the model to extrapolate to other moments that matter for GE
- Ney \mathbf{Q} : Take two models that match the MPC, one with σ heterogeneity and one without. How does the extrapolation change?
- ▶ Paper gives one example with $\frac{\partial C_0}{\partial R_0}$. Can develop this more!

Two thoughts on extrapolation

Develop $\frac{\partial C_0}{\partial R_0}$ **more**. We know that, for agent *i* with $APC_i = 1$

$$\frac{\partial c_{0i}}{\partial \ln R_0} = -\sigma_i \left(1 - MPC_i \right)$$

this shows that calibrating to MPC is sufficient when everyone has same σ , not otherwise, and can explain high responsiveness of high- σ , low- β group

Two thoughts on extrapolation

Develop $\frac{\partial C_0}{\partial R_0}$ **more**. We know that, for agent *i* with $APC_i = 1$

$$\frac{\partial c_{0i}}{\partial \ln R_0} = -\sigma_i \left(1 - MPC_i \right)$$

this shows that calibrating to MPC is sufficient when everyone has same σ , not otherwise, and can explain high responsiveness of high- σ , low- β group

- **Extra moments**. In Auclert-Rognlie-Straub, we show that the iMPCs $\frac{\partial C_t}{\partial Y_s}$ and $\frac{\partial C_t}{\partial R_s}$ are sufficient statistics for dynamic GE
 - Extrapolation from MPC $(\frac{\partial C_0}{\partial Y_0})$ to these other iMPCs, and therefore effects of fiscal and monetary policy, will likely change
 - ightharpoonup Showing how would help make convincing case that σ heterogeneity is the next step for the literature

Concluding thoughts

- ▶ Very nice paper, whose main message I believe in
- lacktriangle Tell us what moments to use to calibrate our σ heterogeneity to
- Tell us what macro conclusions we get wrong if we don't