Discussion of "Inequality, Business Cycles and Monetary-Fiscal Policy" by Bhandari, Evans, Golosov and Sargent

Adrien Auclert

Stanford

NBER ME meeting New York Fed March 2, 2018

This paper: a very important question

- How should monetary policy respond to aggregate shocks?
- Standard answers from RANK models:
 - Track the natural real interest rate
 - Lean against the wind of inflationary pressure
- ▶ We know from existing HANK literature that adding heterogeneity
 - Large income and wealth inequality
 - Large and heterogeneous MPCs

substantially changes the positive conclusions of RANK models

- Key outstanding question: how about the normative conclusions?
- ▶ This paper: normative analysis in a HANK economy
 - a methodological innovation, and some tentative conclusions

My assessment

- Novel and cool methodology, will likely be influential going forward
- Illustrated in the context of a natural extension of canonical NK model to heterogeneity
- Calibration misses a number of crucial features for HANK models:
 - 1. Sticky wages
 - 2. Occasionally binding borrowing constraints
- Potential obstacles for wide adoption and influence: methodology:
 - a) (Currently) cannot currently handle 2.
 - b) Seems quite complex to implement, even for 2nd order approximation
- ► This discussion: place question in context, explain methodology and results, suggest improvements to calibration

Optimal monetary-fiscal policy in New Keynesian models

Optimal policy in the rep agent NK model

- Consider standard NK model with sticky Rotemberg prices & CRS
- Given sequences for productivity Θ_t and markups ϵ_t^{-1} , planner solves

$$\max_{\{C_t, N_t, \pi_t, \tau_t\}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t \left\{\frac{C_t^{1-\nu}}{1-\nu} - \frac{N_t^{1+\gamma}}{1+\gamma}\right\}\right]$$

subject to the aggregate resource constraint and the Phillips curve

$$C_t = Y_t - \frac{\psi}{2}\pi_t^2 = \Theta_t N_t - \frac{\psi}{2}\pi_t^2$$

$$\psi\left(1+\pi_{t}\right)\pi_{t} = \frac{\epsilon_{t}}{1-\tau_{t}} \frac{C_{t}^{\nu} N_{t}^{\gamma}}{\Theta_{t}} - (\epsilon_{t}-1)$$
$$+\beta \mathbb{E}_{t} \left[\frac{C_{t+1}^{-\nu}}{C_{t}^{-\nu}} \psi\left(1+\pi_{t+1}\right) \pi_{t+1} \frac{\Theta_{t+1} N_{t+1}}{\Theta_{t} N_{t}} \right]$$

Solution: RANK principles of optimal policy

1. If au_t can vary, set it such that $rac{\epsilon_t}{1- au_t}=\epsilon_t-1$. Obtain

$$C_t = \Theta_t^{rac{1+\phi}{\sigma+\phi}} \quad \pi_t = 0 \quad orall t$$

and support by a sequence of nominal rates

$$1 + i_t = \frac{1}{\beta} \frac{C_t^{-\sigma}}{\mathbb{E}_t \left[C_{t+1}^{-\sigma} \right]}$$

- Optimal monetary-fiscal policy achieves the first best
- ▶ If productivity follows a geometric random walk then i_t is constant
- More generally, i_t should track the natural real rate
- 2. If no markup shocks $\epsilon_t = \epsilon^*$, can achieve this with a constant τ
 - Without cost-push shocks, monetary policy alone achieves the FB
- 3. Only meaningful tradeoff is with constant τ , but ϵ_t time varying
 - ▶ Then policy leans against the wind and is time inconsistent

- What is different in an incomplete markets economy?
 - ▶ Redistribution [Auclert 2015]. Budget constraint in BEGS:

$$c_{it} + \frac{1}{1+i_t}b_{it} = (1-\tau_t)W_t\theta_{it}n_{it} + T_t + s_iD_t + \frac{b_{it-1}}{1+\pi_t}$$
$$\theta_{it} = \Theta_te_{it}F(e_{it},\Theta_t)$$

- What is different in an incomplete markets economy?
 - Redistribution [Auclert 2015]. Budget constraint in BEGS:

$$c_{it} + \frac{1}{1+i_t}b_{it} = (1-\tau_t)W_t\theta_{it}n_{it} + T_t + s_iD_t + \frac{b_{it-1}}{1+\pi_t}$$
$$\theta_{it} = \Theta_t e_{it}F(e_{it}, \Theta_t)$$

- 1. Shocks do not affect all agents equally
 - ▶ Θ_t ↑ redistributes towards agents with relatively sensitive θ_i (high F_{Θ})
 - ▶ Θ_t ↑ increases wages W_t and dividends D_t , redistribute to agents with high θ_{it} and high s_i
 - $\epsilon_t \downarrow$ increases markups, causes $W_t \downarrow$ and $D_t \uparrow$, redistribute from high θ_{it} to high s_i agents

- What is different in an incomplete markets economy?
 - Redistribution [Auclert 2015]. Budget constraint in BEGS:

$$c_{it} + \frac{1}{1+i_t}b_{it} = (1-\tau_t)W_t\theta_{it}n_{it} + T_t + s_iD_t + \frac{b_{it-1}}{1+\pi_t}$$
$$\theta_{it} = \Theta_te_{it}F(e_{it},\Theta_t)$$

- 1. Shocks do not affect all agents equally
- 2. Policy changes do not affect all agents equally
 - Assets are nominal. $\pi_t \uparrow$ redistributes from high- b_{it-1} to low- b_{it-1} agents (Fisher effect)
 - ▶ Agents are trading. $i_t \downarrow$ redistributes from high- b_{it} agents to low- b_{it} agents (real interest rate exposure effect)
 - ▶ In sticky-price GE, $i_t \downarrow$ also causes $W_t \uparrow$ and $D_t \downarrow$, redistributes from high θ_{it} to high s_i agents
 - ► Taxes have redistributive effects. $T_t \uparrow$ mostly benefits low- θ_{it} , $\tau_t \uparrow$ mostly hurts high- θ_{it} agents

- What is different in an incomplete markets economy?
 - ▶ Redistribution [Auclert 2015]. Budget constraint in BEGS:

$$c_{it} + \frac{1}{1 + i_t} b_{it} = (1 - \tau_t) W_t \theta_{it} n_{it} + T_t + s_i D_t + \frac{b_{it-1}}{1 + \pi_t}$$
$$\theta_{it} = \Theta_t e_{it} F(e_{it}, \Theta_t)$$

- 1. Shocks do not affect all agents equally
- 2. Policy changes do not affect all agents equally
- 3. The planner cares about distribution, so uses policy instruments to undo the redistributive effect of shocks
 - ▶ eg, $i \downarrow$ in response to $\epsilon_t^{-1} \uparrow$ to undo labor-to-capital redistribution
 - ightharpoonup contrast with $i\uparrow$ in RANK to counter inflation by imposing recession
 - ▶ both forces are there: which one dominates is a quantitative question

Why is this problem difficult?

- ▶ The distribution Ω of agents over individual states (b_{it-1}, e_{it}, s_i) is part of the state space
- ▶ Shocks and policy responses influence affect agent decisions b_{it} , and therefore the evolution of Ω
- Already a nontrivial problem for positive analysis
 - Well-developed solutions methods exist here (see next)
- Normative analysis even more complex.

Why is this problem difficult?

- ▶ The distribution Ω of agents over individual states (b_{it-1}, e_{it}, s_i) is part of the state space
- ▶ Shocks and policy responses influence affect agent decisions b_{it} , and therefore the evolution of Ω
- Already a nontrivial problem for positive analysis
 - Well-developed solutions methods exist here (see next)
- ▶ Normative analysis even more complex. Competing alternatives:
 - Simplified, tractable models [Gali and Debortoli 2017; Challe 2017]
 - ► State-space truncation [Le Grand and Ragot 2017]
 - ► Continuous time (KF in planner constraints) [Nuño and Thomas 2017]
 - Most of these came before. Should discuss differences, both in terms of methodology and substantive conclusions.

The BEGS methodology

Understanding the BEGS methodology

- Paper emphasizes its methodological contribution
- Explains the method by showing how it handles a simple problem:
 - ► Flex-price equilibrium of a Huggett model
 - (Solve for path of real rate given TFP)
- ▶ **Next**: relate to and contrast with a well-established alternative
 - Sometimes known as "MIT-shock" solution method
 - For simplicity, take out endogenous labor supply and markups

A simple Huggett model

Aggregate income is

$$\ln Y_t = \rho_{agg} \ln Y_{t-1} + \sigma_{agg} \mathcal{E}_t \quad \text{Var}(\mathcal{E}_t) = 1$$

individual skills follow

$$\ln e_t = \rho_{id} \ln e_{t-1} + \sigma_{id} \epsilon_t \quad \text{Var}(\epsilon_t) = 1$$

▶ Distribution $\Omega(b, e)$. Initial conditions: Ω_{-1} and Y_{-1} . Agents solve

$$V(b, e; \Omega, Y) = \max_{c, b'} \left\{ u(c) + \beta \mathbb{E} \left[V(b', e'; \Omega', Y') | e, \Omega, Y \right] \right\}$$
$$c + \frac{b'}{R(\Omega, Y)} = eY + b$$

Note **no borrowing constraint**. Goods market clears:

$$\int c(b,e;\Omega,Y)\,d\Omega(b,e)=Y$$

MIT shock approach

- A classic approach: [Auerbach-Kotlikoff 1987, and many many others...]
 - ▶ Set $\sigma_{agg} = 0$
 - $ightharpoonup
 ightarrow Y_t$ follows known path, In $Y_t =
 ho^{t+1} \ln Y_{-1} =
 ho^{t+1} \Theta$
- Use "factorization theorem": agents only care about distributions Ω_t through their effect on aggregate paths $\{R_t\}$. Given Ω_{-1} and Θ ,
 - Agent policies at t depend only on $\{R_{\tau}\}_{\tau>t}$
 - ▶ Aggregate consumption C_t depends only on $\{R_\tau\}_{t>0}$
 - Obtain a nonlinear system:

$$C_t\left(\left\{R_{\tau}\right\}_{t\geq 0}\right) = Y_t \quad \forall t$$

- ▶ Truncate at $T \simeq 500$ periods: T equations in T unknowns $\{R_t\}$.
- ► Can solve very rapidly with pseudo-Newton methods [Auclert-Rognlie]

BEGS approach

- ▶ BEGS approach: [Fleming 1971, Anderson-Hansen-Sargent, Evans]
 - ▶ Set $\sigma_{agg} = \sigma \cdot \overline{\sigma_{agg}}$ and $\sigma_{id} = \sigma \cdot \overline{\sigma_{id}}$ (same σ)
- \triangleright For any σ , equilibrium policies satisfy functional equations

$$\begin{split} c\left(b,e;\Omega,Y,\sigma\right)^{-\nu} &=& \beta R\left(\Omega,Y,\sigma\right) \mathbb{E}\left[c\left(b',e';\Omega',Y',\sigma\right)^{-\nu}|e,\Omega,Y\right] \\ c\left(b,e;\Omega,Y,\sigma\right) + & \frac{b'\left(b,e;\Omega,Y,\sigma\right)}{R\left(\Omega,Y,\sigma\right)} &=& eY+b \\ & \int c\left(b,e;\Omega,Y,\sigma\right)\pi\left(e\right)d\Omega\left(b\right) &=& Y \\ & \Omega'\left(b',e';\Omega,Y,\sigma\right) &=& \int \mathbf{1}_{\left\{b'\left(b,e;\Omega,Y\right)\leq b'\right\}}\pi\left(e'|e\right)d\Omega\left(b,e\right) \end{split}$$

- Make repeated use of the implicit function theorem to approximate policies at increasing orders of σ (requires = in Euler)
- ▶ Use factorization theorem to reduce " $\frac{\partial c}{\partial \Omega}$ " to " $\frac{\partial c}{\partial R}\frac{\partial R}{\partial \Omega}$ "

BEGS vs MIT shocks

- MIT shock approach
 - ▶ 1st order approx wrt aggregate risk, ∞ wrt idiosyncratic risk
 - Handles occasionally binding constraints perfectly
 - ► Cannot handle higher orders for aggregate risk
- ▶ BEGS (current) approach
 - 2nd order wrt aggregate, 2nd wrt idiosyncratic
 - Cannot handle occasionally binding constraints
 - Can be scaled up to any order! (just requires a lot of algebra)

BEGS vs MIT shocks

- MIT shock approach
 - ▶ 1st order approx wrt aggregate risk, ∞ wrt idiosyncratic risk
 - Handles occasionally binding constraints perfectly
 - Cannot handle higher orders for aggregate risk
- ▶ BEGS (current) approach
 - 2nd order wrt aggregate, 2nd wrt idiosyncratic
 - Cannot handle occasionally binding constraints
 - Can be scaled up to any order! (just requires a lot of algebra)
- My view:
 - ► Since calibrated idiosyncratic uncertainty ≫ aggregate uncertainty, MIT approach probably okay for most positive questions
 - Jury is out on what the differences are. An interesting question!
 - The BEGS method promises to finally deliver an answer
 - ▶ BEGS essentially only game in town for optimal policy today
 - Nuño-Thomas: MIT shock approach, but much simpler problem

Substantive calibration issues

Matching MPCs and MPEs: problem with flexible wages

- Baseline model has a natural borrowing limit
- ► Authors correctly note that MPCs are important for monetary policy transmission mechanism [Auclert, Kaplan-Moll-Violante]
 - Fix with permanent hand to mouth agents (see next)
- ▶ Raises another issue: flexible wages + separable preferences:
 - Implies MPCs and marginal propensities to earn (MPEs) are related:

$$MPE_{i} = -\frac{w_{i}\theta_{i}n_{i}}{c_{i}}\frac{\nu}{\gamma}MPC_{i}$$

- ▶ Problem: in the data, $MPE_i \simeq 0$ for everyone
 - ► cf Swedish lotteries [Cesarini et al]
- Cannot fix this with nonseparable preferences [Auclert-Rognlie]
- Our solution: sticky wages

Matching intertemporal MPCs: problem with HTM

- Empirical evidence from lottery receipts suggest that agents spread spending over time on average [Fagereng et al]
 - Occasionally binding constraints are important [Auclert-Rognlie-Straub]

► The method's influence will depend on its ability to handle those

Factors affecting economic conclusions

- ▶ BEGS: debt is nominal and short term and stocks are nontraded
- ▶ This is likely to substantially affect optimal policy conclusions
- Long maturities imply that
- 1. Real interest rate cuts create capital gains that redistribute towards savers, so are less redistributive than model implies
- 2. Conversely, inflation has more redistributive power than model implies, since it erodes real value of long lived nominal assets
- ▶ Flexible wages make dividends highly countercyclical wrt monetary shocks, implying implausibly large redistribution between capital and labor. If stocks were tradable, agents would likely hedge this.

Conclusion

- Ambitious paper, interesting new insights
- Methodology will be very influential if it can
 - a) handle occasionally binding constraints
 - b) prove easy to implement, and a substantial benefit over alternatives
- ► A model with sticky wages, tradable stocks, and long maturities would deliver more credible substantive conclusions

Thank you!

References

- ▶ Auclert "Monetary Policy and the Redistribution Channel", wp 2015
- Auclert and Rognlie "Inequality and Aggregate Demand", wp 2016
- Auclert and Rognlie "Labor Supply and Multipliers: a Dilemma for New Keynesian models", wp 2018
- Auclert, Rognlie and Straub "The Intertemporal Keynesian Cross", wp 2018
- Cesarini, Lindqvist, Notowidigdo, Östling, "The Effect of Wealth on Individual and Household Labor Supply", AER 2017
- Challe "Uninsured unemployment risk and optimal monetary policy", wp 2017
- Fagereng, Holm, Natvik, "MPC Heterogeneity and Household Balance Sheets", wp 2017
- Gali and Debortoli "Monetary Policy with Heterogeneous Agents: Insights from TANK model", wp 2017
- ► Kaplan, Moll, Violante, "Monetary Policy according to HANK", AER 2018
- Le Grand and Ragot "Optimal fiscal policy with heterogeneous agents and aggregate shocks", wp 2017
- Nuño and Thomas "Optimal Monetary Policy with Heterogeneous Agents", wp 2017