Discussion of “Inequality, Business Cycles and Monetary-Fiscal Policy”
by Bhandari, Evans, Golosov and Sargent

Adrien Auclert
Stanford
NBER ME meeting
New York Fed
March 2, 2018
This paper: a very important question

- How should monetary policy respond to aggregate shocks?
- Standard answers from RANK models:
 - Track the natural real interest rate
 - Lean against the wind of inflationary pressure
- We know from existing HANK literature that adding heterogeneity
 - Large income and wealth inequality
 - Large and heterogeneous MPCs
 substantially changes the positive conclusions of RANK models
- Key outstanding question: how about the normative conclusions?
- This paper: normative analysis in a HANK economy
 - a methodological innovation, and some tentative conclusions
My assessment

- Novel and cool methodology, will likely be influential going forward

- Illustrated in the context of a natural extension of canonical NK model to heterogeneity

- Calibration misses a number of crucial features for HANK models:
 1. Sticky wages
 2. Occasionally binding borrowing constraints

- Potential obstacles for wide adoption and influence: methodology:
 a) (Currently) cannot currently handle 2.
 b) Seems quite complex to implement, even for 2nd order approximation

- **This discussion**: place question in context, explain methodology and results, suggest improvements to calibration
Optimal monetary-fiscal policy in New Keynesian models
Optimal policy in the rep agent NK model

- Consider standard NK model with sticky Rotemberg prices & CRS
- Given sequences for productivity Θ_t and markups ϵ_t^{-1}, planner solves

$$\max \{C_t, N_t, \pi_t, \tau_t\} \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_t^{1-\nu}}{1-\nu} - \frac{N_t^{1+\gamma}}{1+\gamma} \right\} \right]$$

subject to the aggregate resource constraint and the Phillips curve

$$C_t = Y_t - \frac{\psi}{2} \pi_t^2 = \Theta_t N_t - \frac{\psi}{2} \pi_t^2$$

$$\psi (1 + \pi_t) \pi_t = \frac{\epsilon_t}{1 - \tau_t} \frac{C_t^\nu N_t^\gamma}{\Theta_t} - (\epsilon_t - 1)$$

$$+ \beta \mathbb{E}_t \left[\frac{C_{t+1}^{1-\nu}}{C_t^{1-\nu}} \psi (1 + \pi_{t+1}) \pi_{t+1} \frac{\Theta_{t+1} N_{t+1}}{\Theta_t N_t} \right]$$
Solution: RANK principles of optimal policy

1. If τ_t can vary, set it such that $\frac{\epsilon_t}{1-\tau_t} = \epsilon_t - 1$. Obtain

$$C_t = \Theta_t^{\frac{1+\phi}{\sigma+\phi}} \pi_t = 0 \quad \forall t$$

and support by a sequence of nominal rates

$$1 + i_t = \frac{1}{\beta \mathbb{E}_t [C_{t+1}^{-\sigma}]} C_t^{-\sigma}$$

- Optimal *monetary-fiscal* policy achieves the **first best**
- If productivity follows a geometric random walk then i_t is constant
- More generally, i_t should **track the natural real rate**

2. If no markup shocks $\epsilon_t = \epsilon^*$, can achieve this with a constant τ
 - Without cost-push shocks, **monetary policy alone achieves the FB**

3. Only meaningful tradeoff is with constant τ, but ϵ_t time varying
 - Then policy **leans against the wind** and is time inconsistent
Introducing incomplete markets

- What is different in an incomplete markets economy?
 - Redistribution [Auclert 2015]. Budget constraint in BEGS:
 \[c_{it} + \frac{1}{1 + i_t} b_{it} = (1 - \tau_t) W_t \theta_{it} n_{it} + T_t + s_i D_t + \frac{b_{it-1}}{1 + \pi_t} \]
 \[\theta_{it} = \Theta_t e_{it} F (e_{it}, \Theta_t) \]
Introducing incomplete markets

What is different in an incomplete markets economy?

- Redistribution [Auclert 2015]. Budget constraint in BEGS:

\[
c_{it} + \frac{1}{1 + i_t} b_{it} = (1 - \tau_t) W_{t} \theta_{it} n_{it} + T_t + s_i D_t + \frac{b_{it-1}}{1 + \pi_t}
\]

\[
\theta_{it} = \Theta_t e_{it} F (e_{it}, \Theta_t)
\]

1. **Shocks** do not affect all agents equally

- \(\Theta_t \uparrow\) redistributes towards agents with relatively sensitive \(\theta_i\) (high \(F_{\Theta}\))
- \(\Theta_t \uparrow\) increases wages \(W_t\) and dividends \(D_t\), redistribute to agents with high \(\theta_{it}\) and high \(s_i\)
- \(\epsilon_t \downarrow\) increases markups, causes \(W_t \downarrow\) and \(D_t \uparrow\), redistribute from high \(\theta_{it}\) to high \(s_i\) agents
Introducing incomplete markets

- What is different in an incomplete markets economy?
 - Redistribution [Auclert 2015]. Budget constraint in BEGS:

\[
c_{it} + \frac{1}{1 + i_t} b_{it} = (1 - \tau_t) W_t \theta_{it} n_{it} + T_t + s_i D_t + \frac{b_{it-1}}{1 + \pi_t}
\]

\[
\theta_{it} = \Theta_t e_{it} F(e_{it}, \Theta_t)
\]

1. **Shocks** do not affect all agents equally
2. **Policy changes** do not affect all agents equally
 - Assets are nominal. \(\pi_t \uparrow\) redistributes from high-\(b_{it-1}\) to low-\(b_{it-1}\) agents (Fisher effect)
 - Agents are trading. \(i_t \downarrow\) redistributes from high-\(b_{it}\) agents to low-\(b_{it}\) agents (real interest rate exposure effect)
 - In sticky-price GE, \(i_t \downarrow\) also causes \(W_t \uparrow\) and \(D_t \down\), redistributes from high \(\theta_{it}\) to high \(s_i\) agents
 - Taxes have redistributive effects. \(T_t \uparrow\) mostly benefits low-\(\theta_{it}\), \(\tau_t \uparrow\) mostly hurts high-\(\theta_{it}\) agents
Introducing incomplete markets

What is different in an incomplete markets economy?

Redistribution [Auclert 2015]. Budget constraint in BEGS:

\[c_{it} + \frac{1}{1 + i_t} b_{it} = (1 - \tau_t) W_t \theta_{it} n_{it} + T_t + s_i D_t + \frac{b_{it-1}}{1 + \pi_t} \]

\[\theta_{it} = \Theta_t e_{it} F (e_{it}, \Theta_t) \]

1. **Shocks** do not affect all agents equally
2. **Policy changes** do not affect all agents equally
3. The planner cares about distribution, so uses policy instruments to undo the redistributive effect of shocks

 eg, \(i \downarrow \) in response to \(\epsilon_{t}^{-1} \uparrow \) to undo labor-to-capital redistribution

 contrast with \(i \uparrow \) in RANK to counter inflation by imposing recession

 both forces are there: which one dominates is a quantitative question
Why is this problem difficult?

- The distribution Ω of agents over individual states (b_{it-1}, e_{it}, s_i) is part of the state space.
- Shocks and policy responses influence agent decisions b_{it}, and therefore the evolution of Ω.
- Already a nontrivial problem for positive analysis.
 - Well-developed solutions methods exist here (see next).
- Normative analysis even more complex.

Simplified, tractable models:
- [Gali and Debortoli 2017; Challe 2017]
- State-space truncation [Le Grand and Ragot 2017]
- Continuous time (KF in planner constraints) [Nuñez and Thomas 2017]

Most of these came before. Should discuss differences, both in terms of methodology and substantive conclusions.
Why is this problem difficult?

- The distribution Ω of agents over individual states (b_{it-1}, e_{it}, s_i) is part of the state space.
- Shocks and policy responses influence affect agent decisions b_{it}, and therefore the evolution of Ω.
- Already a nontrivial problem for positive analysis.
 - Well-developed solutions methods exist here (see next).
- Normative analysis even more complex. Competing alternatives:
 - Simplified, tractable models [Gali and Debortoli 2017; Challe 2017]
 - State-space truncation [Le Grand and Ragot 2017]
 - Continuous time (KF in planner constraints) [Nuño and Thomas 2017]
 - Most of these came before. Should discuss differences, both in terms of methodology and substantive conclusions.
The BEGS methodology
Understanding the BEGS methodology

- Paper emphasizes its methodological contribution
- Explains the method by showing how it handles a simple problem:
 - Flex-price equilibrium of a Huggett model
 - (Solve for path of real rate given TFP)
- **Next:** relate to and contrast with a well-established alternative
 - Sometimes known as “MIT-shock” solution method
 - For simplicity, take out endogenous labor supply and markups
A simple Huggett model

- Aggregate income is

\[\ln Y_t = \rho_{agg} \ln Y_{t-1} + \sigma_{agg} \epsilon_t \quad \text{Var}(\epsilon_t) = 1 \]

individual skills follow

\[\ln e_t = \rho_{id} \ln e_{t-1} + \sigma_{id} \epsilon_t \quad \text{Var}(\epsilon_t) = 1 \]

- Distribution \(\Omega (b, e) \). Initial conditions: \(\Omega_{-1} \) and \(Y_{-1} \). Agents solve

\[V (b, e; \Omega, Y) = \max_{c, b'} \left\{ u(c) + \beta \mathbb{E} \left[V (b', e'; \Omega', Y') \mid e, \Omega, Y \right] \right\} \]

\[c + \frac{b'}{R(\Omega, Y)} = eY + b \]

Note no borrowing constraint. Goods market clears:

\[\int c (b, e; \Omega, Y) \, d\Omega (b, e) = Y \]
MIT shock approach

- A classic approach: [Auerbach-Kotlikoff 1987, and many many others...]
 - Set $\sigma_{agg} = 0$
 - $\Rightarrow Y_t$ follows known path, $\ln Y_t = \rho^{t+1} \ln Y_{-1} = \rho^{t+1} \Theta$

- Use “factorization theorem”: agents only care about distributions Ω_t through their effect on aggregate paths $\{R_t\}$. Given Ω_{-1} and Θ,
 - Agent policies at t depend only on $\{R_{\tau}\}_{\tau \geq t}$
 - Aggregate consumption C_t depends only on $\{R_{\tau}\}_{t \geq 0}$
 - Obtain a nonlinear system:
 \[
 C_t \left(\{R_{\tau}\}_{t \geq 0} \right) = Y_t \quad \forall t
 \]

- Truncate at $T \simeq 500$ periods: T equations in T unknowns $\{R_t\}$.
- Can solve very rapidly with pseudo-Newton methods [Auclert-Rognlie]
BEGS approach

- BEGS approach: [Fleming 1971, Anderson-Hansen-Sargent, Evans]
 - Set $\sigma_{agg} = \sigma \cdot \overline{\sigma_{agg}}$ and $\sigma_{id} = \sigma \cdot \overline{\sigma_{id}}$ (same σ)
 - For any σ, equilibrium policies satisfy functional equations

\[
c(b, e; \Omega, Y, \sigma)^{-\nu} = \beta R(\Omega, Y, \sigma) \mathbb{E}\left[c(b', e'; \Omega', Y', \sigma)^{-\nu} \mid e, \Omega, Y \right] \\
c(b, e; \Omega, Y, \sigma) + \frac{b'(b, e; \Omega, Y, \sigma)}{R(\Omega, Y, \sigma)} = eY + b \\
\int c(b, e; \Omega, Y, \sigma) \pi(e) d\Omega(b) = Y \\
\Omega'(b', e'; \Omega, Y, \sigma) = \int 1_{\{b'(b, e; \Omega, Y) \leq b'\}} \pi(e'|e) d\Omega(b, e)
\]

- Make repeated use of the implicit function theorem to approximate policies at increasing orders of σ (requires $= \text{in Euler}$)
- Use factorization theorem to reduce $\frac{\partial c}{\partial \Omega}$ to $\frac{\partial c}{\partial R} \frac{\partial R}{\partial \Omega}$
BEGS vs MIT shocks

- MIT shock approach
 - 1st order approx wrt aggregate risk, ∞ wrt idiosyncratic risk
 - Handles occasionally binding constraints perfectly
 - Cannot handle higher orders for aggregate risk

- BEGS (current) approach
 - 2nd order wrt aggregate, 2nd wrt idiosyncratic
 - Cannot handle occasionally binding constraints
 - Can be scaled up to any order! (just requires a lot of algebra)

My view:
- Since calibrated idiosyncratic uncertainty \gg aggregate uncertainty, MIT approach probably okay for most positive questions
- Jury is out on what the differences are. An interesting question!
- The BEGS method promises to finally deliver an answer
- BEGS essentially only game in town for optimal policy today

Nuño-Thomas: MIT shock approach, but much simpler problem
BEGS vs MIT shocks

- MIT shock approach
 - 1st order approx wrt aggregate risk, ∞ wrt idiosyncratic risk
 - Handles occasionally binding constraints perfectly
 - Cannot handle higher orders for aggregate risk

- BEGS (current) approach
 - 2nd order wrt aggregate, 2nd wrt idiosyncratic
 - Cannot handle occasionally binding constraints
 - Can be scaled up to any order! (just requires a lot of algebra)

- My view:
 - Since calibrated idiosyncratic uncertainty \gg aggregate uncertainty, MIT approach probably okay for most positive questions
 - Jury is out on what the differences are. An interesting question!
 - The BEGS method promises to finally deliver an answer
 - BEGS essentially only game in town for optimal policy today
 - Nuño-Thomas: MIT shock approach, but much simpler problem
Substantive calibration issues
Matching MPCs and MPEs: problem with flexible wages

- Baseline model has a natural borrowing limit
- Authors correctly note that MPCs are important for monetary policy transmission mechanism [Auclert, Kaplan-Moll-Violante]
 - Fix with permanent hand to mouth agents (see next)
- Raises another issue: flexible wages + separable preferences:
 - Implies MPCs and marginal propensities to earn (MPEs) are related:
 \[MPE_i = -\frac{w_i \theta_i n_i \nu}{c_i \gamma} \cdot MPC_i \]
 - Problem: in the data, \(MPE_i \approx 0 \) for everyone
 - cf Swedish lotteries [Cesarini et al]
 - Cannot fix this with nonseparable preferences [Auclert-Rognlie]
 - Our solution: sticky wages
Matching intertemporal MPCs: problem with HTM

- Empirical evidence from lottery receipts suggest that agents spread spending over time on average [Fagereng et al]
 - Occasionally binding constraints are important [Auclert-Rognlie-Straub]

The method’s influence will depend on its ability to handle those
Factors affecting economic conclusions

- BEGS: debt is nominal and short term and stocks are nontraded
- This is likely to substantially affect optimal policy conclusions
- Long maturities imply that

1. Real interest rate cuts create capital gains that redistribute towards savers, so are less redistributive than model implies
2. Conversely, inflation has more redistributive power than model implies, since it erodes real value of long lived nominal assets

- Flexible wages make dividends highly countercyclical wrt monetary shocks, implying implausibly large redistribution between capital and labor. If stocks were tradable, agents would likely hedge this.
Conclusion

- Ambitious paper, interesting new insights
- Methodology will be very influential if it can
 a) handle occasionally binding constraints
 b) prove easy to implement, and a substantial benefit over alternatives
- A model with sticky wages, tradable stocks, and long maturities
 would deliver more credible substantive conclusions
Thank you!
References

- Auclert “Monetary Policy and the Redistribution Channel”, wp 2015
- Auclert and Rognlie “Inequality and Aggregate Demand”, wp 2016
- Auclert, Rognlie and Straub “The Intertemporal Keynesian Cross”, wp 2018
- Challe “Uninsured unemployment risk and optimal monetary policy”, wp 2017
- Fagereng, Holm, Natvik, “MPC Heterogeneity and Household Balance Sheets”, wp 2017
- Gali and Debortoli “Monetary Policy with Heterogeneous Agents: Insights from TANK model”, wp 2017
- Kaplan, Moll, Violante, “Monetary Policy according to HANK”, AER 2018
- Le Grand and Ragot “Optimal fiscal policy with heterogeneous agents and aggregate shocks”, wp 2017
- Nuño and Thomas “Optimal Monetary Policy with Heterogeneous Agents”, wp 2017