Discussion of "Sovereign Debt Portfolios, Bond Risks and the Credibility of Monetary Policy" by Wenxin Du, Carolin Pflueger and Jesse Schreger

Adrien Auclert

Stanford

AEA Meetings, Chicago January 8, 2017

What this paper does

This paper:

- 1. Provides empirical evidence that countries with more countercyclical inflation issue *less* local-currency debt s^L
 - $\quad \operatorname{Corr}\left(\beta_{\pi,Y},s^{L}\right)>0$
- 2. Presents a model offering a causal interpretation of this correlation relying on inflation credibility *p*
 - $p \uparrow \Rightarrow \beta_{\pi,Y} \uparrow \text{ and } s^L \uparrow$
- 3. Calibrates the model to show that it can be quantitatively consistent with the empirical evidence
- 4. Provides supportive evidence in favor of the causal mechanism

This discussion:

- ▶ Reviews the argument in some detail
- ▶ Offers comments and suggestions along the way

Key empirical fact

- Clever use of financial market data to show this evidence in multiple ways
- Surprisingly robust across measures:
 - a) Beta of LC bonds on stocks
 - b) Revisions of 2-year fcasts
 - c) Realized π vs realized Y
- ► Which one is the better one theoretically?

Risks in government borrowing

- Consider stylized 2-period model to get intuitions
- ▶ t = 0: govtt needs to raise real amount V > 0 with local currency debt D^L , foreign currency debt D^F , and inflation-linked debt D^R

$$P_0V = D^L + \mathcal{E}_0D^F + P_0D^R$$

- ▶ P_t is domestic price level, \mathcal{E}_t nominal exchange rate
- ▶ t = 1: govtt receives income Y_1 , consumes C_1 , repays debt

$$P_1C_1 = P_1Y_1 - (1+i)D^L - \mathcal{E}_1(1+i^*)D^F - P_1(1+r)D^R$$

- ightharpoonup i home nominal, i* foreign nominal, r home real risk-free
- ► For now, risk-neutral lenders. No arbitrage ⇒ Fisher equation & UIP

$$(1+r)\frac{\mathbb{E}[P_1]}{P_0} = 1+i = (1+i^*)\frac{\mathbb{E}[\mathcal{E}_1]}{\mathcal{E}_0}$$

Risks in government borrowing

▶ At t = 0, form portfolio shares

$$1 = \underbrace{\frac{1}{V} \frac{D^L}{P_0}}_{s^L} + \underbrace{\frac{1}{V} \frac{\mathcal{E}_0 D^F}{P_0}}_{s^F} + \underbrace{\frac{D^R}{V}}_{s^R}$$

▶ At t = 1, using Fisher equation & UIP

$$C_{1} = Y_{1} - (1+r)\left(s^{L}\frac{\mathbb{E}\left[P_{1}\right]}{P_{1}} + s^{F}\frac{\mathcal{E}_{1}\mathbb{E}\left[P_{1}\right]}{P_{1}\mathbb{E}\left[\mathcal{E}_{1}\right]} + s^{R}\right)V$$

- 1. Unexpected inflation $(\frac{P_1}{\mathbb{E}[P_1]}\uparrow)$ lowers real burden of LC debt
 - ▶ Fisher effect
- 2. Unexpected deprec. of RER $(\frac{\mathcal{E}_1}{P_1}\uparrow)$ raises real burden of FC debt
 - ► Foreign-currency debt-deflation effect

Naive intuition

- ▶ Suppose FC borrowing unavailable ($s^F = 0$). Normalize r = 0.
- Government

$$\max_{s^{L}} \mathbb{E} \left[\frac{C_{1}^{1-\gamma}}{1-\gamma} \right]$$
s.t. $C_{1} = Y_{1} - \left(s^{L} \frac{\mathbb{E} \left[P_{1} \right]}{P_{1}} + \left(1 - s^{L} \right) \right) V$

- ▶ If (Y_1, P_1) stochastic and exogenous:
 - ▶ $s^L \uparrow$ when $Cov(Y_1, P_1) \downarrow$, since LC debt better hedge
 - ► cf lit. on pf choice with background risks (Campbell-Viceira etc)
- Key point of DPS: in data, correlation is the opposite!
- ▶ Their key observation: P_1 is not exogenous

Refined intuition: no commitment

- ▶ No commitment govtt plays game with future self
- ► Self 1 takes s^L as given and

$$\begin{aligned} & \max \frac{C_1^{1-\gamma}}{1-\gamma} - \alpha \left(\frac{1}{P_1} - 1\right)^2 \\ & \text{s.t.} \quad C_1 = Y_1 - \left(s^L \frac{\mathbb{E}\left[P_1\right]}{P_1} + \left(1 - s^L\right)\right) V \end{aligned}$$

Refined intuition: no commitment

- No commitment govtt plays game with future self
- ▶ Self 1 takes s^L as given and

$$\max \frac{C_1^{1-\gamma}}{1-\gamma} - \alpha \left(\frac{1}{P_1} - 1\right)^2$$
s.t. $C_1 = Y_1 - \left(s^L \frac{\mathbb{E}\left[P_1\right]}{P_1} + \left(1 - s^L\right)\right)V$

Solution ('no-commitment inflation rule')

$$P_1 = \frac{1}{1 - \frac{s^L V}{2\alpha} \mathbb{E}\left[P_1\right] C_1^{-\gamma}} \simeq 1 + \mathbb{E}\left[P_1\right] \frac{s^L V}{2\alpha} Y_1^{-\gamma}$$

- ▶ Endogenously, $Cov(Y_1, P_1) < 0$
- ▶ Self-0 likes this... but also internalizes effect on $\mathbb{E}[P_1]$, so reduces s^L
- ► Commitment/flexibility tradeoff (Amador-Werning-Angeletos 06)
- ▶ Low commitment govtts have $Cov(Y_1, P_1) < 0$ and low s^L

Refined intuition, full commitment

▶ Under full commitment, time-0 govt has plan for $P_1(z)$

$$\max_{P_{1}(z),s^{L}} \mathbb{E}\left[\frac{C_{1}^{1-\gamma}}{1-\gamma} - \alpha \left(\frac{1}{P_{1}} - 1\right)^{2}\right]$$
s.t.
$$C_{1}(z) = Y_{1}(z) - \left(s^{L}\frac{\mathbb{E}\left[P_{1}\right]}{P_{1}(z)} + \left(1 - s^{L}\right)\right)V$$

- ▶ Force for high s^L and complete hedging $Cov(Y_1, P_1) < 0$
 - ▶ Intuition: decentralizes the risk-sharing problem with RN investors

Refined intuition, full commitment

▶ Under full commitment, time-0 govt has plan for $P_1(z)$

$$\max_{P_{1}(z),s^{L}} \mathbb{E}\left[\frac{C_{1}^{1-\gamma}}{1-\gamma} - \alpha \left(\frac{1}{P_{1}} - 1\right)^{2}\right]$$
s.t.
$$C_{1}(z) = Y_{1}(z) - \left(s^{L}\frac{\mathbb{E}\left[P_{1}\right]}{P_{1}(z)} + \left(1 - s^{L}\right)\right)V$$

- ▶ Force for high s^L and complete hedging $Cov(Y_1, P_1) < 0$
 - ▶ Intuition: decentralizes the risk-sharing problem with RN investors
- ▶ To increase $Cov(Y_1, P_1)$, introduce investors with risk aversion ϕ
 - ▶ Intuition: risk-sharing rule ⇒ country bears own output fluctuations
 - But how can we flip the sign? Seems to defeat risk-sharing!
 - Explain ϕ vs γ better.

Comments on model

- Overall: nice work given not-so-tractable model!
- You may be asking too much from it:
 - ▶ Endogenous $Cov(Y_1, P_1) > 0$? Many reasons why this is true in devpd economies (cf Phillips curve)
 - ▶ Model highly stylized, so calibrating to data is very difficult
- Instead of calibration, would favor clear discussion of what empirical objects are relevant for the theory
 - Realized inflation vs actual inflation vs beta of stocks and bonds

Long maturities

- Inflating away public debt with long maturities?
 - In practice, mp can only affect nominal prices with a lag
 - So, only long maturity LC debt is affected
 - Quantitatively challenging to get much reduction in real debt from such policy in US (eg Hilscher-Raviv-Reis 2013)
 - May be even harder in EMs (more FC debt, shorter maturities)
- Yet, paper provides clear evidence of countercyclical inflation in emerging markets
 - Direct evidence that this is due to attempts to inflate the public LC debt?
- Could also explore and test relationship between monetary credibility and LC debt maturity

Conclusion

- ▶ New, robust and interesting set of stylized facts
- Intuitive rationalization, nice work on model
- Thought provoking on the role monetary-fiscal interactions in determining inflation cyclicality and macro outcomes