Discussion of "A Model of Secular Stagnation: Theory and Quantitative Evaluation" by Gauti Eggertsson, Neil Mehrotra and Jacob Robbins

Adrien Auclert

Stanford

AEA meetings, Philadelphia January 7, 2018

This paper

- 1. Presents the first theoretically consistent model of secular stagnation
 - $Y < Y^*$ because $r = i \pi > r^*$ in a **steady state**
 - Overcomes significant theoretical challenges from previous literature
 - ▶ Eggertsson and Mehrotra (2014)
- 2. Explores the quantitative importance of factors behind r^* decline since the 1970s
 - ► Major role of fertility, mortality, and productivity [-2% each]
 - ► More minor role for markup rise and P¹ decline [-0.5% each]
 - ► Counterbalancing: govtt debt and deeper credit markets [+2.5%]
 - ▶ Overall, baseline OLG model can account for entire -4% decline

My assessment of the paper

- This is already a very influential paper
 - Quantification will only increase its already large impact
- My discussion:
 - 1. Explain mechanisms in asset supply/demand framework
 - 2. Suggest one route to discipline magnitudes empirically

Key theoretical innovations

- ▶ Before EM, 2 significant challenges to modeling secular stagnation.
- ▶ Want to achieve, in a steady state,

$$i-\pi > r^*$$
 and $x = \frac{Y - Y^*}{Y^*} < 0$

Key theoretical innovations

- ▶ Before EM, 2 significant challenges to modeling secular stagnation.
- Want to achieve, in a steady state,

$$i - \pi > r^*$$
 and $x = \frac{Y - Y^*}{Y^*} < 0$

- 1. At the ZLB, i=0, and if on target $\pi=\pi^*>0$
 - ▶ **Standard models**: dynamic efficiency $\Rightarrow r^* > g > 0$
 - ▶ **EM**: OLG model \Rightarrow dynamic inefficiency, $r^* < -\pi^*$ possible

Key theoretical innovations

- ▶ Before EM, 2 significant challenges to modeling secular stagnation.
- Want to achieve, in a steady state,

$$i-\pi > r^*$$
 and $x = \frac{Y-Y^*}{Y^*} < 0$

- 1. At the ZLB, i = 0, and if on target $\pi = \pi^* > 0$
 - ▶ **Standard models**: dynamic efficiency $\Rightarrow r^* > g > 0$
 - ▶ **EM**: OLG model \Rightarrow dynamic inefficiency, $r^* < -\pi^*$ possible
- 2. In NK model, $\pi = \frac{\kappa}{1-\beta}x$: long run Phillips curve near vertical
 - **Standard models**: π diverges in a secular stagnation
 - ► EM: Downward nominal wage rigidity ⇒

$$\pi \simeq -(1-\gamma) + (1-\gamma)\frac{1-\alpha}{\alpha}x$$

 π is bounded in secular stagnation, consistent with Japan experience

Quantitative findings

- Quantitative model: 56 period OLG model, where key inputs are
 - Fertility: number of children per household Γ
 - changes ss pop growth
 - ▶ Aging: shifting probabilities of survival $\{s_j\}$
 - changes life expectancy
- ▶ Main quantitative finding: can get 4% decline in r^*
 - 1. Productivity: almost same as in standard rep agent model

$$\triangle r^* \simeq \frac{1}{\sigma} \triangle g^a$$

with $\sigma = 0.75$ and $\triangle g^a = -1.35\%$, gets us -1.8%

2. **Other factors** can all be understood in long run asset supply/demand framework (complementary to paper's good market approach)

▶ Equilibrium in long-run capital markets: A = B + K

▶ Fertility, mortality \Rightarrow savings \uparrow , $r^* \downarrow$

▶ Gov debt $B \uparrow$ mitigates this. Borrowing constraint is equivalent.

► Markups ↑ contracts asset supply (will come back to this)

▶ **Price of investment** \downarrow also provided capital-labor elasticity $\sigma < 1$

Using elasticities to understand magnitudes

► Can cross-validate the model using first order approximation:

$$\Delta r^* = \frac{\frac{\triangle A}{A}}{\epsilon_D - \epsilon_S}$$

where $\frac{\triangle A}{A}$ is % change in asset demand-to-GDP holding r constant, and ϵ_D (ϵ_S) is semielasticity of asset demand (supply) to r

- ▶ In paper, inferring from B change, $\epsilon_D \epsilon_S \simeq \frac{68\%}{2.11\%} \simeq 33$
 - Similar to semielasticities from typical Bewley-Aiyagari models
- ▶ Since get $\Delta r^* = -3.6\%$ from demographics, implied $\frac{\triangle A}{A} = 118\%$
- ► Is this plausible?

SCF net worth by age in 2013

SCF net worth by age in 1989

Decomposing effects

- ▶ Simple shift-share analysis only predicts 2.5% change in $\frac{A}{Y}$, but
 - ▶ Does not take account of population shifts from 75 to 89
 - Does not take account changes in life-cycle profile of assets
 - ▶ Here: more retirement saving, more bequests per children, ...
- Suggestion: decompose the effects in model into these sources and map to data profiles when possible

Other comments

- 1. Paper shows *large* steady state output gap x=-15% with standard parameter values
 - ▶ In 'Inequality and aggregate demand', we show that large *r* to *Y* conversion is highly mitigated with responsive fiscal policy (*B* and *G*)
- 2. Does increase in markups reduce r^* ?
 - We show that if markup profits are capitalized, then a rise in markups that leads to a decline in labor share always increases r*
 - asset supply ↑, not ↓
 - ► Key questions: do markups ↑ also increase asset values? Is risk-free rate appropriate for them?

Conclusion

- ► A key paper in the literature just got even better with quantitative analysis
- Includes most of the relevant forces
 - ▶ Rightly emphasises that they do not all go in same direction
 - ▶ Role of demographics very interesting, deserves more investigation
- ▶ Going forward for the literature: need more on understanding
 - factors that shift savings at constant r
 - as well as elasticities of aggregate savings wrt r