Discussion of "The Fiscal Multiplier" by Marcus Hagedorn, Iourii Manovskii and Kurt Mitman

Adrien Auclert

Stanford

EFG meeting San Francisco Fed February 23, 2018

A crucial macro question

- ▶ What is the effect of a fiscal expansion $(G \uparrow \text{ or } \tau \downarrow)$ on GDP?
- ▶ One of the most important questions in business cycle macro
 - Positive: predict the effect in bad times or in good (now)
 - Normative: should the gov spend more and when?
- ► Enormous literature, both empirical and theorical, with important dialogue between the two:
 - ► Theory generates testable predictions
 - Empirical results inform the theory
- ► This paper builds on new theoretical advances in the field ("HANK" models) and proposes new testable predictions
 - ► First to focus specifically on fiscal policy: very natural application!

- What is "the" fiscal multiplier?
- Clearly not one number, but a set of partial derivatives:

$$m_{t,s} = \frac{\partial Y_t}{\partial G_s} \bigg|_{\Theta}$$

- What is "the" fiscal multiplier?
- Clearly not one number, but a set of partial derivatives:

$$m_{t,s} = \left. \frac{\partial Y_t}{\partial G_s} \right|_{\Theta}$$

- 1. Many multipliers, one for each pair t, s
 - ▶ Typical to summarize by assuming path for G, e.g. $G_s = Ge^{-\theta s}$
 - ▶ Then focus (here) on $m_t = \frac{\partial Y_t}{\partial G}$, especially $m_0 = \frac{\partial Y}{\partial G}$
 - ightharpoonup Can then be connected to regressions of Y_t on G_t

- What is "the" fiscal multiplier?
- Clearly not one number, but a set of partial derivatives:

$$m_{t,s} = \left. \frac{\partial Y_t}{\partial G_s} \right|_{\Theta}$$

- Many multipliers, one for each pair t, s
- 2. Depend on model parameters and policy Θ , in particular
 - a) Factors affecting labor supply \rightarrow neoclassical models

- b) Monetary policy
- \rightarrow standard NK model

- What is "the" fiscal multiplier?
- Clearly not one number, but a set of partial derivatives:

$$m_{t,s} = \left. \frac{\partial Y_t}{\partial G_s} \right|_{\Theta}$$

- Many multipliers, one for each pair t, s
- 2. Depend on model parameters and policy Θ , in particular
 - a) Factors affecting labor supply \rightarrow neoclassical models
 - b) Monetary policy
 - c) Equilibrium selection
 - d) How gov adjusts the budget
 - e) State of the economy

- \rightarrow standard NK model
- \rightarrow if m.p. not sufficiently responsive
 - \rightarrow if Ricardian equivalence fails
 - → MPCs, wealth distribution, etc.

- What is "the" fiscal multiplier?
- Clearly not one number, but a set of partial derivatives:

$$m_{t,s} = \left. \frac{\partial Y_t}{\partial G_s} \right|_{\Theta}$$

- Many multipliers, one for each pair t, s
- 2. Depend on model parameters and policy Θ , in particular
 - a) Factors affecting labor supply \rightarrow neoclassical models
 - b) Monetary policy
 - c) Equilibrium selection
 - d) How gov adjusts the budget
 - e) State of the economy

- \rightarrow standard NK model
- \rightarrow if m.p. not sufficiently responsive
- → if Ricardian equivalence fails
- → MPCs, wealth distribution, etc.
- 3. **Contribution #1**: new eqbm selection criterion (cf Hagedorn 2016)

- What is "the" fiscal multiplier?
- Clearly not one number, but a set of partial derivatives:

$$m_{t,s} = \frac{\partial Y_t}{\partial G_s} \bigg|_{\Theta}$$

- Many multipliers, one for each pair t, s
- 2. Depend on model parameters and policy Θ , in particular
 - a) Factors affecting labor supply \rightarrow neoclassical models

b) Monetary policy

- \rightarrow standard NK model
- c) Equilibrium selection
- \rightarrow if m.p. not sufficiently responsive
- d) **How gov adjusts the budget** \rightarrow if Ricardian equivalence fails

e) State of the economy

- \rightarrow MPCs, wealth distribution, etc.
- Contribution #2: quantitative evaluation of importance of d) & e)

Fiscal multipliers at the ZLB and the HMM selection criterion

Equilibrium selection at the ZLB

- Interest rate pegs such as ZLB generate indeterminacy
- ▶ Take standard NK model [Werning, Cochrane] with zero natural rate

$$\dot{c}_t = \widehat{\sigma}^{-1} (i_t - \pi_t)
\rho \pi_t - \dot{\pi}_t = \kappa (c_t + (1 - \Gamma) g_t)$$

Here $c_t \equiv \frac{dC_t}{Y}$, $g_t \equiv \frac{dG_t}{Y}$, $\widehat{\sigma}^{-1}$ is rescaled EIS, output $y_t = c_t + g_t$

▶ In flexible price case $\kappa = \infty$ so

$$dY_t = dC_t + dG_t = \Gamma dG_t$$

Output multiplier is static, $m = \Gamma = \frac{\widehat{\sigma}}{\phi + \widehat{\sigma}} \in (0,1)$ with $\phi^{-1} \equiv$ Frisch (standard neoclassical wealth effect)

HMM equilibrium selection criterion

▶ Consider now sticky prices $\kappa < \infty$ and peg $i_t = 0$

$$\dot{c}_t = -\widehat{\sigma}^{-1}\pi_t
\rho\pi_t - \dot{\pi}_t = \kappa \left(c_t + (1 - \Gamma)g_t\right)$$
(1)

- ▶ Dynamical system with 2 jump variables but only 1 positive root, so need one extra condition
 - ▶ Standard selection: $c_T = 0$ at some T
 - ▶ Fiscal theory selection (Cochrane): $\pi_0 = 0$. Resolves some puzzles.

HMM equilibrium selection criterion

lacktriangle Consider now sticky prices $\kappa < \infty$ and peg $i_t = 0$

$$\dot{c}_t = -\widehat{\sigma}^{-1}\pi_t
\rho\pi_t - \dot{\pi}_t = \kappa \left(c_t + (1 - \Gamma)g_t\right)$$
(1)

- Dynamical system with 2 jump variables but only 1 positive root, so need one extra condition
 - ▶ Standard selection: $c_T = 0$ at some T
 - ▶ Fiscal theory selection (Cochrane): $\pi_0 = 0$. Resolves some puzzles.
 - **HMM**: equivalent to long run nominal anchor $P_{\infty}=P^*$
- ▶ Clear implication for fiscal multiplier: integrate (1) to see

$$c_0 = \widehat{\sigma}^{-1} \log \left(P_{\infty} / P^* \right) = 0$$

so selection equivalent to directly choosing m=1

Three selections using HMM shock and parameters

Why equivalent to price level targeting?

▶ This is the same equilibrium as the one picked in the standard model by replacing ZLB $i_t = 0$ by a **price level targeting policy**

$$i_t = \phi \log \left(P_t / P^* \right)$$

then taking $\phi \rightarrow 0$

▶ Why? HANK model ≃ RA model with bond in utility

$$\dot{c}_{t} = \widehat{\sigma}^{-1} \left(i_{t} - \pi_{t} + \frac{v'\left(\frac{B}{P_{t}}\right)}{u'\left(c_{t}\right)} \right)$$

- ▶ HMM policy: constant long-run level of nominal bonds *B*
- ▶ P_t ↑ lowers real value of liquid assets, first-order equivalent to i_t ↑
- ▶ This is not fiscal theory. It's price level targeting.

Conclusion on equilibrium selection

- ► Several conclusions in the paper stem from this assumption:
 - ▶ eg, eliminate the "paradox of flexibility"
- 1. Would be nice to separate from those that are special to HANK
 - ► Assume long run fiscal policy sets $\frac{B}{P}$ or $\frac{B}{V}$
 - ► Show Taylor rule and ZLB results w/ standard selection criterion

Conclusion on equilibrium selection

- Several conclusions in the paper stem from this assumption:
 - eg, eliminate the "paradox of flexibility"
- 1. Would be nice to separate from those that are special to HANK
 - Assume long run fiscal policy sets $\frac{B}{P}$ or $\frac{B}{V}$
 - ► Show Taylor rule and ZLB results w/ standard selection criterion
- 2. Price level targeting has clear testable implication: $P_{\infty} = P^*$
 - Should be part of the quantitative evaluation

Conclusion on equilibrium selection

- Several conclusions in the paper stem from this assumption:
 - ▶ eg, eliminate the "paradox of flexibility"
- 1. Would be nice to separate from those that are special to HANK
 - ▶ Assume long run fiscal policy sets $\frac{B}{P}$ or $\frac{B}{V}$
 - ► Show Taylor rule and ZLB results w/ standard selection criterion
- 2. Price level targeting has clear testable implication: $P_{\infty} = P^*$
 - Should be part of the quantitative evaluation
- 3. Given large assumed price + wage rigidities + ZLB + this selection, in many experiments the real rate is essentially constant $(r_t = r^*)$
 - ▶ Great: Model results rely on responsiveness of consumption to incomes—to which it is calibrated, not to r—to which it is not.

Fiscal policy in this HANK model

HMM assumptions

- HMM work with HANK model featuring
 - One asset on household side
 - ► Rigid prices (as in much of literature) + **rigid wages** (newer)
 - Capital investment with quadratic adjustment costs
- ▶ Model matches empirical evidence on MPCs—annual MPC $\simeq 0.4$.
- ► Main findings:
 - 1. Fiscal multiplier < 1 if financed by lump-sum, > 1 if deficit financed
 - 2. Deficit financing "crowds out" capital investment
 - 3. "Multipliers similar in a liquidity trap vs not"
- Rest of discussion: go over assumptions and findings

Sticky wages

- ▶ Much of the previous HANK literature has assumed flexible wages
- ▶ In Auclert-Rognlie, we showed that this created a key challenge: these models cannot simultaneously match large MPCs in data without generating either
 - 1. very large marginal propensities to earn
 - 2. very large fiscal multipliers which are both are at odds with data. More
- HMM avoid this with sticky wages!

Sticky wages

- Much of the previous HANK literature has assumed flexible wages
- ▶ In Auclert-Rognlie, we showed that this created a key challenge: these models cannot simultaneously match large MPCs in data without generating either
 - 1. very large marginal propensities to earn
 - 2. very large fiscal multipliers

which are both are at odds with data. More

- HMM avoid this with sticky wages!
 - Moves households off their short-run labor supply curves...
 - \triangleright ...so requires a rationing assumption for increases in labor demand H_t
 - ► HMM: income of individual with skill e_t

$$y_t\left(e_t\right) = \left(1 - \tau_t\right) W_t H_t e_t + T_t$$

Sticky wages

- Much of the previous HANK literature has assumed flexible wages
- ▶ In Auclert-Rognlie, we showed that this created a key challenge: these models cannot simultaneously match large MPCs in data without generating either
 - 1. very large marginal propensities to earn
 - 2. very large fiscal multipliers

which are both are at odds with data. More

- HMM avoid this with sticky wages!
 - Moves households off their short-run labor supply curves...
 - \triangleright ...so requires a rationing assumption for increases in labor demand H_t
 - ► HMM: income of individual with skill e_t

$$y_t(e_t) = (1 - \tau_t) W_t H_t e_t + T_t$$

Implicit equal-incidence assumption

Worker beta evidence

▶ At odds with worker beta findings in Guvenen et al. Can be relaxed.

A balanced-budget benchmark for the multiplier

Proposition (Auclert-Rognlie-Straub)

Assume 1) constant-r monetary policy 2) no capital 3) government taxes contemporaneously so that all net-of-tax individual incomes y_t (e) are affected in proportion. Then the fiscal multiplier is 1 at every date

$$\frac{\partial Y_t}{\partial G_s} = 1_{s=t}$$

So heterogeneity is neutral for effects of fiscal policy!

A balanced-budget benchmark for the multiplier

Proposition (Auclert-Rognlie-Straub)

Assume 1) constant-r monetary policy 2) no capital 3) government taxes contemporaneously so that all net-of-tax individual incomes y_t (e) are affected in proportion. Then the fiscal multiplier is 1 at every date

$$\frac{\partial Y_t}{\partial G_s} = 1_{s=t}$$

- ▶ So heterogeneity is **neutral** for effects of fiscal policy! Why?
 - 1. Gov spending increases pre-tax incomes
 - 2. Gov increases taxes at the same time, which reduces post tax incomes
 - 3. Under assumption 3), these effects cancel exactly for everyone
 - 4. r_s unchanged $+ y_s(e)$ unchanged $\Rightarrow c_t$ unchanged $\Rightarrow dC_t = 0$ at all t

Main deviations from neutrality in HMM

- ▶ **HMM result 1**: Fiscal multiplier < 1 if tax financed.
 - ► This is because gov adjusts **lump-sum taxes**.
 - ▶ Start from benchmark $(G \uparrow, \tau \uparrow)$, with multiplier of 1
 - ightharpoonup Combine with reduction in au paid for by reduction in T
 - ▶ 2nd part redistributes from low to high-y agents, so contractionary
- ▶ **HMM result 2**: Fiscal multiplier > 1 if deficit financed.
 - ► This is because agents are **non-Ricardian**.
 - ▶ Combine effect 1 with reduction in *T* today, increase in future *T*
 - ▶ Latter effect is exactly the "transfer multiplier", and is expansionary

Crowding out

- Deficit financing appears to crowd out investment
- ▶ This is due to the specification of monetary policy
- ▶ With quadratic adjustment costs, aggregate investment dynamics are

$$d\left(I_{t} - \delta K_{t-1}\right) = \epsilon_{I} I \sum_{s=0}^{\infty} \left(\frac{1}{1+r}\right)^{s+1} \left\{dMPK_{t+s+1} - dr_{t+s}\right\}$$

- Everything works through either future MPK or future r
- ▶ $G \uparrow$ pushes up future employment and therefore future MPK
- ▶ Crowding out likely occurs because $r \uparrow$
 - ▶ **Very nice** and testable mechanism: deficit financing raises *r*...
 - ... which in turn crowds out investment

HANK vs TANK comparison

- ▶ These impulse responses are exactly the right thing to look at:
 - ► Sufficient statistics for multipliers *and* equilibrium determinacy [Auclert-Rognlie-Straub]

HANK vs Rep agent with bonds in utility

A bond in utility model gets closer: useful alternative to HANK?

Liquidity traps and state dependence

- "Liquidity trap multipliers similar to regular multipliers"?
 - ▶ We expect: ZLB vs Taylor rule
 - ► HMM: ZLB vs ZLB!
- ▶ Those are the *same* under rep agent, so this is *not* solving a puzzle
- ▶ However, what these results show is that the model has limited state dependence for given monetary policy. This is interesting.

Conclusion

- Very nice and ambitious paper!
 - First fiscal policy contribution to HANK, will likely be very influential
- Monetary policy specification not that plausible or canonical
 - Consider more standard alternatives for comparability with prior work
- ► Framework generates new testable implications
 - Flesh them out for future empirical work!

Thank you!

References

- Auclert and Rognlie "Inequality and Aggregate Demand", wp 2016
- Auclert and Rognlie "Labor Supply and Multipliers: a Dilemma for New Keynesian models", wp 2018
- ► Auclert, Rognlie and Straub "Stimulus and Amplification", wp 2018
- Auclert, Rognlie and Straub "The Intertemporal Keynesian Cross", wp 2018
- Guvenen, Schulhofer-Wohl, Song, and Yogo "Worker betas", AER P&P 2017

Labor supply and multipliers

- ► Consider HANK model with sticky prices calibrated to hit MPC=0.4
- ▶ Vary degree of complementarity between c and n in utility. Find:

MPE range from Cesarini et al (2017). Fiscal multiplier range from Ramey (2011). Back