Discussion of "Optimal Exchange Rate Policy" by Oleg Itskhoki and Dmitry Mukhin

Adrien Auclert

Stanford

Seventh FRB Dallas-UH-Bank of Mexico Conference in International Economics Mexico City, October 1, 2022

Optimal policy in open economies

- ► Two strands of literature, studying two separate frictions:
 - Nominal rigidities. Use monetary policy (MP) to stabilize inflation and the output gap [Obstfeld-Rogoff, Clarida-Gali-Gertler, Gali-Monacelli, Devereux-Engel, Egorov-Mukhin,...]
 - ► Financial market imperfections. Use foreign exchange interventions (FXI) to stabilize UIP deviations [Cavallino, Fanelli-Straub,...]

Optimal policy in open economies

- ► Two strands of literature, studying two separate frictions:
 - Nominal rigidities. Use monetary policy (MP) to stabilize inflation and the output gap [Obstfeld-Rogoff, Clarida-Gali-Gertler, Gali-Monacelli, Devereux-Engel, Egorov-Mukhin,...]
 - ► Financial market imperfections. Use foreign exchange interventions (FXI) to stabilize UIP deviations [Cavallino, Fanelli-Straub,...]
- ➤ This paper studies both frictions in an integrated framework

 [follow-up from positive analysis in Itskhoki-Mukhin I&II]
 - ► What should be the goals of MP and FXI?
 - How do these policies interact?

Optimal policy in open economies

- ► Two strands of literature, studying two separate frictions:
 - Nominal rigidities. Use monetary policy (MP) to stabilize inflation and the output gap [Obstfeld-Rogoff, Clarida-Gali-Gertler, Gali-Monacelli, Devereux-Engel, Egorov-Mukhin,...]
 - ► Financial market imperfections. Use foreign exchange interventions (FXI) to stabilize UIP deviations [Cavallino, Fanelli-Straub,...]
- ➤ This paper studies both frictions in an integrated framework

 [follow-up from positive analysis in Itskhoki-Mukhin I&II]
 - ► What should be the goals of MP and FXI?
 - How do these policies interact?
- Enormous policy relevance [eg Basu, Boz, Gopinath, Roch and Unsal]
- Very clean answers

What do we learn from the paper?

- With unrestricted MP and FXI, can eliminate both frictions
 - Use MP to stabilize output gap and inflation
 - Use FXI to stabilize UIP deviations
 - ▶ (Common optimal policy result when # instruments $\geq \#$ targets)

What do we learn from the paper?

- With unrestricted MP and FXI, can eliminate both frictions
 - Use MP to stabilize output gap and inflation
 - Use FXI to stabilize UIP deviations
 - ▶ (Common optimal policy result when # instruments $\geq \#$ targets)
- With only MP, face non-trivial policy tradeoff
 - Deviate from output stabilization to reduce exchange rate volatility
 - Mitigate depreciations by hiking and tolerating recession
 - Mitigate appreciations by accommodating and tolerating boom

What do we learn from the paper?

- With unrestricted MP and FXI, can eliminate both frictions
 - Use MP to stabilize output gap and inflation
 - Use FXI to stabilize UIP deviations
 - ▶ (Common optimal policy result when # instruments $\geq \#$ targets)
- With only MP, face non-trivial policy tradeoff
 - Deviate from output stabilization to reduce exchange rate volatility
 - Mitigate depreciations by hiking and tolerating recession
 - Mitigate appreciations by accommodating and tolerating boom
- In two very nice extensions, study international policy coordination and capital controls to capture intermediation rents

My assessment

- Very elegant framework
 - ▶ Made as simple as possible to make the core argument cleanly
 - ▶ I expect it to become quite influential

My assessment

- ► Very elegant framework
 - ▶ Made as simple as possible to make the core argument cleanly
 - ▶ I expect it to become quite influential
- Maybe too elegant?
 - Optimal policy always at or near first best through the paper
 - Can study nontrivial policy tradeoffs more

My assessment

- Very elegant framework
 - ▶ Made as simple as possible to make the core argument cleanly
 - ► I expect it to become quite influential
- Maybe too elegant?
 - Optimal policy always at or near first best through the paper
 - Can study nontrivial policy tradeoffs more
- My discussion:
 - Go over core results and intuition behind them
 - Discuss solution method, which is nonstandard
 - Suggestions along the way

Framework: preferences, endowment, technology

Household problem

$$\max \sum \beta^t \mathbb{E}_t \left[\gamma \log \mathit{C}_{\mathit{T}t} + (1 - \gamma) \log \mathit{C}_{\mathit{N}t} - (1 - \gamma) \mathit{L}_t \right]$$

- Exogenous endowment Y_{Tt} , price $P_{Tt} = \mathcal{E}_t$
- Nontradables produced under fully sticky prices, linear technology

$$Y_{Nt} = A_t L_t = C_{Nt} = W_t$$

▶ Intertemporal Euler for leisure \Rightarrow MP controls W_t directly

Framework: preferences, endowment, technology

Household problem

$$\max \sum \beta^t \mathbb{E}_t \left[\gamma \log \mathit{C}_{\mathit{T}t} + (1 - \gamma) \log \mathit{C}_{\mathit{N}t} - (1 - \gamma) \mathit{L}_t \right]$$

- ▶ Exogenous endowment Y_{Tt} , price $P_{Tt} = \mathcal{E}_t$
- Nontradables produced under fully sticky prices, linear technology

$$Y_{Nt} = A_t L_t = C_{Nt} = W_t$$

- ▶ Intertemporal Euler for leisure \Rightarrow MP controls W_t directly
- Comments:
 - Fully sticky prices eliminate inflation in policy tradeoff!
 - ▶ Not harder to do Calvo adjustment as baseline—section 7.1.

Framework: preferences, endowment, technology

Household problem

$$\max \sum \beta^t \mathbb{E}_t \left[\gamma \log \mathit{C}_{\mathit{T}t} + (1 - \gamma) \log \mathit{C}_{\mathit{N}t} - (1 - \gamma) \mathit{L}_t \right]$$

- **E**xogenous endowment Y_{Tt} , price $P_{Tt} = \mathcal{E}_t$
- Nontradables produced under fully sticky prices, linear technology

$$Y_{Nt} = A_t L_t = C_{Nt} = W_t$$

- ▶ Intertemporal Euler for leisure \Rightarrow MP controls W_t directly
- Comments:
 - Fully sticky prices eliminate inflation in policy tradeoff!
 - ▶ Not harder to do Calvo adjustment as baseline—section 7.1.
 - "T NT setup is a bad model of exchange rates" [Itskhoki 2019]
 - Not (much) harder to do produced tradables model—section 7.2.

First best with incomplete markets

- ▶ First best level of *NT* production is $Y_{Nt} = C_{Nt} = A_t$
- "First best" level of T consumption is determined by the PIH

$$\max \sum \beta^{t} \mathbb{E}_{t} \left[\log C_{Tt} \right]$$

$$C_{Tt} + \frac{B_{t}^{*}}{R_{t}^{*}} = B_{t-1}^{*} + Y_{Tt}$$

where R_t^* is the exogenous tradable real rate.

First best with incomplete markets

- ▶ First best level of *NT* production is $Y_{Nt} = C_{Nt} = A_t$
- "First best" level of T consumption is determined by the PIH

$$\max \sum \beta^{t} \mathbb{E}_{t} \left[\log C_{Tt} \right]$$

$$C_{Tt} + \frac{B_{t}^{*}}{R_{t}^{*}} = B_{t-1}^{*} + Y_{Tt}$$

where R_t^* is the exogenous tradable real rate.

Exchange rate (always) ensures expenditure switching

$$\mathcal{E}_t = \frac{\gamma}{1 - \gamma} \frac{C_{Nt}}{C_{Tt}}$$

First best with incomplete markets

- ▶ First best level of *NT* production is $Y_{Nt} = C_{Nt} = A_t$
- "First best" level of T consumption is determined by the PIH

$$\max \sum \beta^t \mathbb{E}_t \left[\log C_{Tt} \right]$$

$$C_{Tt} + \frac{B_t^*}{R_t^*} = B_{t-1}^* + Y_{Tt}$$

where R_t^* is the exogenous tradable real rate.

Exchange rate (always) ensures expenditure switching

$$\mathcal{E}_t = rac{\gamma}{1-\gamma} rac{\mathcal{C}_{Nt}}{\mathcal{C}_{\mathcal{T}t}}$$

With mean reverting tradable shocks: fall in Y_T leads to decline in C_T , depreciation $\mathcal{E}\uparrow$, and international borrowing $B^*<0$.

[what about Aguiar-Gopinath?]

lacktriangle Market clearing in foreign currency (setting noise traders $N_t^*=0$)

$$B_t^* = D_t^* + F_t^*$$

lacktriangle Market clearing in foreign currency (setting noise traders $N_t^*=0$)

$$B_t^* = D_t^* + F_t^*$$

▶ If $F_t^* = 0$, any borrowing by households $B_t^* < 0$ must be matched by reduction in intermediary foreign currency position $D_t^* < 0$

lacktriangle Market clearing in foreign currency (setting noise traders $N_t^*=0$)

$$B_t^* = D_t^* + F_t^*$$

- ▶ If $F_t^* = 0$, any borrowing by households $B_t^* < 0$ must be matched by reduction in intermediary foreign currency position $D_t^* < 0$
- ► Financial friction: requires high excess returns to domestic currency [Gabaix-Maggiori, Itskhoki-Mukhin I&II,...]

$$\frac{D_{t}^{*}}{R_{t}^{*}} = \frac{\mathbb{E}_{t} \left[\Theta_{t+1} \left(R_{t}^{*} - R_{t} \frac{\mathcal{E}_{t}}{\mathcal{E}_{t+1}}\right)\right]}{\omega R_{t}^{2} \operatorname{Var}_{t} \left(\frac{\mathcal{E}_{t}}{\mathcal{E}_{t+1}}\right)}$$

lacktriangle Market clearing in foreign currency (setting noise traders $N_t^*=0$)

$$B_t^* = D_t^* + F_t^*$$

- ▶ If $F_t^* = 0$, any borrowing by households $B_t^* < 0$ must be matched by reduction in intermediary foreign currency position $D_t^* < 0$
- ► Financial friction: requires high excess returns to domestic currency [Gabaix-Maggiori, Itskhoki-Mukhin I&II,...]

$$\frac{D_{t}^{*}}{R_{t}^{*}} = \frac{\mathbb{E}_{t} \left[\Theta_{t+1} \left(R_{t}^{*} - R_{t} \frac{\mathcal{E}_{t}}{\mathcal{E}_{t+1}}\right)\right]}{\omega R_{t}^{2} \mathrm{Var}_{t} \left(\frac{\mathcal{E}_{t}}{\mathcal{E}_{t+1}}\right)}$$

- How to achieve first best?
 - ▶ Use MP to set $W_t = A_t = Y_{Nt} = C_{Nt} \rightarrow \text{first best production}$
 - ▶ Use FXI to match household desired NFA position $F_t^* = B_t^*$
 - Done!

Now assume that FXI is unavailable: $F_t^* = 0$

- Now assume that FXI is unavailable: $F_t^* = 0$
- Pure shock to A_t: can still achieve first best!
 - Use MP to achieve first best production
 - ▶ Does not change desired savings → no need for FXI
 - Special case of Proposition 3 (better kind of "divine coincidence"?)

- Now assume that FXI is unavailable: $F_t^* = 0$
- Pure shock to A_t: can still achieve first best!
 - Use MP to achieve first best production
 - ▶ Does not change desired savings → no need for FXI
 - Special case of Proposition 3 (better kind of "divine coincidence"?)
- \blacktriangleright With shocks to Y_{Tt} , can respond as follows:
 - After negative shock to Y_T ($\mathcal{E} \uparrow$), also engineer NT recession
 - ► This requires hiking, mitigates the depreciation
 - ▶ Do the opposite when Y_T increases (mitigate $\mathcal{E} \downarrow$)

- Now assume that FXI is unavailable: $F_t^* = 0$
- Pure shock to A_t: can still achieve first best!
 - Use MP to achieve first best production
 - ▶ Does not change desired savings → no need for FXI
 - Special case of Proposition 3 (better kind of "divine coincidence"?)
- ▶ With shocks to Y_{Tt} , can respond as follows:
 - After negative shock to Y_T ($\mathcal{E} \uparrow$), also engineer NT recession
 - ► This requires hiking, mitigates the depreciation
 - ▶ Do the opposite when Y_T increases (mitigate $\mathcal{E} \downarrow$)
 - ▶ This reduces $Var_t\left(\frac{\mathcal{E}_t}{\mathcal{E}_{t+1}}\right)$, makes financial intermediaries more willing to accommodate international bond demand in both directions
 - ▶ Why does this improve? Deviations from FB *NT* are second order

Other meaningful tradeoffs?

- Optimal policy is very close to first-best: manages to stabilize the output gap on average (and under some shocks, even perfectly)
- ▶ Q1: how "far" from first best are we in a sensible calibration?
- Q2: alternative non-trivial tradeoffs?
 - eg, cost-push shock in model with price adjustment?
 - should also emphasize the case with arbitrageur profits more

The solution method

- ▶ All of my discussion so far has used nonlinear equations
- Many results are instead stated after linearization using the New Keynesian "gap" language
- Objective function becomes quadratic in tradable and output gap

$$\mathbb{E}\left[\sum \beta^t \left(\gamma z_t^2 + (1-\gamma) x_t^2\right)\right]$$

The solution method

- ▶ All of my discussion so far has used nonlinear equations
- Many results are instead stated after linearization using the New Keynesian "gap" language
- Objective function becomes quadratic in tradable and output gap

$$\mathbb{E}\left[\sum\beta^{t}\left(\gamma z_{t}^{2}+\left(1-\gamma\right)x_{t}^{2}\right)\right]$$

- ► This has costs and benefits: makes some results very simple to derive, others hard to understand ("gapology"?)
 - ightharpoonup "risk sharing wedge" is confusing name for z_t

The solution method

- ▶ All of my discussion so far has used nonlinear equations
- Many results are instead stated after linearization using the New Keynesian "gap" language
- Objective function becomes quadratic in tradable and output gap

$$\mathbb{E}\left[\sum\beta^{t}\left(\gamma z_{t}^{2}+\left(1-\gamma\right)x_{t}^{2}\right)\right]$$

- ► This has costs and benefits: makes some results very simple to derive, others hard to understand ("gapology"?)
 - "risk sharing wedge" is confusing name for z_t
- Other concern: how good is the approximation?
 - Approximation known to work well with standard DSGE models
 - ► Here, because of variance fixed point, not so clear!

The solution method continued

- ▶ How to address concerns with solution method:
 - 1. Derive main results using nonlinear equations
 - eg, Propositions 1 and 2 clearly hold nonlinearly
 - Check accuracy of results that use linearization (eg Prop. 3) using a nonlinear solution
 - Ideal: global solution in special case (or general case?)

The solution method continued

- ▶ How to address concerns with solution method:
 - 1. Derive main results using nonlinear equations
 - eg, Propositions 1 and 2 clearly hold nonlinearly
 - Check accuracy of results that use linearization (eg Prop. 3) using a nonlinear solution
 - ▶ Ideal: global solution in special case (or general case?)
- Alternative way to check: use nonlinear perfect foresight
 - Guess a σ_t^2 , solve for shocks under perfect foresight
 - Simulate exchange rate paths from the impulse responses
 - ▶ Update σ_t^2 using the simulated $Var(\mathcal{E}_t/\mathcal{E}_{t+1})$

Concluding thoughts

- Insightful paper
- ► Elegant framework
- Emphasize the second best problems more
- Show how accurate the loglinear solution is