Discussion of "Trading Down and the Business Cycle" by Nir Jaimovich, Sergio Rebelo and Arlene Wong

Adrien Auclert

Stanford
Philadelphia Workshop on Macroeconomics and Economic Policy April 6, 2018

What this paper is about

What this paper is about

What this paper is about

Decomposing aggregate employment effects

- Consider retail employment H and sales $P Y$ as sums over firms of different quality $q \in Q$

$$
H=\sum_{q} H_{q} \quad P Y=\sum_{q} P_{q} Y_{q}
$$

Decomposing aggregate employment effects

- Consider retail employment H and sales $P Y$ as sums over firms of different quality $q \in Q$

$$
H=\sum_{q} H_{q} \quad P Y=\sum_{q} P_{q} Y_{q}
$$

- If $s_{q} \equiv \frac{P_{q} Y_{q}}{P Y}$ is market share of q, the employment-sales ratio is

$$
h \equiv \frac{H}{P Y}=\sum_{q}\left(\frac{P_{q} Y_{q}}{P Y}\right)\left(\frac{H_{q}}{P_{q} Y_{q}}\right) \equiv \sum_{q} s_{q} h_{q}
$$

Decomposing aggregate employment effects

- Consider retail employment H and sales $P Y$ as sums over firms of different quality $q \in Q$

$$
H=\sum_{q} H_{q} \quad P Y=\sum_{q} P_{q} Y_{q}
$$

- If $s_{q} \equiv \frac{P_{q} Y_{q}}{P Y}$ is market share of q, the employment-sales ratio is

$$
h \equiv \frac{H}{P Y}=\sum_{q}\left(\frac{P_{q} Y_{q}}{P Y}\right)\left(\frac{H_{q}}{P_{q} Y_{q}}\right) \equiv \sum_{q} s_{q} h_{q}
$$

- Consider change in h between two short periods

$$
d h=\sum_{q}\left(d s_{q}\right) h_{q}+\sum_{q} s_{q}\left(d h_{q}\right)
$$

Decomposing aggregate employment effects

- Consider retail employment H and sales $P Y$ as sums over firms of different quality $q \in Q$

$$
H=\sum_{q} H_{q} \quad P Y=\sum_{q} P_{q} Y_{q}
$$

- If $s_{q} \equiv \frac{P_{q} Y_{q}}{P Y}$ is market share of q, the employment-sales ratio is

$$
h \equiv \frac{H}{P Y}=\sum_{q}\left(\frac{P_{q} Y_{q}}{P Y}\right)\left(\frac{H_{q}}{P_{q} Y_{q}}\right) \equiv \sum_{q} s_{q} h_{q}
$$

- Consider change in h between two short periods

$$
d h=\sum_{q}\left(d s_{q}\right) h_{q}+\sum_{q} s_{q}\left(d h_{q}\right)
$$

- Since $\sum_{q} d s_{q}=0$, this is also

$$
d h=\operatorname{Cov}_{Q}\left(d s_{q}, h_{q}\right)+\sum_{q} s_{q}\left(d h_{q}\right)
$$

The trading down effect

- Conclusion: change in aggregate retail employment $d H$ is

$$
\begin{equation*}
d H=\underbrace{\operatorname{Cov}_{Q}\left(d s_{q}, h_{q}\right) \cdot P Y}_{\text {Trading down effect }}+\underbrace{\sum_{q} s_{q}\left(d h_{q}\right) \cdot P Y+d(P Y)}_{\text {Macro effect }} \tag{1}
\end{equation*}
$$

The trading down effect

- Conclusion: change in aggregate retail employment $d H$ is

$$
\begin{equation*}
d H=\underbrace{\operatorname{Cov}_{Q}\left(d s_{q}, h_{q}\right) \cdot P Y}_{\text {Trading down effect }}+\underbrace{\sum_{q} s_{q}\left(d h_{q}\right) \cdot P Y+d(P Y)}_{\text {Macro effect }} \tag{1}
\end{equation*}
$$

- JRW perform this calculation over the 2007/2012 period:

Quality q	Low	Middle	High
h_{q}	5.41	8.49	10.36
$d s_{q}$	0.07	-0.06	-0.01

The trading down effect

- Conclusion: change in aggregate retail employment $d H$ is

$$
\begin{equation*}
d H=\underbrace{\operatorname{Cov}_{Q}\left(d s_{q}, h_{q}\right) \cdot P Y}_{\text {Trading down effect }}+\underbrace{\sum_{q} s_{q}\left(d h_{q}\right) \cdot P Y+d(P Y)}_{\text {Macro effect }} \tag{1}
\end{equation*}
$$

- JRW perform this calculation over the 2007/2012 period:

Quality q	Low	Middle	High
h_{q}	5.41	8.49	10.36
$d s_{q}$	0.07	-0.06	-0.01

Retail jobs lost due to trading down $-622,500$ Share of initial retail employment -3.2%

The trading down effect

- Conclusion: change in aggregate retail employment $d H$ is

$$
\begin{equation*}
d H=\underbrace{\operatorname{Cov}_{Q}\left(d s_{q}, h_{q}\right) \cdot P Y}_{\text {Trading down effect }}+\underbrace{\sum_{q} s_{q}\left(d h_{q}\right) \cdot P Y+d(P Y)}_{\text {Macro effect }} \tag{1}
\end{equation*}
$$

- JRW perform this calculation over the 2007/2012 period:

Quality q	Low	Middle	High
h_{q}	5.41	8.49	10.36
$d s_{q}$	0.07	-0.06	-0.01

Retail jobs lost due to trading down $-622,500$ Share of initial retail employment -3.2%

- Conclusion: trading down effect is negative...
- and accounts for $>80 \%$ of the job loss in retail (54 in manufacturing)

Discussion

- Equation (1) is an accounting decomposition
- Has some very significant advantages:
- Requires no assumptions!!
- Straightforward to implement with the right data
- Generates new and nice stylized facts
- But also has drawbacks:
- Challenging to implement in practice
- Accounting \neq causal decomposition
- Model section helps with some aspects of this, but could do more
- Next: discuss empirics and model in turn

Discussion of empirical results

- Empirical implementation very creative:
- Yelp data to measure quality tier as within-sector price tier
- Related to a literature on quality measurement in trade
- Several challenges in practice. For instance:

1. Requires making heroic extrapolation assumptions for h_{q}

- Why not use Census employment data instead of Compustat?

2. Quantitative results appear quite sensitive to choices

- Counting 2007-2009 as recession period, share of trading down only 20% vs 88% in baseline 2007-2012. Why?
- Equation (1) does not deal well with trends
- That said, I am convinced that the qualitative pattern is there

From accounting to causal decomposition

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
- Empirical issue: we lack identification
- Theoretical issue: we lack a framework

From accounting to causal decomposition

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
- Empirical issue: we lack identification
- Theoretical issue: we lack a framework
- Simple model that captures the story the authors have in mind:
- Exogenous prices P_{q}, rental rate R, wage rate W and income Y
- Consumers have nonhomothetic utility $U\left(\left\{C_{q}\right\}\right)$, income $P Y$, demand

$$
P_{q} C_{q}=s_{q}\left(\left\{P_{q}\right\}, Y\right) \cdot P Y
$$

- Firms have homothetic factor demand: $H_{q}=h_{q}(\{R, W\}) P_{q} C_{q}$

From accounting to causal decomposition

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
- Empirical issue: we lack identification
- Theoretical issue: we lack a framework
- Simple model that captures the story the authors have in mind:
- Exogenous prices P_{q}, rental rate R, wage rate W and income Y
- Consumers have nonhomothetic utility $U\left(\left\{C_{q}\right\}\right)$, income $P Y$, demand

$$
P_{q} C_{q}=s_{q}\left(\left\{P_{q}\right\}, Y\right) \cdot P Y
$$

- Firms have homothetic factor demand: $H_{q}=h_{q}(\{R, W\}) P_{q} C_{q}$
- Causal effect of change in income $P Y$ on employment H is

$$
d H=\sum_{q} d H_{q}=\sum_{q} \frac{H_{q}}{P_{q} C_{q}} d\left(P_{q} C_{q}\right)
$$

From accounting to causal decomposition

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
- Empirical issue: we lack identification
- Theoretical issue: we lack a framework
- Simple model that captures the story the authors have in mind:
- Exogenous prices P_{q}, rental rate R, wage rate W and income Y
- Consumers have nonhomothetic utility $U\left(\left\{C_{q}\right\}\right)$, income $P Y$, demand

$$
P_{q} C_{q}=s_{q}\left(\left\{P_{q}\right\}, Y\right) \cdot P Y
$$

- Firms have homothetic factor demand: $H_{q}=h_{q}(\{R, W\}) P_{q} C_{q}$
- Causal effect of change in income $P Y$ on employment H is

$$
d H=\sum_{q} h_{q} d s_{q} P Y+\sum_{q} h_{q} s_{q} d(P Y)
$$

From accounting to causal decomposition

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
- Empirical issue: we lack identification
- Theoretical issue: we lack a framework
- Simple model that captures the story the authors have in mind:
- Exogenous prices P_{q}, rental rate R, wage rate W and income Y
- Consumers have nonhomothetic utility $U\left(\left\{C_{q}\right\}\right)$, income $P Y$, demand

$$
P_{q} C_{q}=s_{q}\left(\left\{P_{q}\right\}, Y\right) \cdot P Y
$$

- Firms have homothetic factor demand: $H_{q}=h_{q}(\{R, W\}) P_{q} C_{q}$
- Causal effect of change in income $P Y$ on employment H is

$$
\begin{equation*}
d H=\underbrace{\operatorname{Cov}_{Q}\left(d s_{q}, h_{q}\right) \cdot P Y}_{\text {Trading down effect }}+\underbrace{\sum_{q} h_{q} s_{q} d(P Y)}_{\text {Macro effect }} \tag{2}
\end{equation*}
$$

Comments on the model

- Equation (2) is the same as (1), but is model-based
- On labor demand side, need average $=$ marginal to avoid extra term
- Key remaining question is where prices and incomes come from
- This is what GE models help us do!

Comments on the model

- Equation (2) is the same as (1), but is model-based
- On labor demand side, need average $=$ marginal to avoid extra term
- Key remaining question is where prices and incomes come from
- This is what GE models help us do!
- The model has these ingredients but loses track of (1)-(2)
- Quality/quantity model has a unique quality in equilibrium
- Used to get RBC amplification and comovement
- Heterogeneous agent similarly a bit underexploited
- My advice: use Stone-Geary model instead, see if model and data decompositions can be reconciled
- Would round up the paper very nicely

The model of production

- Production function has the form

$$
Y=A\left[\alpha\left(\frac{L}{q}\right)^{\frac{\epsilon-1}{\epsilon}}+(1-\alpha) K^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}}
$$

- Assumptions:

1. If q doubles, would need to double L to produce same Y
2. When $\epsilon<1$, increase in q raises MPL relative to MPK

$$
\frac{F_{L}}{F_{K}}=\frac{\alpha}{1-\alpha}(q)^{\frac{1-\epsilon}{\epsilon}}\left(\frac{L}{K}\right)^{-\frac{1}{\epsilon}}=\frac{W}{R}
$$

The model of production

- Production function has the form

$$
Y=A\left[\alpha\left(\frac{L}{q}\right)^{\frac{\epsilon-1}{\epsilon}}+(1-\alpha) K^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}}
$$

- Factor demand properties, if $\bar{\alpha} \equiv$ initial labor share and $\epsilon<1$:

1. Higher quality goods are more expensive, $\frac{d P}{P}=\bar{\alpha} \frac{d q}{q}$
2. Firms employ more capital to produce each unit, with $\left.\frac{d K}{K}\right\rfloor_{Y}=\epsilon \bar{\alpha} \frac{d q}{q}$
3. Firms also employ more labor $\left.\frac{d L}{L}\right\rfloor_{Y}=[\epsilon \bar{\alpha}+1-\epsilon] \frac{d q}{q}$
4. Relative labor intensity increases $\left.\frac{d L / K}{L / K}\right|_{Y}=(1-\epsilon) \frac{d q}{q}$

- Nice homothetic form capturing differential labor intensity by q

The model of quality/quantity choice

- Consumers choose

$$
\begin{aligned}
\max U(C, q) & \equiv \frac{q^{1-\theta}}{1-\theta} \log C \\
\text { s.t. } & P(q) C=y
\end{aligned}
$$

- FOC is

$$
(1-\theta) \log C=\frac{q P^{\prime}(q)}{P(q)}
$$

- Recall from production side that $\frac{q P^{\prime}(q)}{P(q)}=$ labor share
- RBC model relies on procyclical labor share as key driving mechanism
- Would be nice to also confront this prediction to the aggregate data

Conclusion

- Very nice and thought-provoking paper:
- New stylized fact: consumers traded down in the retail sector during the great recession
- New decomposition of aggregate employment change, with creative implementation
- The empirical and theoretical sections could be unified by computing the sufficient statistic

$$
\operatorname{Cov}_{Q}\left(d s_{q}, h_{q}\right)
$$

in the model with multiple goods and comparing it to the data

Thank you!

