Discussion of "Trading Down and the Business Cycle" by Nir Jaimovich, Sergio Rebelo and Arlene Wong

Adrien Auclert

Stanford

Philadelphia Workshop on Macroeconomics and Economic Policy April 6, 2018

What this paper is about

What this paper is about

What this paper is about

► Consider retail employment H and sales PY as sums over firms of different quality q ∈ Q

$$H = \sum_{q} H_{q} \quad PY = \sum_{q} P_{q} Y_{q}$$

ightharpoonup Consider retail employment H and sales PY as sums over firms of different quality $q \in Q$

$$H = \sum_{q} H_{q}$$
 $PY = \sum_{q} P_{q} Y_{q}$

▶ If $s_q \equiv \frac{P_q Y_q}{PY}$ is market share of q, the employment-sales ratio is

$$h \equiv \frac{H}{PY} = \sum_{q} \left(\frac{P_q Y_q}{PY} \right) \left(\frac{H_q}{P_q Y_q} \right) \equiv \sum_{q} s_q h_q$$

lackbox Consider retail employment H and sales PY as sums over firms of different quality $q\in Q$

$$H = \sum_{q} H_{q} \quad PY = \sum_{q} P_{q} Y_{q}$$

▶ If $s_q \equiv \frac{P_q Y_q}{PY}$ is market share of q, the employment-sales ratio is

$$h \equiv \frac{H}{PY} = \sum_{q} \left(\frac{P_q Y_q}{PY} \right) \left(\frac{H_q}{P_q Y_q} \right) \equiv \sum_{q} s_q h_q$$

Consider change in h between two short periods

$$dh = \sum_{q} (ds_q) h_q + \sum_{q} s_q (dh_q)$$

▶ Consider retail employment H and sales PY as sums over firms of different quality $q \in Q$

$$H = \sum_{q} H_{q} \quad PY = \sum_{q} P_{q} Y_{q}$$

▶ If $s_q \equiv \frac{P_q Y_q}{PY}$ is market share of q, the employment-sales ratio is

$$h \equiv \frac{H}{PY} = \sum_{q} \left(\frac{P_q Y_q}{PY} \right) \left(\frac{H_q}{P_q Y_q} \right) \equiv \sum_{q} s_q h_q$$

Consider change in h between two short periods

$$dh = \sum_{q} (ds_q) h_q + \sum_{q} s_q (dh_q)$$

▶ Since $\sum_q ds_q = 0$, this is also

$$dh = \operatorname{Cov}_{Q}(ds_{q}, h_{q}) + \sum_{q} s_{q}(dh_{q})$$

▶ **Conclusion**: change in aggregate retail employment *dH* is

$$dH = \underbrace{\operatorname{Cov}_{Q}(ds_{q}, h_{q}) \cdot PY}_{\text{Trading down effect}} + \underbrace{\sum_{q} s_{q}(dh_{q}) \cdot PY + d(PY)}_{\text{Macro effect}}$$
(1)

► **Conclusion**: change in aggregate retail employment *dH* is

$$dH = \underbrace{\operatorname{Cov}_{Q}(ds_{q}, h_{q}) \cdot PY}_{\text{Trading down effect}} + \underbrace{\sum_{q} s_{q}(dh_{q}) \cdot PY + d(PY)}_{\text{Macro effect}}$$
(1)

▶ JRW perform this calculation over the 2007/2012 period:

Quality q	Low	Middle	High
h_q	5.41	8.49	10.36
ds_q	0.07	-0.06	-0.01
		$\operatorname{Cov}_{Q}\left(ds_{q},h_{q}\right)$	-0.23

► **Conclusion**: change in aggregate retail employment *dH* is

$$dH = \underbrace{\operatorname{Cov}_{Q}(ds_{q}, h_{q}) \cdot PY}_{\text{Trading down effect}} + \underbrace{\sum_{q} s_{q}(dh_{q}) \cdot PY + d(PY)}_{\text{Macro effect}}$$
(1)

▶ JRW perform this calculation over the 2007/2012 period:

Quality q	Low	Middle	High
h_q	5.41	8.49	10.36
ds_q	0.07	-0.06	-0.01
		$\operatorname{Cov}_{Q}\left(ds_{q},h_{q}\right)$	-0.23
Retail jobs	-622,500		

Share of initial retail employment -3.2%

► **Conclusion**: change in aggregate retail employment *dH* is

$$dH = \underbrace{\operatorname{Cov}_{Q}(ds_{q}, h_{q}) \cdot PY}_{\text{Trading down effect}} + \underbrace{\sum_{q} s_{q}(dh_{q}) \cdot PY + d(PY)}_{\text{Macro effect}}$$
(1)

▶ JRW perform this calculation over the 2007/2012 period:

Quality q	Low	Middle	High
h_q	5.41	8.49	10.36
ds_q	0.07	-0.06	-0.01
		$\operatorname{Cov}_{Q}\left(ds_{q},h_{q}\right)$	-0.23

Retail jobs lost due to trading down -622,500 Share of initial retail employment -3.2%

- Conclusion: trading down effect is negative...
 - ▶ and accounts for >80% of the job loss in retail (54 in manufacturing)

Discussion

- ▶ Equation (1) is an accounting decomposition
- Has some very significant advantages:
 - Requires no assumptions!!
 - Straightforward to implement with the right data
 - Generates new and nice stylized facts
- But also has drawbacks:
 - Challenging to implement in practice
 - ► Accounting ≠ causal decomposition
 - Model section helps with some aspects of this, but could do more
- ▶ Next: discuss empirics and model in turn

Discussion of empirical results

- Empirical implementation very creative:
 - Yelp data to measure quality tier as within-sector price tier
 - ▶ Related to a literature on quality measurement in trade
- Several challenges in practice. For instance:
 - 1. Requires making heroic extrapolation assumptions for h_q
 - Why not use Census employment data instead of Compustat?
 - 2. Quantitative results appear quite sensitive to choices
 - Counting 2007-2009 as recession period, share of trading down only 20% vs 88% in baseline 2007-2012. Why?
 - ▶ Equation (1) does not deal well with trends
 - ▶ That said, I am convinced that the qualitative pattern is there

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
 - ▶ Empirical issue: we lack identification
 - ▶ Theoretical issue: we lack a framework

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
 - Empirical issue: we lack identification
 - ► Theoretical issue: we lack a framework
- ► Simple model that captures the story the authors have in mind:
 - \triangleright Exogenous prices P_a , rental rate R, wage rate W and income Y
 - ▶ Consumers have **nonhomothetic** utility $U(\{C_q\})$, income PY, demand

$$P_qC_q = s_q(\{P_q\}, Y) \cdot PY$$

Firms have **homothetic** factor demand: $H_q = h_q(\{R, W\}) P_q C_q$

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
 - ▶ Empirical issue: we lack identification
 - ► Theoretical issue: we lack a framework
- Simple model that captures the story the authors have in mind:
 - \triangleright Exogenous prices P_q , rental rate R, wage rate W and income Y
 - ▶ Consumers have **nonhomothetic** utility $U(\{C_q\})$, income PY, demand

$$P_qC_q = s_q(\{P_q\}, Y) \cdot PY$$

- Firms have **homothetic** factor demand: $H_q = h_q(\{R, W\}) P_q C_q$
- Causal effect of change in income PY on employment H is

$$dH = \sum_{q} dH_{q} = \sum_{q} \frac{H_{q}}{P_{q}C_{q}} d\left(P_{q}C_{q}\right)$$

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
 - Empirical issue: we lack identification
 - ▶ Theoretical issue: we lack a framework
- Simple model that captures the story the authors have in mind:
 - \triangleright Exogenous prices P_q , rental rate R, wage rate W and income Y
 - ▶ Consumers have **nonhomothetic** utility $U(\{C_q\})$, income PY, demand

$$P_q C_q = s_q (\{P_q\}, Y) \cdot PY$$

- Firms have **homothetic** factor demand: $H_q = h_q(\{R, W\}) P_q C_q$
- ▶ Causal effect of change in income *PY* on employment *H* is

$$dH = \sum_{q} h_{q} ds_{q} PY + \sum_{q} h_{q} s_{q} d(PY)$$

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
 - ▶ Empirical issue: we lack identification
 - ▶ Theoretical issue: we lack a framework
- ▶ Simple model that captures the story the authors have in mind:
 - \triangleright Exogenous prices P_a , rental rate R, wage rate W and income Y
 - ▶ Consumers have **nonhomothetic** utility $U({C_q})$, income PY, demand

$$P_q C_q = s_q (\{P_q\}, Y) \cdot PY$$

- Firms have **homothetic** factor demand: $H_q = h_q(\{R, W\}) P_q C_q$
- Causal effect of change in income PY on employment H is

$$dH = \underbrace{\operatorname{Cov}_{Q}(ds_{q}, h_{q}) \cdot PY}_{\text{Trading down effect}} + \underbrace{\sum_{q} h_{q} s_{q} d(PY)}_{\text{Macro effect}}$$
(2)

Comments on the model

- ▶ Equation (2) is the same as (1), but is model-based
 - ▶ On labor demand side, need average = marginal to avoid extra term
 - Key remaining question is where prices and incomes come from
 - This is what GE models help us do!

Comments on the model

- ▶ Equation (2) is the same as (1), but is model-based
 - ▶ On labor demand side, need average = marginal to avoid extra term
 - ▶ Key remaining question is where prices and incomes come from
 - ▶ This is what GE models help us do!
- ▶ The model has these ingredients but loses track of (1)–(2)
 - Quality/quantity model has a unique quality in equilibrium
 - Used to get RBC amplification and comovement
 - Heterogeneous agent similarly a bit underexploited
 - ► My advice: use Stone-Geary model instead, see if model and data decompositions can be reconciled
 - Would round up the paper very nicely

The model of production

Production function has the form

$$Y = A \left[\alpha \left(\frac{L}{q} \right)^{\frac{\epsilon - 1}{\epsilon}} + (1 - \alpha) K^{\frac{\epsilon - 1}{\epsilon}} \right]^{\frac{\epsilon}{\epsilon - 1}}$$

- Assumptions:
- 1. If q doubles, would need to double L to produce same Y
- 2. When $\epsilon < 1$, increase in q raises MPL relative to MPK

$$\frac{F_L}{F_K} = \frac{\alpha}{1-\alpha} \left(q\right)^{\frac{1-\epsilon}{\epsilon}} \left(\frac{L}{K}\right)^{-\frac{1}{\epsilon}} = \frac{W}{R}$$

The model of production

Production function has the form

$$Y = A \left[\alpha \left(\frac{L}{q} \right)^{\frac{\epsilon - 1}{\epsilon}} + (1 - \alpha) K^{\frac{\epsilon - 1}{\epsilon}} \right]^{\frac{\epsilon}{\epsilon - 1}}$$

- ▶ Factor demand properties, if $\overline{\alpha} \equiv$ initial labor share and $\epsilon < 1$:
- 1. Higher quality goods are more expensive, $\frac{dP}{P}=\overline{\alpha}\frac{dq}{q}$
- 2. Firms employ more capital to produce each unit, with $\frac{dK}{K}\big\rfloor_Y=\epsilon\overline{\alpha}\frac{dq}{q}$
- 3. Firms also employ more labor $\frac{dL}{L} \big|_{Y} = [\epsilon \overline{\alpha} + 1 \epsilon] \, \frac{dq}{q}$
- 4. Relative labor intensity increases $\frac{dL/K}{L/K}\Big|_{Y} = (1 \epsilon) \frac{dq}{q}$
- ▶ Nice homothetic form capturing differential labor intensity by *q*

The model of quality/quantity choice

Consumers choose

$$\max U(C, q) \equiv \frac{q^{1-\theta}}{1-\theta} \log C$$

s.t. $P(q) C = y$

▶ FOC is

$$(1-\theta)\log C = \frac{qP'(q)}{P(q)}$$

- ▶ Recall from production side that $\frac{qP'(q)}{P(q)} = \text{labor share}$
 - ▶ RBC model relies on procyclical labor share as key driving mechanism
 - ▶ Would be nice to also confront this prediction to the aggregate data

Conclusion

- Very nice and thought-provoking paper:
 - New stylized fact: consumers traded down in the retail sector during the great recession
 - New decomposition of aggregate employment change, with creative implementation
- ► The empirical and theoretical sections could be unified by computing the sufficient statistic

$$Cov_Q(ds_q, h_q)$$

in the model with multiple goods and comparing it to the data

Thank you!