Discussion of “Trading Down and the Business Cycle”
by Nir Jaimovich, Sergio Rebelo and Arlene Wong

Adrien Auclert

Stanford

Philadelphia Workshop on Macroeconomics and Economic Policy
April 6, 2018
US employment after 2007

All employees: Total Nonfarm

Dec-07 Mar-08 Jun-08 Sep-08 Dec-08 Mar-09 Jun-09 Sep-09 Dec-09 Mar-10 Jun-10 Sep-10 Dec-10 Mar-11 Jun-11 Sep-11 Dec-11 Mar-12 Jun-12 Sep-12 Dec-12
What this paper is about
What this paper is about

US employment after 2007

- All employees: Total Nonfarm
- All employees: Retail Trade
- All employees: Manufacturing
Decomposing aggregate employment effects

Consider retail employment H and sales PY as sums over firms of different quality $q \in Q$

\[H = \sum_q H_q \quad PY = \sum_q P_q Y_q \]
Consider retail employment H and sales PY as sums over firms of different quality $q \in Q$

$$H = \sum_q H_q \quad PY = \sum_q P_q Y_q$$

If $s_q \equiv \frac{P_q Y_q}{PY}$ is market share of q, the employment-sales ratio is

$$h \equiv \frac{H}{PY} = \sum_q \left(\frac{P_q Y_q}{PY} \right) \left(\frac{H_q}{P_q Y_q} \right) \equiv \sum_q s_q h_q$$
Decomposing aggregate employment effects

▶ Consider retail employment H and sales PY as sums over firms of different quality $q \in Q$

$$H = \sum_q H_q \quad PY = \sum_q P_q Y_q$$

▶ If $s_q \equiv \frac{P_q Y_q}{PY}$ is market share of q, the employment-sales ratio is

$$h \equiv \frac{H}{PY} = \sum_q \left(\frac{P_q Y_q}{PY} \right) \left(\frac{H_q}{P_q Y_q} \right) \equiv \sum_q s_q h_q$$

▶ Consider change in h between two short periods

$$dh = \sum_q (ds_q) h_q + \sum_q s_q (dh_q)$$
Decomposing aggregate employment effects

- Consider retail employment H and sales PY as sums over firms of different quality $q \in Q$

$$H = \sum_q H_q \quad PY = \sum_q P_q Y_q$$

- If $s_q \equiv \frac{P_q Y_q}{PY}$ is market share of q, the employment-sales ratio is

$$h \equiv \frac{H}{PY} = \sum_q \left(\frac{P_q Y_q}{PY} \right) \left(\frac{H_q}{P_q Y_q} \right) \equiv \sum_q s_q h_q$$

- Consider change in h between two short periods

$$dh = \sum_q (ds_q) h_q + \sum_q s_q (dh_q)$$

- Since $\sum_q ds_q = 0$, this is also

$$dh = \text{Cov}_Q (ds_q, h_q) + \sum_q s_q (dh_q)$$
The trading down effect

Conclusion: change in aggregate retail employment dH is

$$dH = \left(\text{Cov}_Q(ds_q, h_q) \cdot PY\right) + \sum_q s_q (dh_q) \cdot PY + d(PY)$$

\[1\]

Macro effect

Trading down effect
The trading down effect

Conclusion: change in aggregate retail employment dH is

$$dH = \underbrace{\text{Cov}_Q(ds_q, h_q) \cdot PY}_{\text{Trading down effect}} + \sum_q s_q(dh_q) \cdot PY + d(PY)$$

(1)

- **JRW** perform this calculation over the 2007/2012 period:

<table>
<thead>
<tr>
<th>Quality q</th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_q</td>
<td>5.41</td>
<td>8.49</td>
<td>10.36</td>
</tr>
<tr>
<td>ds_q</td>
<td>0.07</td>
<td>-0.06</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

$\text{Cov}_Q(ds_q, h_q) = -0.23$
The trading down effect

- **Conclusion**: change in aggregate retail employment dH is

$$dH = \underbrace{\text{Cov}_Q(ds_q, h_q) \cdot PY}_{\text{Trading down effect}} + \sum_q s_q(dh_q) \cdot PY + d(PY)$$

- JRW perform this calculation over the 2007/2012 period:

<table>
<thead>
<tr>
<th>Quality q</th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_q</td>
<td>5.41</td>
<td>8.49</td>
<td>10.36</td>
</tr>
<tr>
<td>ds_q</td>
<td>0.07</td>
<td>-0.06</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

$\text{Cov}_Q(ds_q, h_q) = -0.23$

Retail jobs lost due to trading down $= -622,500$

Share of initial retail employment $= -3.2%$
The trading down effect

Conclusion: change in aggregate retail employment dH is

$$dH = \sum_{q} s_q (dh_q) \cdot PY + \sum_{q} Cov_Q (ds_q, h_q) \cdot PY$$

(1)

+ Trading down effect

- Macro effect

▶ JRW perform this calculation over the 2007/2012 period:

<table>
<thead>
<tr>
<th>Quality q</th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_q</td>
<td>5.41</td>
<td>8.49</td>
<td>10.36</td>
</tr>
<tr>
<td>ds_q</td>
<td>0.07</td>
<td>-0.06</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

$Cov_Q (ds_q, h_q)$ = -0.23

Retail jobs lost due to trading down = -622,500

Share of initial retail employment = -3.2%

▶ Conclusion: trading down effect is negative...

▶ and accounts for $>80\%$ of the job loss in retail (54 in manufacturing)
Equation (1) is an accounting decomposition

Has some very significant advantages:
- Requires no assumptions!!
- Straightforward to implement with the right data
- Generates new and nice stylized facts

But also has drawbacks:
- Challenging to implement in practice
- Accounting \neq causal decomposition
- Model section helps with some aspects of this, but could do more

Next: discuss empirics and model in turn
Empirical implementation very creative:
- Yelp data to measure quality tier as within-sector price tier
- Related to a literature on quality measurement in trade

Several challenges in practice. For instance:
1. Requires making heroic extrapolation assumptions for h_q
 - Why not use Census employment data instead of Compustat?
2. Quantitative results appear quite sensitive to choices
 - Counting 2007-2009 as recession period, share of trading down only
 20% vs 88% in baseline 2007-2012. Why?
 - Equation (1) does not deal well with trends
 - That said, I am convinced that the qualitative pattern is there
From accounting to causal decomposition

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
 - Empirical issue: we lack identification
 - Theoretical issue: we lack a framework
From accounting to causal decomposition

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
 - Empirical issue: we lack identification
 - Theoretical issue: we lack a framework
- Simple model that captures the story the authors have in mind:
 - Exogenous prices P_q, rental rate R, wage rate W and income Y
 - Consumers have nonhomothetic utility $U(\{C_q\})$, income PY,
 demand
 $$P_q C_q = s_q (\{P_q\}, Y) \cdot PY$$
 - Firms have homothetic factor demand: $H_q = h_q (\{R, W\}) P_q C_q$
From accounting to causal decomposition

- **Wanted**: 'share of employment loss that was caused by the trading down due to the recession'
 - Empirical issue: we lack identification
 - Theoretical issue: we lack a framework
- **Simple model** that captures the story the authors have in mind:
 - Exogenous prices P_q, rental rate R, wage rate W and income Y
 - Consumers have **nonhomothetic** utility $U(\{C_q\})$, income PY, demand
 \[
 P_q C_q = s_q (\{P_q\}, Y) \cdot PY
 \]
 - Firms have **homothetic** factor demand: $H_q = h_q (\{R, W\}) P_q C_q$
- **Causal effect** of change in income PY on employment H is
 \[
 dH = \sum_q dH_q = \sum_q \frac{H_q}{P_q C_q} d (P_q C_q)
 \]
From accounting to causal decomposition

► Wanted: ’share of employment loss that was caused by the trading down due to the recession’
 ► Empirical issue: we lack identification
 ► Theoretical issue: we lack a framework

► Simple model that captures the story the authors have in mind:
 ► Exogenous prices P_q, rental rate R, wage rate W and income Y
 ► Consumers have nonhomothetic utility $U(\{C_q\})$, income PY, demand

\[P_q C_q = s_q (\{P_q\}, Y) \cdot PY \]

 ► Firms have homothetic factor demand: $H_q = h_q (\{R, W\}) P_q C_q$

► Causal effect of change in income PY on employment H is

\[dH = \sum_{q} h_q ds_q PY + \sum_{q} h_q s_q d(PY) \]
From accounting to causal decomposition

- Wanted: 'share of employment loss that was caused by the trading down due to the recession'
 - Empirical issue: we lack identification
 - Theoretical issue: we lack a framework

- Simple model that captures the story the authors have in mind:
 - Exogenous prices P_q, rental rate R, wage rate W and income Y
 - Consumers have **nonhomothetic** utility $U(\{C_q\})$, income PY, demand
 \[
P_q C_q = s_q (\{P_q\}, Y) \cdot PY
 \]
 - Firms have **homothetic** factor demand: $H_q = h_q (\{R, W\}) P_q C_q$

- Causal effect of change in income PY on employment H is
 \[
dH = \text{Cov}_Q (ds_q, h_q) \cdot PY + \sum_q h_q s_q d (PY) \tag{2}
 \]
 \[
 \begin{align*}
 &\text{Trading down effect} \\
 &\text{Macro effect}
 \end{align*}
 \]
Equation (2) is the same as (1), but is model-based

- On labor demand side, need average = marginal to avoid extra term
- Key remaining question is where prices and incomes come from
- This is what GE models help us do!
Equation (2) is the same as (1), but is model-based

- On labor demand side, need average = marginal to avoid extra term
- Key remaining question is where prices and incomes come from
- This is what GE models help us do!

The model has these ingredients but loses track of (1)–(2)

- Quality/quantity model has a unique quality in equilibrium
- Used to get RBC amplification and comovement
- Heterogeneous agent similarly a bit underexploited
- **My advice:** use Stone-Geary model instead, see if model and data decompositions can be reconciled
- Would round up the paper very nicely
The model of production

- Production function has the form

\[Y = A \left[\alpha \left(\frac{L}{q} \right)^{\frac{\epsilon-1}{\epsilon}} + (1 - \alpha) K^{\frac{\epsilon-1}{\epsilon}} \right]^{\frac{\epsilon}{\epsilon-1}} \]

- Assumptions:

1. If \(q \) doubles, would need to double \(L \) to produce same \(Y \)
2. When \(\epsilon < 1 \), increase in \(q \) raises MPL relative to MPK

\[\frac{F_L}{F_K} = \frac{\alpha}{1 - \alpha} \left(q^{\frac{1-\epsilon}{\epsilon}} \left(\frac{L}{K} \right)^{-\frac{1}{\epsilon}} \right) = \frac{W}{R} \]
The model of production

- Production function has the form

\[Y = A \left[\alpha \left(\frac{L}{q} \right)^{\frac{\epsilon-1}{\epsilon}} + (1 - \alpha) K^{\frac{\epsilon-1}{\epsilon}} \right]^{\frac{\epsilon}{\epsilon-1}} \]

- Factor demand properties, if \(\bar{\alpha} \equiv \text{initial labor share} \) and \(\epsilon < 1 \):

1. Higher quality goods are more expensive, \(\frac{dP}{P} = \bar{\alpha} \frac{dq}{q} \)
2. Firms employ more capital to produce each unit, with \(\frac{dK}{K} \bigg|_Y = \epsilon \bar{\alpha} \frac{dq}{q} \)
3. Firms also employ more labor \(\frac{dL}{L} \bigg|_Y = \left[\epsilon \bar{\alpha} + 1 - \epsilon \right] \frac{dq}{q} \)
4. Relative labor intensity increases \(\frac{dL/K}{L/K} \bigg|_Y = (1 - \epsilon) \frac{dq}{q} \)

- Nice homothetic form capturing differential labor intensity by \(q \)
The model of quality/quantity choice

- Consumers choose

\[\max U(C, q) \equiv \frac{q^{1-\theta}}{1-\theta} \log C \]

s.t. \[P(q) C = y \]

- FOC is

\[(1 - \theta) \log C = \frac{qP'(q)}{P(q)} \]

- Recall from production side that \[\frac{qP'(q)}{P(q)} \text{ = labor share} \]
 - RBC model relies on procyclical labor share as key driving mechanism
 - Would be nice to also confront this prediction to the aggregate data
Conclusion

- Very nice and thought-provoking paper:
 - New stylized fact: consumers traded down in the retail sector during the great recession
 - New decomposition of aggregate employment change, with creative implementation
- The empirical and theoretical sections could be unified by computing the sufficient statistic

\[\text{Cov}_Q (d s_q, h_q) \]

in the model with multiple goods and comparing it to the data
Thank you!