Discussion of "A Behavioral Heterogeneous Agent New Keynesian Model" by Oliver Pfäuti and Fabian Seyrich

Adrien Auclert

Stanford

NBER Monetary Economics Meeting Cambridge, November 11, 2022

- Heterogenous-agent NK literature
 - Takes micro data on balance sheets and income risk seriously
 - Derives implications for GE effects on monetary and fiscal policy
- Behavioral-agent NK literature
 - Takes micro data on expectations seriously
 - Derives implications for GE effects on monetary and fiscal policy

- ► Heterogenous-agent NK literature
 - Takes micro data on balance sheets and income risk seriously
 - Derives implications for GE effects on monetary and fiscal policy
- Behavioral-agent NK literature
 - Takes micro data on expectations seriously
 - Derives implications for GE effects on monetary and fiscal policy
- Extremely natural to combine the two! Yet very few papers have...

- ► Heterogenous-agent NK literature (HANK)
 - ► Takes micro data on balance sheets and income risk seriously
 - ▶ Derives implications for GE effects on monetary and fiscal policy
- Behavioral-agent NK literature (BANK)
 - Takes micro data on expectations seriously
 - Derives implications for GE effects on monetary and fiscal policy
- Extremely natural to combine the two! Yet very few papers have...

 $HANK + BANK \rightarrow BHANK$

- Heterogenous-agent NK literature (HANK)
 - Takes micro data on balance sheets and income risk seriously
 - Derives implications for GE effects on monetary and fiscal policy
- Behavioral-agent NK literature (BANK)
 - Takes micro data on expectations seriously
 - Derives implications for GE effects on monetary and fiscal policy
- Extremely natural to combine the two! Yet very few papers have...

BHANK: the future of monetary economics

- Heterogenous-agent NK literature (HANK)
 - ► Takes micro data on balance sheets and income risk seriously
 - Derives implications for GE effects on monetary and fiscal policy
- Behavioral-agent NK literature (BANK)
 - ► Takes micro data on expectations seriously
 - Derives implications for GE effects on monetary and fiscal policy
- Extremely natural to combine the two! Yet very few papers have...

BHANK: the future of monetary economics

... maybe not this BHANK!

HANK and the countercylical income risk problem

► Important theme of rational expectations HANK:

countercyclical income risk

In micro data, recessions appear to make income risk rise [Storesletten-Telmer-Yaron, Guvenen-Ozkan-Song...]

HANK and the countercylical income risk problem

▶ Important theme of rational expectations HANK:

countercyclical income risk

- ► In micro data, recessions appear to make income risk rise [Storesletten-Telmer-Yaron, Guvenen-Ozkan-Song...]
- ► GE implications in HANK:
 - 1. Expectations of future recessions raise precautionary savings so drive down spending today: economy less stable for given monetary policy
 - Any policy action that mitigates the future recession delivers large spending boost today: "forward guidance puzzle" for both MP and FP

HANK and the countercylical income risk problem

▶ Important theme of rational expectations HANK:

countercyclical income risk

- ► In micro data, recessions appear to make income risk rise [Storesletten-Telmer-Yaron, Guvenen-Ozkan-Song...]
- GE implications in HANK:
 - Expectations of future recessions raise precautionary savings so drive down spending today: economy less stable for given monetary policy
 - 2. Any policy action that mitigates the future recession delivers large spending boost today: "forward guidance puzzle" for both MP and FP
- ► Very powerful force, **major ongoing challenge** for the literature [Ravn-Sterk, McKay-Nakamura-Steinsson, Werning, Acharya-Dogra, Bilbiie...]

- Standard NK literature already confronted with these challenges:
 - 1. Economy unstable at the ZLB
 - 2. "Forward guidance puzzle" for both MP and FP

- Standard NK literature already confronted with these challenges:
 - 1. Economy unstable at the ZLB
 - 2. "Forward guidance puzzle" for both MP and FP

- BANK literature already provides a solution to both
 - NK + Cognitive discounting [Gabaix]
 - NK + Lack of common knowledge [Angeletos-Lian]

- Standard NK literature already confronted with these challenges:
 - 1. Economy unstable at the ZLB
 - 2. "Forward guidance puzzle" for both MP and FP

- BANK literature already provides a solution to both
 - NK + Cognitive discounting [Gabaix]
 - NK + Lack of common knowledge [Angeletos-Lian]
- Here: can cognitive discounting solve the cc risk problem in HANK?
 - Answer: yes

- Standard NK literature already confronted with these challenges:
 - 1. Economy unstable at the ZLB
 - 2. "Forward guidance puzzle" for both MP and FP

- ▶ BANK literature already provides a solution to both
 - NK + Cognitive discounting [Gabaix]
 - NK + Lack of common knowledge [Angeletos-Lian]
- Here: can cognitive discounting solve the cc risk problem in HANK?
 - ► Answer: yes ... but are we sure?

	RANK	HANK	BANK	BHANK
Facts		w cc. risk	w cog. discount	
High MPCs	×			
Countercyclical income risk	×			
Weak effects of fwd guidance	×			
Stable economy at ZLB	×			

Facts	RANK	HANK w cc. risk	BANK w cog. discount	BHANK
High MPCs	×	✓	0	
Countercyclical income risk	×	✓		
Weak effects of fwd guidance	×	XX		
Stable economy at ZLB	Х	XX		

Facts	RANK	HANK w cc. risk	BANK w cog. discount	BHANK
High MPCs	×	\checkmark	×	
Countercyclical income risk	×	√	×	
Weak effects of fwd guidance	×	XX	√	
Stable economy at ZLB	×	XX	✓	

Facts	RANK	HANK w cc. risk	BANK w cog. discount	BHANK
High MPCs	×	✓	×	✓
Countercyclical income risk	×	√	×	✓
Weak effects of fwd guidance	×	XX	✓	✓
Stable economy at ZLB	×	XX	✓	✓

Facts	RANK	HANK w cc. risk	BANK w cog. discount	BHANK
High MPCs	X	✓	×	\checkmark
Countercyclical income risk	X	✓	×	✓
Weak effects of fwd guidance	×	XX	√	✓
Stable economy at ZLB	×	XX	✓	✓
Currently missing Fact 5	X	×	×	√

Contrast with Farhi and Werning

Farhi-Werning "Monetary Policy, Bounded Rationality, and Incomplete Markets" (AER 2019) is like this:

		RANK	HANK	BANK	BHANK
	Fact		w acycl. risk	w level k	
V	Veak effects of fwd guidance	×	×	×	√

Contrast with Farhi and Werning

Farhi-Werning "Monetary Policy, Bounded Rationality, and Incomplete Markets" (AER 2019) is like this:

	RANK	HANK	BANK	BHANK
Fact		w acycl. risk	w level k	
Weak effects of fwd guidance	×	×	×	√

- ▶ Why does BANK alone not solve the FG puzzle under level-*k*?
 - ► Level-k: agents perfectly understand forward guidance announcements. Just cannot reason through all the GE consequences.
 - Cognitive discounting: agents discount forward guidance directly.

Contrast with Farhi and Werning

► Farhi-Werning "Monetary Policy, Bounded Rationality, and Incomplete Markets" (AER 2019) is like this:

	RANK	HANK	BANK	BHANK
Fact		w acycl. risk	w level k	
Weak effects of fwd guidance	×	×	×	√

- ▶ Why does BANK alone not solve the FG puzzle under level-k?
 - ► Level-k: agents perfectly understand forward guidance announcements. Just cannot reason through all the GE consequences.
 - ▶ Cognitive discounting: agents discount forward guidance directly.
- Which is more reasonable?

How the paper proves that BHANK \Rightarrow Facts 1-4

- 1. Tractable HANK (THANK) to prove Facts 1-4 hold analytically
 - "Bilbiie meets Gabaix"
- 2. "Full" HANK to show that the result is more general
 - "McKay-Nakamura-Steinsson meets Gabaix"

How the paper proves that BHANK \Rightarrow Facts 1-4

- 1. Tractable HANK (THANK) to prove Facts 1-4 hold analytically
 - "Bilbiie meets Gabaix"
- 2. "Full" HANK to show that the result is more general
 - "McKay-Nakamura-Steinsson meets Gabaix"
- ► THANK is *not* the same as HANK! The paper often blurs the line.

How the paper proves that BHANK \Rightarrow Facts 1-4

- 1. Tractable HANK (THANK) to prove Facts 1-4 hold analytically
 - "Bilbiie meets Gabaix"
- 2. "Full" HANK to show that the result is more general
 - "McKay-Nakamura-Steinsson meets Gabaix"
- ► THANK is *not* the same as HANK! The paper often blurs the line.
- ▶ Please help the literature by using consistent acronyms! It's simple:

	THANK	HANK
Micro data	×	✓
Analytical solutions	✓	×

Rest of discussion

- 1. How robust is the main result to calibration?
- 2. Alternative microfoundations?
- 3. Amplification of supply shocks?

Discounted Euler equations

▶ Bilbiie's THANK model Euler equation:

$$y_t = \delta \mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

where σ is the EIS and $\delta > 1$ with countercylical income risk

Discounted Euler equations

▶ Bilbiie's THANK model Euler equation:

$$y_t = \delta \mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

where σ is the EIS and $\delta > 1$ with countercylical income risk

► Gabaix's BANK model Euler equation:

$$y_t = m\mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

where m < 1 with cognitive discounting

Discounted Euler equations

Bilbiie's THANK model Euler equation:

$$y_t = \delta \mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

where σ is the EIS and $\delta > 1$ with countercylical income risk

► Gabaix's BANK model Euler equation:

$$y_t = m\mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

where m < 1 with cognitive discounting

BTHANK model Euler equation turns out to be:

$$y_t = m\delta \mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

Nice!

Resolving the puzzle

Iterate forward:

$$y_t = -\operatorname{Cst} \cdot \sigma \cdot \mathbb{E}_t \left[\sum_{k \geq 0} (m\delta)^k r_{t+k} \right]$$

- ▶ $m\delta > 1 \Rightarrow$ Forward guidance puzzle, indeterminacy (at constant r)
- $m\delta < 1 \Rightarrow \text{No FG puzzle, determinacy}$

Resolving the puzzle

Iterate forward:

$$y_t = -\operatorname{Cst} \cdot \sigma \cdot \mathbb{E}_t \left[\sum_{k \geq 0} (m\delta)^k r_{t+k} \right]$$

- ▶ $m\delta > 1 \Rightarrow$ Forward guidance puzzle, indeterminacy (at constant r)
- $m\delta < 1 \Rightarrow \text{No FG puzzle, determinacy}$
- ▶ So we can get Facts 1–4 when $m\delta < 1$. When is that true?
 - Clearly a calibration question!

▶ Gabaix and others measure m from experiments. $m \simeq 0.85$ /quarter.

- ▶ Gabaix and others measure m from experiments. $m \simeq 0.85$ /quarter.
- ▶ When is $\delta < \frac{1}{m}$? Let's look at the microfoundations:

$$\delta = 1 + (\chi - 1) \frac{1 - s}{1 - \lambda \chi}$$

where s is prob of switching to HTM, λ is share of HTM

- ▶ Gabaix and others measure m from experiments. $m \simeq 0.85/\text{quarter}$.
- ▶ When is $\delta < \frac{1}{m}$? Let's look at the microfoundations:

$$\delta = 1 + (\chi - 1) \frac{1 - s}{1 - \lambda \chi}$$

where s is prob of switching to HTM, λ is share of HTM

- Assume s = 0.95 and $\lambda = 0.33$ (reasonable?)
- ▶ We still need to know

$$\chi = 1 + \frac{1}{\text{Frisch}} \left(1 - \frac{\mu^D}{0.33} \right)$$

where μ^D is the share of dividends accruing to the hand to mouth.

- ▶ Gabaix and others measure m from experiments. $m \simeq 0.85/\text{quarter}$.
- ▶ When is $\delta < \frac{1}{m}$? Let's look at the microfoundations:

$$\delta = 1 + (\chi - 1) \frac{1 - s}{1 - \lambda \chi}$$

where s is prob of switching to HTM, λ is share of HTM

- Assume s = 0.95 and $\lambda = 0.33$ (reasonable?)
- ▶ We still need to know

$$\chi = 1 + \frac{1}{\text{Frisch}} \left(1 - \frac{\mu^D}{0.33} \right)$$

where μ^D is the share of dividends accruing to the hand to mouth.

- ▶ Why?? Flex-wage/sticky-price \Rightarrow in recessions, real wages \downarrow profits \uparrow
- ▶ If μ^D is high then recessions are good times for hand to mouth!

- ▶ Gabaix and others measure m from experiments. $m \simeq 0.85/\text{quarter}$.
- ▶ When is $\delta < \frac{1}{m}$? Let's look at the microfoundations:

$$\delta = 1 + (\chi - 1) \frac{1 - s}{1 - \lambda \chi}$$

where s is prob of switching to HTM, λ is share of HTM

- Assume s = 0.95 and $\lambda = 0.33$ (reasonable?)
- ▶ We still need to know

$$\chi = 1 + \frac{1}{\text{Frisch}} \left(1 - \frac{\mu^D}{0.33} \right)$$

where μ^D is the share of dividends accruing to the hand to mouth.

- ▶ Why?? Flex-wage/sticky-price \Rightarrow in recessions, real wages \downarrow profits \uparrow
- ▶ If μ^D is high then recessions are good times for hand to mouth!
 - Questionable microfoundation for countercyclical income risk...

lacktriangle Paper has interesting strategy to get around measuring μ^D . Recall

$$y_t = m\delta \mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

Calibration strategy: indirect approach

lacktriangle Paper has interesting strategy to get around measuring μ^D . Recall

$$y_t = m\delta \mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

- ▶ Turns out here $Cst = \frac{1-\lambda}{1-\lambda\chi}$. Suppose we know Cst = 1.2
- ► Then:

$$\delta = 1 + (1 - s) \left(\frac{\text{Cst} - 1}{\lambda} \right) = 1 + 0.05 \cdot \frac{1.2 - 1}{0.33} = 1.03 < \frac{1}{m} = 1.17$$

Puzzles solved!

Calibration strategy: indirect approach

lacktriangle Paper has interesting strategy to get around measuring μ^D . Recall

$$y_t = m\delta \mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

- ▶ Turns out here $Cst = \frac{1-\lambda}{1-\lambda\chi}$. Suppose we know Cst = 1.2
- ► Then:

$$\delta = 1 + (1 - s) \left(\frac{\text{Cst} - 1}{\lambda} \right) = 1 + 0.05 \cdot \frac{1.2 - 1}{0.33} = 1.03 < \frac{1}{m} = 1.17$$

- Puzzles solved!
- \blacktriangleright But what if λ is lower, or Cst higher?
 - e.g. $\lambda = 0.1$, Cst = 1.5 implies $\delta = 1.25 > 1.17...$

Calibration strategy: indirect approach

lacktriangle Paper has interesting strategy to get around measuring μ^D . Recall

$$y_t = m\delta \mathbb{E}_t [y_{t+1}] - \mathrm{Cst} \cdot \sigma \cdot r_t$$

- ▶ Turns out here $Cst = \frac{1-\lambda}{1-\lambda\chi}$. Suppose we know Cst = 1.2
- ► Then:

$$\delta = 1 + (1 - s) \left(\frac{\text{Cst} - 1}{\lambda} \right) = 1 + 0.05 \cdot \frac{1.2 - 1}{0.33} = 1.03 < \frac{1}{m} = 1.17$$

- Puzzles solved!
- \blacktriangleright But what if λ is lower, or Cst higher?
 - e.g. $\lambda = 0.1$, Cst = 1.5 implies $\delta = 1.25 > 1.17...$
 - Cst in Patterson? Multiplier there is for fiscal, not monetary policy!
 - \triangleright λ not easy to map to real world data (virtual \neq actual share of HTM)

Broader issue with this model

- ▶ Relation between δ and Cst is special!
 - Strategy does not get around the questionable microfoundation
- ► Same microfoundation in (quantitative) HANK ⇒ same issue
 - ▶ Calibration is version of "find reasonable μ^{D} " (by income state)

Broader issue with this model

- ▶ Relation between δ and Cst is special!
 - Strategy does not get around the questionable microfoundation
- Same microfoundation in (quantitative) HANK ⇒ same issue
 - ightharpoonup Calibration is version of "find reasonable μ^{D} " (by income state)
- ► Two main issues with this type of "first-generation" HANK:
 - 1. Cyclicality of profits inconsistent with the data
 [Broer-Hansen-Krusell-Öberg]
 - 2. MPEs in the model inconsistent with the data

[Auclert-Bardoczy-Rognlie]

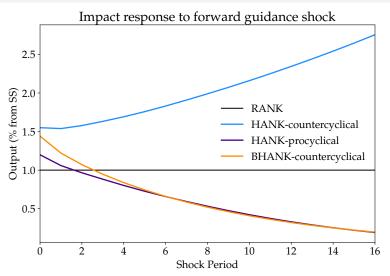
Broader issue with this model

- ▶ Relation between δ and Cst is special!
 - Strategy does not get around the questionable microfoundation
- Same microfoundation in (quantitative) HANK ⇒ same issue
 - ightharpoonup Calibration is version of "find reasonable μ^{D} " (by income state)
- ► Two main issues with this type of "first-generation" HANK:
 - 1. Cyclicality of profits inconsistent with the data

 [Broer-Hansen-Krusell-Öberg]
 - 2. MPEs in the model inconsistent with the data

[Auclert-Bardoczy-Rognlie]

▶ Basic solution is well accepted: flip assn. to flex-price/sticky-wage


Benefits of simple flex-price/sticky-wage model

- In tractable HANK, the δ can be expressed as a sufficient statistic: elasticity of relative income in bottom state relative to top state [see my lectures notes on HANK with Rognlie and Straub]
 - ▶ Don't have to rely on indirect mapping through Cst
 - Can in principle measure this in the data

Benefits of simple flex-price/sticky-wage model

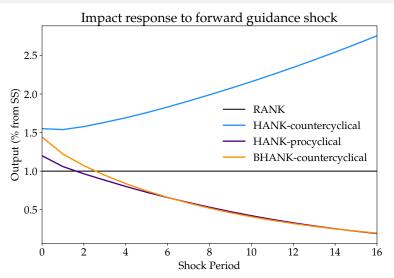

- In tractable HANK, the δ can be expressed as a sufficient statistic: elasticity of relative income in bottom state relative to top state [see my lectures notes on HANK with Rognlie and Straub]
 - ▶ Don't have to rely on indirect mapping through Cst
 - Can in principle measure this in the data
- Also if you implement quantitative HANK with our class material:
 - It will take an hour to move your quantitative model over
 - You won't have to rely on a very inefficient algorithm
 - Cognitive discounting is very simple to implement in sequence space! [see Auclert-Rognlie-Straub 2020, 2022]

Figure 1 redone with flex-price/sticky-wage model

General conclusions likely to carry over to this more credible setting

Figure 1 redone with flex-price/sticky-wage model

Why doesn't your orange line not start below the blue?

BHANK research agenda:

- While a clear improvement, this solution is still not ideal
- Two big questions for the broader BHANK research agenda

BHANK research agenda:

- While a clear improvement, this solution is still not ideal
- Two big questions for the broader BHANK research agenda
- 1. What's a credible microfounded model of cc. income risk?
 - Need a better model of the labor market (eg unemployment)
 - Need careful discipline to micro data/sufficient statistics

BHANK research agenda:

- While a clear improvement, this solution is still not ideal
- Two big questions for the broader BHANK research agenda
- 1. What's a credible microfounded model of cc. income risk?
 - Need a better model of the labor market (eg unemployment)
 - Need careful discipline to micro data/sufficient statistics
- 2. What behavioral model best fits the data?
 - ▶ Many alternatives to cognitive discounting: level-k, lack of CK...
 - ▶ How do we choose between them?

lacktriangle Paper studies classic New Keynesian shock: TFP \downarrow , natural rate \uparrow

- lacktriangle Paper studies classic New Keynesian shock: TFP \downarrow , natural rate \uparrow
- Divine coincidence still holds: possible to stabilize both π and y^{gap} , but need *larger* rate increase
 - NB: larger or smaller depends on persistence of shock!

- lacktriangle Paper studies classic New Keynesian shock: TFP \downarrow , natural rate \uparrow
- Divine coincidence still holds: possible to stabilize both π and y^{gap} , but need *larger* rate increase
 - ▶ NB: larger or smaller depends on persistence of shock!
- Flip side: Taylor rule implies larger inflation response

- lacktriangle Paper studies classic New Keynesian shock: TFP \downarrow , natural rate \uparrow
- Divine coincidence still holds: possible to stabilize both π and y^{gap} , but need *larger* rate increase
 - ▶ NB: larger or smaller depends on persistence of shock!
- ► Flip side: Taylor rule implies larger inflation response
- ▶ Distributional implication: $r \uparrow$ adversely affects FP and inequality
 - ▶ Relies on the short-run debt assn. Longer term debt mitigates both!

- lacktriangle Paper studies classic New Keynesian shock: TFP \downarrow , natural rate \uparrow
- Divine coincidence still holds: possible to stabilize both π and y^{gap} , but need *larger* rate increase
 - NB: larger or smaller depends on persistence of shock!
- ► Flip side: Taylor rule implies larger inflation response
- ▶ Distributional implication: $r \uparrow$ adversely affects FP and inequality
 - ▶ Relies on the short-run debt assn. Longer term debt mitigates both!
- ▶ Ideas here very similar to Challe AEJ Macro, McKay Wolf WP
 - ▶ Would be interesting to study optimal policy (as these papers do)

Concluding thoughts

- Exciting paper at edge of an important research agenda
- lacktriangle Main result depends on calibration: explain why $m\delta < 1$
- Use flex-price/sticky-wage rather than the other way around
- Looking forward to seeing the BHANK literature grow!