Discussion of "Open economy, redistribution, and the aggregate impact of external shocks" by Haonan Zhou

Adrien Auclert

Stanford

Emerging and Frontier Markets Conference, Cartagena May 10, 2022

- Q: How is aggregate C affected by external shocks in EMs?
 - ► Focus on capital outflow (depreciation) shocks in Uruguay

- ▶ **Q**: How is aggregate *C* affected by external shocks in EMs?
 - Focus on capital outflow (depreciation) shocks in Uruguay
- Standard answers from representative agent models:
 - Complete markets: C determined by international risk sharing + monetary policy response to depreciation (intertemp. substitution)
 - Incomplete markets: aggregate wealth effects also affect C. Quantitatively trivial because aggregate MPC is very low.

- $ightharpoonup \mathbf{Q}$: How is aggregate C affected by external shocks in EMs?
 - Focus on capital outflow (depreciation) shocks in Uruguay
- Standard answers from representative agent models:
 - Complete markets: C determined by international risk sharing + monetary policy response to depreciation (intertemp. substitution)
 - Incomplete markets: aggregate wealth effects also affect C. Quantitatively trivial because aggregate MPC is very low.
- ▶ With **heterogeneous agents**: *individual* wealth effects matter!
 - 1. Who gains and who loses from the depreciation?
 - ► Income: who works in the export sector?
 - Cost of living: who consumes imported goods?
 - ▶ Balance sheets: who has dollar assets, dollar debt?
 - 2. How different are MPCs across the distribution of exposures?

- **Q**: How is aggregate *C* affected by external shocks in EMs?
 - ► Focus on capital outflow (depreciation) shocks in Uruguay
- Standard answers from representative agent models:
 - Complete markets: C determined by international risk sharing + monetary policy response to depreciation (intertemp. substitution)
 - Incomplete markets: aggregate wealth effects also affect C. Quantitatively trivial because aggregate MPC is very low.
- ▶ With **heterogeneous agents**: *individual* wealth effects matter!
 - 1. Who gains and who loses from the depreciation?
 - ► Income: who works in the export sector?
 - Cost of living: who consumes imported goods?
 - ▶ Balance sheets: who has dollar assets, dollar debt?
 - 2. How different are MPCs across the distribution of exposures?

Here: a sufficient statistic approach+a structural model to tackle this Q

The paper's approach

- 1. Derive general sufficient statistics for the response of aggregate spending to one-time depreciation
- 2. Compute these statistics in the data
- 3. Guided by qualitative findings, set up a state-of-the art HANK model
- 4. Compare sufficient statistics in data vs model steady state
- Conduct full counterfactual in model

The paper's approach

- 1. Derive general sufficient statistics for the response of aggregate spending to one-time depreciation
- 2. Compute these statistics in the data
- 3. Guided by qualitative findings, set up a state-of-the art HANK model
- 4. Compare sufficient statistics in data vs model steady state
- Conduct full counterfactual in model

The gold standard of heterogeneous-agent macro research.

1. Baseline model: devaluations are contractionary for aggregate C

- 1. Baseline model: devaluations are contractionary for aggregate C
- 2. Valuation effects from dollar balance sheets ("FC Fisher channel") matters quantitatively, but not qualitatively, for this result
 - Directly driven by data: rich (low MPC) own dollar assets, poor (high MPC) own dollar liabilities, covariance negative but not huge

Variable/Statistic	Baseline	No illiquid dollar	High dollar liability
Aggregate dollar wealth	0.220	0.220	0.220
$Cov(MPC_{i,b}, Liquid Saving_i^{\$})$	-0.137	-0.085	-0.472
$Cov(MPC_{i,a}, Illiquid Debt_i^{\$})$	0.003	0	0.020
Time-0 deviation from steady state	(bps):		
Consumption (C)	-25.93	-22.82	-48.02

- 1. Baseline model: devaluations are contractionary for aggregate C
- 2. Valuation effects from dollar balance sheets ("FC Fisher channel") matters quantitatively, but not qualitatively, for this result
 - ▶ Directly driven by data: rich (low MPC) own dollar assets, poor (high MPC) own dollar liabilities, covariance negative but not huge

Variable/Statistic	Baseline	No illiquid dollar	High dollar liability
Aggregate dollar wealth	0.220	0.220	0.220
$Cov(MPC_{i,b}, Liquid Saving_i^{\$})$	-0.137	-0.085	-0.472
$Cov(MPC_{i,a},Illiquid Debt_i^{\$})$	0.003	0	0.020
Time-0 deviation from steady state	: (bps):		
Consumption (C)	-25.93	-22.82	-48.02

- ▶ With Hungarian-type balance sheets, contraction in *C* much worse
- ▶ Relative to de Ferra-Mitman-Romei: "Uruguay is not Hungary"

- 1. Baseline model: devaluations are contractionary for aggregate C
- 2. Valuation effects from dollar balance sheets ("FC Fisher channel") matters quantitatively, but not qualitatively, for this result
 - Directly driven by data: rich (low MPC) own dollar assets, poor (high MPC) own dollar liabilities, covariance negative but not huge

Variable/Statistic	Baseline	No illiquid dollar	High dollar liability
Aggregate dollar wealth	0.220	0.220	0.220
$Cov(MPC_{i,b}, Liquid Saving_i^{\$})$	-0.137	-0.085	-0.472
$Cov(MPC_{i,a},Illiquid Debt_i^{\$})$	0.003	0	0.020
Time-0 deviation from steady state (bps):		
Consumption (C)	-25.93	-22.82	-48.02

- ▶ With Hungarian-type balance sheets, contraction in *C* much worse
- ▶ Relative to de Ferra-Mitman-Romei: "Uruguay is not Hungary"
- 3. Unequal consumption baskets are essentially irrelevant
 - ► Similar to Auclert-Rognlie-Souchier-Straub; less directly tied to data

My assessment

- Great approach to a very important question!
 - ► Wealth effects on household balance sheets can clearly be relevant, largely ignored by the international macro literature to date
 - Evaluating their importance requires micro data + model

My assessment

- ► Great approach to a very important question!
 - ► Wealth effects on household balance sheets can clearly be relevant, largely ignored by the international macro literature to date
 - ► Evaluating their importance requires micro data + model
- ► Literature on this topic has become a little crowded recently [de-Ferra-Mitman-Romei, Cugat, Oskolkov, Auclert-Rognlie-Souchier-Straub, Guo-Ottonello-Perez, Hong, Ferrante-Gornemann,...]
 - ▶ Unique to the paper: sufficient statistic approach
 - My discussion: how to build on this strength

Outline

- 1. Is the aggregate contraction suprising?
- 2. Broadening the sufficient statistic result
- 3. Using this to guide model building
- 4. Improving the micro measurement

1. Is the aggregate contraction suprising?

- ightharpoonup Paper considers shocks to capital outflows, $i_t^* \uparrow$
- Headline result: RER depreciates, non-tradable consumption falls
- ► Could this be due to the monetary policy rule?

► Suggestion 1: benchmark this against the rep agent response

Rep agent benchmark

- Consider the rep agent, complete market version of this model
- ▶ How does shock to di_t^* affect non-tradable spending?

Rep agent benchmark

- Consider the rep agent, complete market version of this model
- ▶ How does shock to di_t^* affect non-tradable spending?
- Let $R_t^* = \sum_{s \geq 0} di_{t+s}^*$ and $R_t = \sum_{s \geq 0} dr_{t+s}$ be long rate response. Can show:

$$\widehat{c}_{t} = -\frac{1}{\sigma} R_{t}
\widehat{q}_{t} = R_{t}^{*} - R_{t}
\widehat{c}_{Nt} = \alpha \eta \widehat{q}_{t} + \widehat{c}_{t}$$

Rep agent benchmark

- Consider the rep agent, complete market version of this model
- ▶ How does shock to di_t^* affect non-tradable spending?
- Let $R_t^* = \sum_{s \geq 0} di_{t+s}^*$ and $R_t = \sum_{s \geq 0} dr_{t+s}$ be long rate response. Can show:

$$\widehat{c}_{t} = -\frac{1}{\sigma} R_{t}
\widehat{q}_{t} = R_{t}^{*} - R_{t}
\widehat{c}_{Nt} = \alpha \eta \widehat{q}_{t} + \widehat{c}_{t}$$

• Suppose monetary response is $R_t = \gamma R_t^*$ then

$$\widehat{c_{Nt}} = \left(\alpha\eta\left(1 - \gamma\right) - \frac{\gamma}{\sigma}\right)R_t^*$$

in paper $\frac{1}{\sigma} = 0.5$, $\alpha = 0.4$, $\eta = 0.5$, so $R_t^* \uparrow \Rightarrow \widehat{c_{Nt}} \downarrow$ whenever

$$\gamma \ge \frac{\alpha\eta}{\alpha\eta + 1/\sigma} \simeq 0.26$$

Role of expenditure switching

- ▶ Upshot: low expenditure switching elasticity (η) and more aggressive mp response (γ) make contractionary devaluation more likely
- lacktriangle Paper has a limited discussion of γ , but essentially no mention of η
- ▶ Prop 1 is derived under $\eta = 1$, quantitative model uses $\eta = 0.5$

Role of expenditure switching

- ▶ Upshot: low expenditure switching elasticity (η) and more aggressive mp response (γ) make contractionary devaluation more likely
- lacktriangle Paper has a limited discussion of γ , but essentially no mention of η
- ▶ Prop 1 is derived under $\eta = 1$, quantitative model uses $\eta = 0.5$
- **Suggestion 2**: expand the sufficient statistic result beyond $\eta=1$
- **Suggestion 3**: discuss the range of outcomes as a function of η , γ

Role of expenditure switching

- ▶ Upshot: low expenditure switching elasticity (η) and more aggressive mp response (γ) make contractionary devaluation more likely
- lacktriangle Paper has a limited discussion of γ , but essentially no mention of η
- ▶ Prop 1 is derived under $\eta = 1$, quantitative model uses $\eta = 0.5$
- **Suggestion 2**: expand the sufficient statistic result beyond $\eta=1$
- **Suggestion 3**: discuss the range of outcomes as a function of η , γ
 - No agreement that capital outflow shocks are contractionary, both data and central bank polls point in different directions
 - Not clear that η is a structural parameter (e.g. short vs long-run)
 - ► Main result that FC Fisher channel pulls down spending will survive irrespective of the sign of the baseline level effect

- ► Two more aspects of Prop 1 surprised me:
- 1. Sufficient statistics for nonhomotheticity effect is derived as

$$Cov(MPC_i, TradableExpenditure_i)$$
 (< 0)

This covariance mixes level and share effects. Would have expected:

$$Cov(MPC_i, TradableShare_i)$$
 (> 0)

- ► Two more aspects of Prop 1 surprised me:
- 1. Sufficient statistics for nonhomotheticity effect is derived as

$$Cov(MPC_i, TradableExpenditure_i)$$
 (< 0)

This covariance mixes level and share effects. Would have expected:

$$Cov(MPC_i, TradableShare_i)$$
 (> 0)

- 2. No term for "real income effect" (terms of trade effect)
 - \triangleright Overall consumption p vs production p changes in depreciation
 - ► This can be quantitatively important, see Auclert et al

- ► Two more aspects of Prop 1 surprised me:
- 1. Sufficient statistics for nonhomotheticity effect is derived as

$$Cov(MPC_i, TradableExpenditure_i)$$
 (< 0)

This covariance mixes level and share effects. Would have expected:

$$Cov(MPC_i, TradableShare_i)$$
 (> 0)

- 2. No term for "real income effect" (terms of trade effect)
 - \triangleright Overall consumption p vs production p changes in depreciation
 - ► This can be quantitatively important, see Auclert et al

Suggestion 4: rewrite proposition to make both terms appear

- ► Two more aspects of Prop 1 surprised me:
- 1. Sufficient statistics for nonhomotheticity effect is derived as

$$Cov(MPC_i, TradableExpenditure_i)$$
 (< 0)

This covariance mixes level and share effects. Would have expected:

$$Cov(MPC_i, TradableShare_i)$$
 (> 0)

- 2. No term for "real income effect" (terms of trade effect)
 - ightharpoonup Overall consumption p vs production p changes in depreciation
 - ► This can be quantitatively important, see Auclert et al

Suggestion 4: rewrite proposition to make both terms appear

➤ Side note: is the dynamic solution to the nonhomothetic model correct? The price index (so real rate) differs across agents.

3. Using sufficient statistics to guide model building

- Two benchmark models in international macro:
 - 1. T/NT model (both produced, export and import only T)
 - 2. Armington model (produce and export one good, import another)

which one is the better benchmark to think about the paper's Q?

3. Using sufficient statistics to guide model building

- ► Two benchmark models in international macro:
 - 1. T/NT model (both produced, export and import only T)
 - 2. Armington model (produce and export one good, import another)
 - which one is the better benchmark to think about the paper's Q?
- ▶ Benefits of 1: depreciation affects incomes of workers in T vs NT
 - ► A lot of work has been about these distributional effects [Cugat, Drenik, Guo-Ottonello-Perez,...]
- ▶ Benefits of 2: richer pattern of expenditure switching

3. Using sufficient statistics to guide model building

- ▶ Two benchmark models in international macro:
 - 1. T/NT model (both produced, export and import only T)
 - 2. Armington model (produce and export one good, import another)

which one is the better benchmark to think about the paper's Q?

- ▶ Benefits of 1: depreciation affects incomes of workers in *T* vs *NT*
 - ► A lot of work has been about these distributional effects [Cugat, Drenik, Guo-Ottonello-Perez,...]
- Benefits of 2: richer pattern of expenditure switching
- ▶ **Suggestion 5**: use sufficient statistics to determine which to pick!
 - ▶ Limited evidence that composition of income varies across MPCs
 - \triangleright So, maybe T/NT margin isn't important for aggregate C?

4. Improving the micro measurement

- MPCs are not observed directly, but inferred from balance sheets
 - ► Kaplan-Violante: MPC is high if liquid assets are low
- ► This could bias *Cov* (*MPC_i*, *Assets_i*) down

4. Improving the micro measurement

- ▶ MPCs are not observed directly, but inferred from balance sheets
 - Kaplan-Violante: MPC is high if liquid assets are low
- ► This could bias *Cov* (*MPC_i*, *Assets_i*) down
- ► Suggestion 6: exploit the panel component of the data to build alternative measures of MPCs (eg Blundell-Pistaferri-Preston)

Final words

- ► Great paper on an important topic!
- Sufficient statistic is key contribution
- Follow my suggestions to make this shine even more