Discussion of “Open economy, redistribution, and the aggregate impact of external shocks” by Haonan Zhou

Adrien Auclert

Stanford

Emerging and Frontier Markets Conference, Cartagena
May 10, 2022
Q: How is aggregate C affected by external shocks in EMs?

Focus on capital outflow (depreciation) shocks in Uruguay

Complete markets: C determined by international risk sharing + monetary policy response to depreciation (intertemp. substitution)

Incomplete markets: aggregate wealth effects also affect C. Quantitatively trivial because aggregate MPC is very low.

With heterogeneous agents: individual wealth effects matter!

1. Who gains and who loses from the depreciation?
 - Income: who works in the export sector?
 - Cost of living: who consumes imported goods?
 - Balance sheets: who has dollar assets, dollar debt?

2. How different are MPCs across the distribution of exposures?

Here: a sufficient statistic approach + a structural model to tackle this Q

Adrien Auclert (Stanford)

Discussion of Zhou (2022)

May 10, 2022
Q: How is aggregate C affected by external shocks in EMs?

- Focus on capital outflow (depreciation) shocks in Uruguay

Standard answers from representative agent models:

- Complete markets: C determined by international risk sharing + monetary policy response to depreciation (intertemp. substitution)

- Incomplete markets: aggregate wealth effects also affect C. Quantitatively trivial because aggregate MPC is very low.
Q: How is aggregate C affected by external shocks in EMs?

Focus on capital outflow (depreciation) shocks in Uruguay

Standard answers from representative agent models:

- Complete markets: C determined by international risk sharing + monetary policy response to depreciation (intertemp. substitution)
- Incomplete markets: aggregate wealth effects also affect C. Quantitatively trivial because aggregate MPC is very low.

With heterogeneous agents: individual wealth effects matter!

1. Who gains and who loses from the depreciation?
 - Income: who works in the export sector?
 - Cost of living: who consumes imported goods?
 - Balance sheets: who has dollar assets, dollar debt?

2. How different are MPCs across the distribution of exposures?
Q: How is aggregate C affected by external shocks in EMs?

- Focus on capital outflow (depreciation) shocks in Uruguay

Standard answers from **representative agent** models:

- Complete markets: C determined by international risk sharing + monetary policy response to depreciation (intertemp. substitution)
- Incomplete markets: *aggregate* wealth effects also affect C. Quantitatively trivial because aggregate MPC is very low.

With **heterogeneous agents**: *individual* wealth effects matter!

1. Who gains and who loses from the depreciation?
 - Income: who works in the export sector?
 - Cost of living: who consumes imported goods?
 - Balance sheets: who has dollar assets, dollar debt?

2. How different are MPCs across the distribution of exposures?

Here: a sufficient statistic approach + a structural model to tackle this Q
The paper’s approach

1. Derive general sufficient statistics for the response of aggregate spending to one-time depreciation
2. Compute these statistics in the data
3. Guided by qualitative findings, set up a state-of-the art HANK model
4. Compare sufficient statistics in data vs model steady state
5. Conduct full counterfactual in model
The paper’s approach

1. Derive general sufficient statistics for the response of aggregate spending to one-time depreciation
2. Compute these statistics in the data
3. Guided by qualitative findings, set up a state-of-the art HANK model
4. Compare sufficient statistics in data vs model steady state
5. Conduct full counterfactual in model

The gold standard of heterogeneous-agent macro research.
Main findings

1. Baseline model: devaluations are contractionary for aggregate C
Main findings

1. Baseline model: devaluations are contractionary for aggregate C

2. Valuation effects from dollar balance sheets ("FC Fisher channel") matters quantitatively, but not qualitatively, for this result

 - Directly driven by data: rich (low MPC) own dollar assets, poor (high MPC) own dollar liabilities, covariance negative but not huge

<table>
<thead>
<tr>
<th>Variable/Statistic</th>
<th>Baseline</th>
<th>No illiquid dollar</th>
<th>High dollar liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate dollar wealth</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
</tr>
<tr>
<td>$\text{Cov}(MPC_{i,b}, \text{Liquid Saving}_i^$)$</td>
<td>-0.137</td>
<td>-0.085</td>
<td>-0.472</td>
</tr>
<tr>
<td>$\text{Cov}(MPC_{i,a}, \text{Illiquid Debt}_i^$)$</td>
<td>0.003</td>
<td>0</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Time-0 deviation from steady state (bps):

- Consumption (C) -25.93 -22.82 -48.02
Main findings

1. Baseline model: devaluations are contractionary for aggregate C

2. Valuation effects from dollar balance sheets ("FC Fisher channel") matters quantitatively, but not qualitatively, for this result

- Directly driven by data: rich (low MPC) own dollar assets, poor (high MPC) own dollar liabilities, covariance negative but not huge

<table>
<thead>
<tr>
<th>Variable/Statistic</th>
<th>Baseline</th>
<th>No illiquid dollar</th>
<th>High dollar liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate dollar wealth</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
</tr>
<tr>
<td>Cov($MPC_{i,b}$, Liquid Saving$_x$$S$)</td>
<td>-0.137</td>
<td>-0.085</td>
<td>-0.472</td>
</tr>
<tr>
<td>Cov($MPC_{i,a}$, Illiquid Debt$_x$$S$)</td>
<td>0.003</td>
<td>0</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Time-0 deviation from steady state (bps):

- Consumption (C): -25.93, -22.82, -48.02

- With Hungarian-type balance sheets, contraction in C much worse
- Relative to de Ferra-Mitman-Romei: “Uruguay is not Hungary”
Main findings

1. Baseline model: devaluations are contractionary for aggregate C

2. Valuation effects from dollar balance sheets (“FC Fisher channel”) matters quantitatively, but not qualitatively, for this result
 - Directly driven by data: rich (low MPC) own dollar assets, poor (high MPC) own dollar liabilities, covariance negative but not huge

Variable/Statistic	Baseline	No illiquid dollar	High dollar liability
Aggregate dollar wealth	0.220	0.220	0.220
$\text{Cov}(MPC_{i,b}, \text{Liquid Saving}_t^\$)$	-0.137	-0.085	-0.472
$\text{Cov}(MPC_{i,a}, \text{Illiquid Debt}_t^\$)$	0.003	0	0.020

 - With Hungarian-type balance sheets, contraction in C much worse
 - Relative to de Ferra-Mitman-Romei: “Uruguay is not Hungary”

3. Unequal consumption baskets are essentially irrelevant
 - Similar to Auclert-Rognlie-Souchier-Straub; less directly tied to data
Great approach to a very important question!

- Wealth effects on household balance sheets can clearly be relevant, largely ignored by the international macro literature to date.
- Evaluating their importance requires micro data + model.
My assessment

- Great approach to a very important question!
 - Wealth effects on household balance sheets can clearly be relevant, largely ignored by the international macro literature to date
 - Evaluating their importance requires micro data + model

- Literature on this topic has become a little crowded recently
 [de-Ferra-Mitman-Romei, Cugat, Oskolkov, Auclert-Rognlie-Souchier-Straub, Guo-Ottonello-Perez, Hong, Ferrante-Gornemann,...]
 - Unique to the paper: sufficient statistic approach
 - My discussion: how to build on this strength
Outline

1. Is the aggregate contraction surprising?
2. Broadening the sufficient statistic result
3. Using this to guide model building
4. Improving the micro measurement
1. Is the aggregate contraction surprising?

➤ Paper considers shocks to capital outflows, $i^*_t \uparrow$

➤ Headline result: RER depreciates, non-tradable consumption falls

➤ Could this be due to the monetary policy rule?

➤ **Suggestion 1**: benchmark this against the rep agent response
Rep agent benchmark

- Consider the rep agent, complete market version of this model
- How does shock to d_{it}^* affect non-tradable spending?
Rep agent benchmark

- Consider the rep agent, complete market version of this model
- How does shock to d_i^* affect non-tradable spending?
- Let $R_t^* = \sum_{s \geq 0} d_i^{*s}$ and $R_t = \sum_{s \geq 0} d_r^{ts}$ be long rate response. Can show:
 \[
 \hat{c}_t = -\frac{1}{\sigma} R_t \\
 \hat{q}_t = R_t^* - R_t \\
 \hat{c}_{Nt} = \alpha \eta \hat{q}_t + \hat{c}_t
 \]
Rep agent benchmark

- Consider the rep agent, complete market version of this model
- How does shock to d_i^* affect non-tradable spending?
- Let $R^*_t = \sum_{s \geq 0} d_{i+s}^*$ and $R_t = \sum_{s \geq 0} d_{r+s}$ be long rate response. Can show:

$$
\hat{c}_t = \frac{1}{\sigma} R_t \\
\hat{q}_t = R^*_t - R_t \\
\hat{c}_{Nt} = \alpha \eta \hat{q}_t + \hat{c}_t
$$

- Suppose monetary response is $R_t = \gamma R^*_t$ then

$$
\hat{c}_{Nt} = \left(\alpha \eta \left(1 - \gamma \right) - \frac{\gamma}{\sigma} \right) R^*_t
$$

in paper $\frac{1}{\sigma} = 0.5$, $\alpha = 0.4$, $\eta = 0.5$, so $R^*_t \uparrow \implies \hat{c}_{Nt} \downarrow$ whenever

$$
\gamma \geq \frac{\alpha \eta}{\alpha \eta + 1/\sigma} \approx 0.26
$$
Role of expenditure switching

- Upshot: low expenditure switching elasticity (η) and more aggressive mp response (γ) make contractionary devaluation more likely
- Paper has a limited discussion of γ, but essentially no mention of η
- Prop 1 is derived under $\eta = 1$, quantitative model uses $\eta = 0.5$
Role of expenditure switching

- Upshot: low expenditure switching elasticity (η) and more aggressive mp response (γ) make contractionary devaluation more likely
- Paper has a limited discussion of γ, but essentially no mention of η
- Prop 1 is derived under $\eta = 1$, quantitative model uses $\eta = 0.5$
- **Suggestion 2**: expand the sufficient statistic result beyond $\eta = 1$
- **Suggestion 3**: discuss the range of outcomes as a function of η, γ
Role of expenditure switching

▶ Upshot: low expenditure switching elasticity (η) and more aggressive mp response (γ) make contractionary devaluation more likely

▶ Paper has a limited discussion of γ, but essentially no mention of η

▶ Prop 1 is derived under $\eta = 1$, quantitative model uses $\eta = 0.5$

▶ Suggestion 2: expand the sufficient statistic result beyond $\eta = 1$

▶ Suggestion 3: discuss the range of outcomes as a function of η, γ

▶ No agreement that capital outflow shocks are contractionary, both data and central bank polls point in different directions

▶ Not clear that η is a structural parameter (e.g. short vs long-run)

▶ Main result that FC Fisher channel pulls down spending will survive irrespective of the sign of the baseline level effect
2. Broadening the sufficient statistic result

- Two more aspects of Prop 1 surprised me:

1. Sufficient statistics for nonhomotheticity effect is derived as

\[\text{Cov} \left(\text{MPC}_i, \text{ TradableExpenditure}_i \right) \quad (< 0) \]

This covariance mixes level and share effects. Would have expected:

\[\text{Cov} \left(\text{MPC}_i, \text{ TradableShare}_i \right) \quad (> 0) \]
2. Broadening the sufficient statistic result

- Two more aspects of Prop 1 surprised me:

1. Sufficient statistics for nonhomotheticity effect is derived as

 \[\text{Cov} (\text{MPC}_i, \text{ TradableExpenditure}_i) \quad (> 0) \]

 This covariance mixes level and share effects. Would have expected:

 \[\text{Cov} (\text{MPC}_i, \text{ TradableShare}_i) \quad (< 0) \]

2. No term for “real income effect” (terms of trade effect)

 - Overall consumption \(p \) vs production \(p \) changes in depreciation
 - This can be quantitatively important, see Auclert et al
2. Broadening the sufficient statistic result

- Two more aspects of Prop 1 surprised me:

1. Sufficient statistics for nonhomotheticity effect is derived as

 \[\text{Cov} (\text{MPC}_i, \text{ TradableExpenditure}_i) \quad (<0) \]

 This covariance mixes level and share effects. Would have expected:

 \[\text{Cov} (\text{MPC}_i, \text{ TradableShare}_i) \quad (>0) \]

2. No term for “real income effect” (terms of trade effect)

 - Overall consumption \(p \) vs production \(p \) changes in depreciation
 - This can be quantitatively important, see Auclert et al

Suggestion 4: rewrite proposition to make both terms appear
2. Broadening the sufficient statistic result

- Two more aspects of Prop 1 surprised me:

1. Sufficient statistics for nonhomotheticity effect is derived as

 \[\text{Cov} \left(MPC_i, \text{ TradableExpenditure}_i \right) \quad (< 0) \]

 This covariance mixes level and share effects. Would have expected:

 \[\text{Cov} \left(MPC_i, \text{ TradableShare}_i \right) \quad (> 0) \]

2. No term for “real income effect” (terms of trade effect)
 - Overall consumption \(p \) vs production \(p \) changes in depreciation
 - This can be quantitatively important, see Auclert et al

Suggestion 4: rewrite proposition to make both terms appear

- Side note: is the dynamic solution to the nonhomothetic model correct? The price index (so real rate) differs across agents.
3. Using sufficient statistics to guide model building

▶ Two benchmark models in international macro:

1. T/NT model (both produced, export and import only T)
2. Armington model (produce and export one good, import another)

which one is the better benchmark to think about the paper’s Q?
3. Using sufficient statistics to guide model building

- Two benchmark models in international macro:
 1. T/NT model (both produced, export and import only T)
 2. Armington model (produce and export one good, import another)

Which one is the better benchmark to think about the paper’s Q?

- Benefits of 1: depreciation affects incomes of workers in T vs NT
 - A lot of work has been about these distributional effects
 - [Cugat, Drenik, Guo-Ottonello-Perez,...]

- Benefits of 2: richer pattern of expenditure switching
3. Using sufficient statistics to guide model building

- Two benchmark models in international macro:
 1. T/NT model (both produced, export and import only T)
 2. Armington model (produce and export one good, import another)

 Which one is the better benchmark to think about the paper’s Q?

 - Benefits of 1: depreciation affects incomes of workers in T vs NT
 - A lot of work has been about these distributional effects
 [Cugat, Drenik, Guo-Ottonello-Perez,...]

 - Benefits of 2: richer pattern of expenditure switching

 - **Suggestion 5**: use sufficient statistics to determine which to pick!
 - Limited evidence that composition of income varies across MPCs
 - So, maybe T/NT margin isn’t important for aggregate C?
4. Improving the micro measurement

- MPCs are not observed directly, but inferred from balance sheets
 - Kaplan-Violante: MPC is high if liquid assets are low
- This could bias $\text{Cov} (MPC_i, Assets_i)$ down
4. Improving the micro measurement

- MPCs are not observed directly, but inferred from balance sheets
 - Kaplan-Violante: MPC is high if liquid assets are low

- This could bias $\text{Cov}(MPC_i, Assets_i)$ down

- **Suggestion 6**: exploit the panel component of the data to build alternative measures of MPCs (eg Blundell-Pistaferri-Preston)
Final words

- Great paper on an important topic!
- Sufficient statistic is key contribution
- Follow my suggestions to make this shine even more