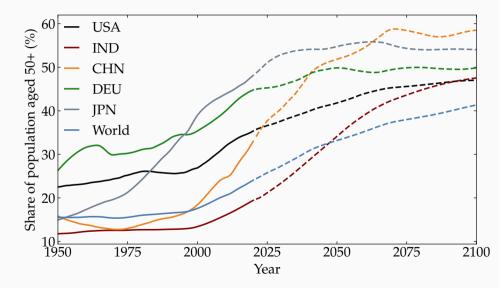
Demographics, Wealth, and Global Imbalances in the Twenty-First Century

Adrien Auclert, Hannes Malmberg, Frédéric Martenet and Matthew Rognlie

Harvard, December 2023

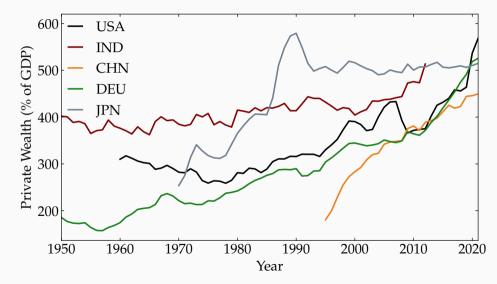
The world population is aging...

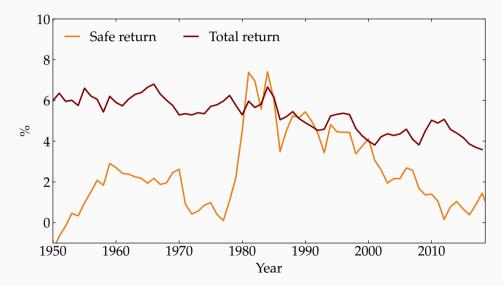


2

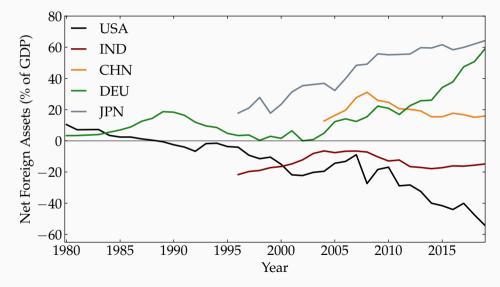
▶ 65+

...wealth-to-GDP ratios are increasing...





...and "global imbalances" are rising



- Broad agreement that population ageing has contributed to historical trends in *W*/Y, real returns (*r*), and *NFA* imbalances
 - Why? An aging population saves more, and aging is uneven across countries

- Broad agreement that population ageing has contributed to historical trends in *W*/Y, real returns (*r*), and *NFA* imbalances
 - Why? An aging population saves more, and aging is uneven across countries
- Much less agreement about how much

- Broad agreement that population ageing has contributed to historical trends in *W*/*Y*, real returns (*r*), and *NFA* imbalances
 - Why? An aging population saves more, and aging is uneven across countries
- Much less agreement about how much: Δr for 1970-2015 is
 - > –100bp in Gagnon-Johannsen-Lopez-Salido 2021
 - < -300bp in Eggertsson-Mehrotra-Robbins 2019

- Broad agreement that population ageing has contributed to historical trends in *W*/*Y*, real returns (*r*), and *NFA* imbalances
 - Why? An aging population saves more, and aging is uneven across countries
- Much less agreement about how much: Δr for 1970-2015 is
 - > –100bp in Gagnon-Johannsen-Lopez-Salido 2021
 - < -300bp in Eggertsson-Mehrotra-Robbins 2019
- **Q**: what will happen going forward?
 - Critical for current debate on monetary policy normalization

- Broad agreement that population ageing has contributed to historical trends in *W*/*Y*, real returns (*r*), and *NFA* imbalances
 - Why? An aging population saves more, and aging is uneven across countries
- Much less agreement about how much: Δr for 1970-2015 is

> -100bp in Gagnon-Johannsen-Lopez-Salido 2021

- < -300bp in Eggertsson-Mehrotra-Robbins 2019
- **Q**: what will happen going forward?
 - Critical for current debate on monetary policy normalization
- Influential view that these trends will revert:

"Once people have aged and they're retiring, then they draw down their savings and spend. And so I think we're making a transition from more saving because of ageing, to less saving because ageing has happened." [Larry Summers, April 2023]

- Broad agreement that population ageing has contributed to historical trends in W/Y, real returns (r), and NFA imbalances
 - Why? An aging population saves more, and aging is uneven across countries
- Much less agreement about how much: Δr for 1970-2015 is

> -100bp in Gagnon-Johannsen-Lopez-Salido 2021

- < -300bp in Eggertsson-Mehrotra-Robbins 2019
- **Q**: what will happen going forward?
 - Critical for current debate on monetary policy normalization
- Influential view that these trends will revert:

"Once people have aged and they're retiring, then they draw down their savings and spend. And so I think we're making a transition from more saving because of ageing, to less saving because ageing has happened." [Larry Summers, April 2023]

"great demographic reversal" hypothesis

[Goodhart-Pradhan 2020]

In a baseline multi-country GE overlapping generations (OLG) model, the effect of demographic change on W/Y, r and NFA depends **only** on:

- 1. Age profiles of wealth, labor income, and consumption
- 2. Demographic projections
- 3. The elasticity of intertemporal substitution σ
- 4. The elasticity of substitution between capital and labor η

This provides a framework for measurement, which we implement

In a baseline multi-country GE overlapping generations (OLG) model, the effect of demographic change on W/Y, r and NFA depends **only** on:

- 1. Age profiles of wealth, labor income, and consumption
- 2. Demographic projections
- 3. The elasticity of intertemporal substitution σ
- 4. The elasticity of substitution between capital and labor η

This provides a framework for measurement, which we implement

- ightarrow Confirm that demographics has pushed down r^* to date
- ightarrow Soundly reject the great demographic reversal hypothesis

In a baseline multi-country GE overlapping generations (OLG) model, the effect of demographic change on W/Y, r and NFA depends **only** on:

- 1. Age profiles of wealth, labor income, and consumption
- 2. Demographic projections
- 3. The elasticity of intertemporal substitution σ
- 4. The elasticity of substitution between capital and labor η

This provides a framework for measurement, which we implement

- ightarrow Confirm that demographics has pushed down r^* to date
- ightarrow Soundly reject the great demographic reversal hypothesis

Conclusions are robust to quantitative simulations of richer model

A bridge between reduced-form and structural approaches

- Existing literature follows two broad approaches:
- 1. Reduced-form, based on shift-share exercises
 - Projected asset demand [Poterba 2001, Mankiw-Weil 1989], projected savings rates [Summers-Carroll 1987, Auerbach-Kotlikoff 1990, Mian-Straub-Sufi 2021...]
 - Projected labor supply [Cutler et al 1990], demographic dividend lit. [Bloom-Canning-Sevilla 2003...]
- 2. Structural, based on fully specified GE OLG models
 - Demographics and wealth + social security [Auerbach Kotlikoff 1987, imrohoroğlu-İmrohoroğlu-Joines 1995, De Nardi-İmrohoroğlu-Sargent 2001, Abel 2003, Geanakoplos-Magill-Quinzii 2004, Kitao 2014...]
 - Demographics and interest rates [Carvalho-Ferrero-Necchio 2016, Gagnon-Johannsen-Lopez Salido 2016, Eggertsson-Mehrotra-Robbins 2019, Lisack-Sajedi-Thwaites 2017, Jones 2018, Papetti 2019, Rachel-Summers 2019...]
 - Demographics and capital flows [Henriksen 2002, Domeij-Flodén 2006, Börsch-Supan-Ludwig-Winter 2006, Krueger-Ludwig 2007, Backus-Cooley -Henriksen 2014, Bárány-Coeurdacier-Guibaud 2019, Sposi 2021...]
- Sufficient statistic approach bridges the gap between both

Baseline model

OLG model, demographic change + multiple countries facing $\{r_t\}$

OLG model, demographic change + multiple countries facing $\{r_t\}$

Demographics [drop country subscripts]

- Exogenous, time-varying sequence of births Not
- Exogenous, constant sequence of mortality rates ϕ_i Mortality contribution
- No migration

OLG model, demographic change + multiple countries facing $\{r_t\}$

Demographics [drop country subscripts]

- Exogenous, time-varying sequence of births Not
- Exogenous, constant sequence of mortality rates ϕ_i Mortality contribution
- No migration

Production

- Aggregate production fn with capital and effective labor, elasticity of substitution η
- Constant growth rate of labor-augmenting technology γ
- Perfect competition, free capital adjustment

OLG model, demographic change + multiple countries facing $\{r_t\}$

Demographics [drop country subscripts]

- Exogenous, time-varying sequence of births Not
- Exogenous, constant sequence of mortality rates ϕ_j Mortality contribution
- No migration

Production

- Aggregate production fn with capital and effective labor, elasticity of substitution η
- Constant growth rate of labor-augmenting technology γ
- Perfect competition, free capital adjustment

Government

• Flow budget constraint

$$G_t + w_t \sum_{j=0}^T N_{jt} \mathbb{E}tr_j + (1+r_t)B_t = \tau w_t \sum_{j=0}^T N_{jt} \mathbb{E}\ell_j + B_{t+1},$$

• Balance budget by changing G_t , not τ_t or tr_{jt} , to keep $B_t/Y_t \equiv \mathrm{cst}$

Environment: heterogeneous agents

Problem for **heterogeneous agents** of cohort *k* (age $j \equiv t - k$):

$$\begin{aligned} \max \quad \mathbb{E}_{k} \left[\sum_{j} \beta_{j} \Phi_{j} \frac{c_{jt}^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}} \right] \\ \text{s.t.} \quad c_{jt} + \phi_{j} a_{j+1,t+1} \leq w_{t} ((1-\tau)\ell(z_{jt}) + tr(z^{jt})) + (1+r_{t})a_{jt} \\ a_{j+1,t+1} \geq -\underline{a} (1+\gamma)^{t} \end{aligned}$$

- $\sigma \equiv$ elasticity of intertemporal substitution
- β_j : age-specific discount rate
- Φ_j : survival probability by age ($\Phi_j = \prod_j \phi_j$)
- $\ell(z_{jt})$: risky labor supply driven by arbitrary stochastic process z_t
- τ , *tr*(*z*^{*j*t}): taxes and (state-contingent) government transfers
- *a_{jt}*: annuity holdings

Environment: heterogeneous agents

Problem for **heterogeneous agents** of cohort *k* (age $j \equiv t - k$):

$$\begin{aligned} \max \quad \mathbb{E}_{k} \left[\sum_{j} \beta_{j} \Phi_{j} \frac{c_{jt}^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}} \right] \\ \text{s.t.} \quad c_{jt} + \phi_{j} a_{j+1,t+1} \leq w_{t} ((1-\tau)\ell(z_{jt}) + tr(z^{jt})) + (1+r_{t})a_{jt} \\ a_{j+1,t+1} \geq -\underline{a} (1+\gamma)^{t} \end{aligned}$$

- $\sigma \equiv$ elasticity of intertemporal substitution
- β_j : age-specific discount rate
- Φ_j : survival probability by age ($\Phi_j = \prod_j \phi_j$)
- $\ell(z_{jt})$: risky labor supply driven by arbitrary stochastic process z_t
- τ , *tr*(*z*^{*j*t}): taxes and (state-contingent) government transfers
- *a_{jt}*: annuity holdings

Given demographics and policy, in an integrated world equilibrium:

- Individuals optimize
- Firms optimize
- Global asset markets clear

$$\sum_{c} \underbrace{N_{t}^{c} \mathbb{E} a_{jt}^{c}}_{W_{t}^{c}} = \sum_{c} \left(K_{t}^{c} + B_{t}^{c}\right) \quad \forall t$$

Given demographics and policy, in an integrated world equilibrium:

- Individuals optimize
- Firms optimize
- Global asset markets clear

$$\sum_{c} \underbrace{N_{t}^{c} \mathbb{E} a_{jt}^{c}}_{W_{t}^{c}} = \sum_{c} \left(K_{t}^{c} + B_{t}^{c}\right) \quad \forall t$$

Next: consider small country aging alone, with rest of world at steady state \rightarrow *r* constant (will adjust later)

Compositional effects as sufficient statistics

Proposition

The wealth-to-GDP ratio of a small country aging alone with constant r and γ follows

$$rac{W_t}{Y_t} \propto rac{\sum_j \pi_{jt} a_{jo}}{\sum_j \pi_{jt} h_{jo}}$$

where $a_{jo} \equiv \mathbb{E}a_{j,o}$ and $h_{jo} = \mathbb{E}w_o \ell_{j,o}$ are average initial asset holdings and pretax labor income by age, and $\pi_{jt} = N_{jt}/N_t$ is the share of the population of age j.

Compositional effects as sufficient statistics

Proposition

The wealth-to-GDP ratio of a small country aging alone with constant r and γ follows

$$rac{W_t}{Y_t} \propto rac{\sum_j \pi_{jt} a_{j ext{o}}}{\sum_j \pi_{jt} h_{j ext{o}}}$$

where $a_{jo} \equiv \mathbb{E}a_{j,o}$ and $h_{jo} = \mathbb{E}w_o\ell_{j,o}$ are average initial asset holdings and pretax labor income by age, and $\pi_{jt} = N_{jt}/N_t$ is the share of the population of age j.

 \Rightarrow change in log wealth to GDP ratio:

$$\log\left(\frac{W_{t}}{Y_{t}}\right) - \log\left(\frac{W_{o}}{Y_{o}}\right) = \log\left(\frac{\sum_{j} \pi_{jt} a_{jo}}{\sum_{j} \pi_{jt} h_{jo}}\right) - \log\left(\frac{\sum_{j} \pi_{jo} a_{jo}}{\sum_{j} \pi_{jo} h_{jo}}\right) \equiv \Delta_{t}^{comp}$$

measurable from demographic projections and household surveys

Compositional effects as sufficient statistics

Proposition

The wealth-to-GDP ratio of a small country aging alone with constant r and γ follows

$$rac{W_t}{Y_t} \propto rac{\sum_j \pi_{jt} a_{j ext{o}}}{\sum_j \pi_{jt} h_{j ext{o}}}$$

where $a_{jo} \equiv \mathbb{E}a_{j,o}$ and $h_{jo} = \mathbb{E}w_o\ell_{j,o}$ are average initial asset holdings and pretax labor income by age, and $\pi_{jt} = N_{jt}/N_t$ is the share of the population of age j.

 \Rightarrow change in log wealth to GDP ratio:

$$\log\left(\frac{W_{t}}{Y_{t}}\right) - \log\left(\frac{W_{o}}{Y_{o}}\right) = \log\left(\frac{\sum_{j} \pi_{jt} a_{jo}}{\sum_{j} \pi_{jt} h_{jo}}\right) - \log\left(\frac{\sum_{j} \pi_{jo} a_{jo}}{\sum_{j} \pi_{jo} h_{jo}}\right) \equiv \Delta_{t}^{comp}$$

measurable from demographic projections and household surveys

Why? Demographics do not affect individual decisions, just their aggregation

Measuring compositional effects

Measuring Δ^{comp}

• Calculate Δ_t^{comp} for 25 countries:

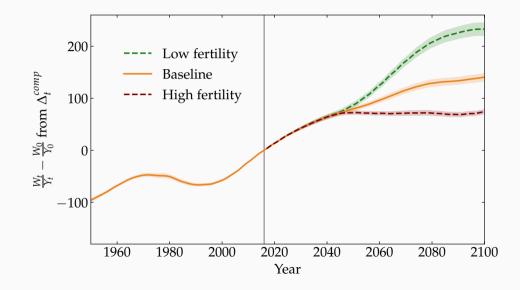
$$\Delta_t^{comp} \equiv \log\left(\frac{\sum \pi_{jt} \boldsymbol{a_{jo}}}{\sum \pi_{jt} \boldsymbol{h_{jo}}}\right) - \log\left(\frac{\sum \pi_{jo} \boldsymbol{a_{jo}}}{\sum \pi_{jo} \boldsymbol{h_{jo}}}\right)$$

- Data:
 - π_{jt} : projections of age distributions over individuals

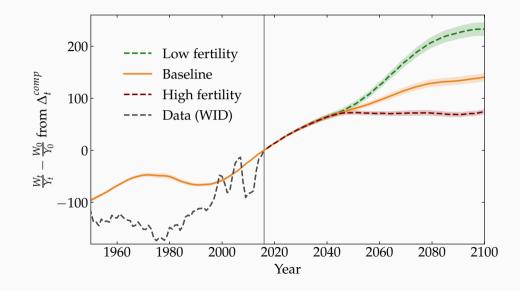
2019 UN World Population Prospects

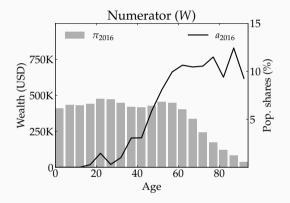
- a_{jo} , h_{jo} age-wealth and labor income profiles in base year For US: SCF, LIS/CPS, and Sabelhaus-Henriques Volz (2019) a_{jo} includes funded part of DB pensions Household \rightarrow individual (*j*) by splitting wealth among adults
- Report implied level change $\frac{W_t}{Y_t} \frac{W_o}{Y_o} = \frac{W_o}{Y_o} \left(\exp \left\{ \Delta_t^{comp} \right\} 1 \right)$

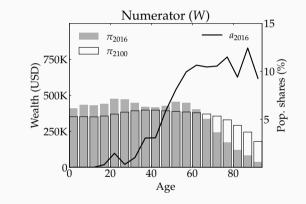
Δ^{comp} in the United States: 1950-2100 (base year: 2016)



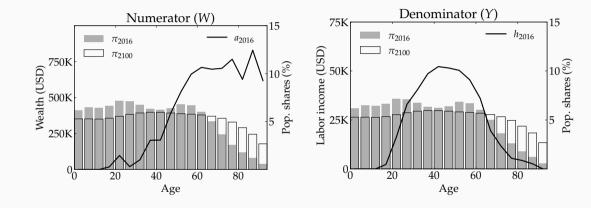
Δ^{comp} in the United States: 1950-2100 (base year: 2016)



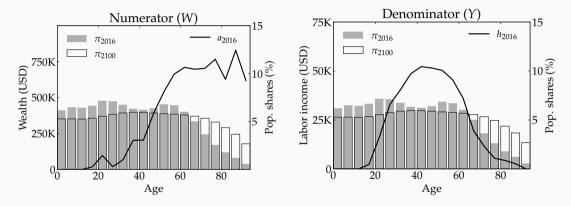




Where do these large effects come from?

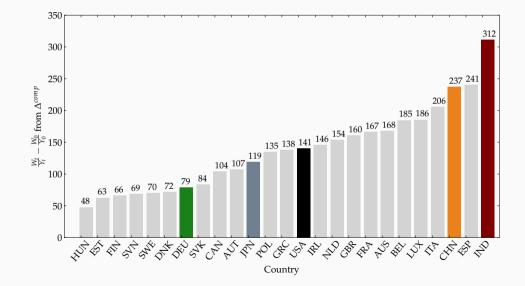


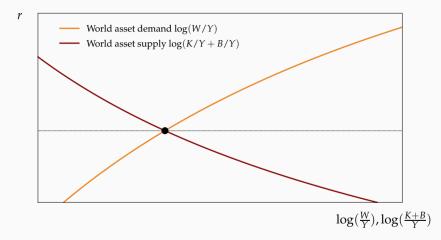
Where do these large effects come from?



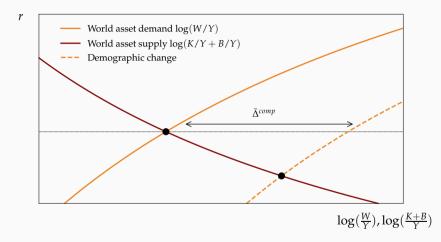
- In paper: separate contribution of numerator and denominator
- Going forward: W contributes \sim 2/3, Y contributes \sim 1/3
 - Historically demographic dividend pushed Y up, reversed in 2010

Δ^{comp} large and heterogeneous by 2100

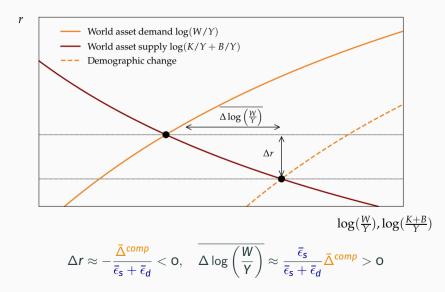


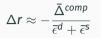


Semielasticity of asset demand $\bar{\epsilon}_d$: depends on σ , η and observables Semielasticity of asset supply $\bar{\epsilon}_s$: depends on η and observables



Asset demand shift of $\overline{\Delta}^{comp}$: wealth-weighted average of $\Delta^{comp,c}$ Large and positive in the data.





A. Change in world *r*

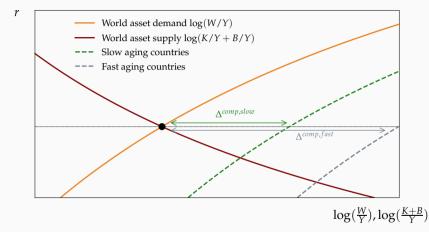
		σ					
η	0.25	0.50	1.00				
0.60	-3.03	-1.56	-0.79				
1.00	-2.00	-1.23	-0.70				
1.25	-1.65	-1.09	-0.65				

$$\overline{\Delta \log \left(rac{W}{Y}
ight)} pprox rac{ar{\epsilon}^{
m s}}{ar{\epsilon}^{
m d} + ar{\epsilon}^{
m s}} ar{\Delta}^{
m comp}$$

B. Change in avg. $\log W/Y$

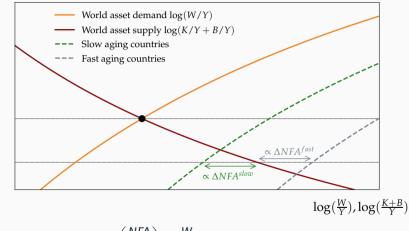
	σ					
η	0.25	0.50	1.00			
0.60	14.6	7.5	3.8			
1.00	16.0	9.9	5.6			
1.25	16.5	10.9	6.5			

• We'll tend to obtain very similar outcomes for same σ, η in general model



Country-specific shifts Δ^{comp} large and heterogeneous in data

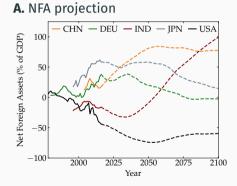
r



 $\Delta\left(\frac{\textit{NFA}}{\textit{Y}}\right) \approx \frac{\textit{W}_{o}}{\textit{Y}_{o}}\left(\Delta^{\textit{comp}} - \bar{\Delta}^{\textit{comp}}\right)$

Demeaned compositional effect and NFAs

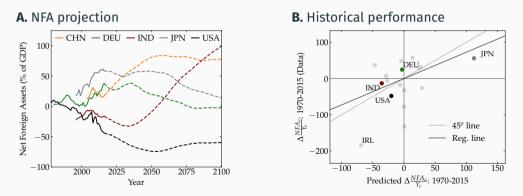
$$\Delta\left(\frac{NFA^{c}}{Y^{c}}\right) \simeq \frac{W_{o}^{c}}{Y_{o}^{c}}\left(\Delta_{t}^{c} - \bar{\Delta}_{comp}\right)$$



\rightarrow Data suggests large global imbalances for the 21st century

Demeaned compositional effect and NFAs

$$\Delta \left(\frac{\textit{NFA}^{c}}{\textit{Y}^{c}} \right) \simeq \frac{\textit{W}^{c}_{\textit{O}}}{\textit{Y}^{c}_{\textit{O}}} \left(\Delta^{c}_{t} - \bar{\Delta}_{\textit{comp}} \right)$$



ightarrow Data suggests large global imbalances for the 21st century

Quantitative model

Updated environment

Household problem becomes (with $\nu \geq \frac{1}{\sigma}$):

$$\max \mathbb{E}_{k} \sum_{j} \beta_{j} \Phi_{jk} \left[\frac{c_{jt}^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}} + \Upsilon Z_{t}^{\nu-\frac{1}{\sigma}} \left(1-\phi_{jt}\right) \frac{\left(a_{jt}\right)^{1-\nu}}{1-\nu} \right]$$

s.t. $c_{jt} + a_{j+1,t+1} \leq w_{t} \left((1-\tau_{t})\ell_{jt}(z_{j})(1-\rho_{jt}) + tr_{jt}(z_{j})\right) + (1+r_{t})a_{jt} + b_{jt}^{r}(z_{j})$
 $a_{j+1,t+1} \geq -\bar{a}Z_{t}$

- Introducing bequests rather than annuities:
 - assets become bequests at death, distributed as $b_{it}^r(z_j)$
- Time-variation in mortality Φ_{jk} , labor supply ℓ_{jt} , retirement age ρ_{jt}
- Fiscal rule with adjustments in taxes and transfers
- Income process with intergenerational persistence
- Migration

Robustness of conclusions: steady-state

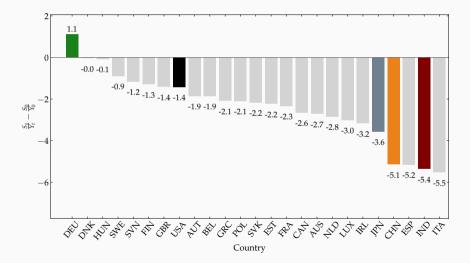
• Assume $\sigma = 0.5$, $\eta = 1$. Let $\overline{\Delta}^{\text{soe}} \equiv \text{response of } W/Y$ to demographics at fixed r.

	Δr	$\overline{\Delta \log \frac{W}{V}}$	⊼comp	⊼soe	Ēd	$\overline{\epsilon}^{S}$
Sufficient statistic analysis	-1.23	9.9	31.8		17.8	8.0
Preferred model specification	-1.23	10.3	34.1	30.3	17.1	8.0
Alternative model specifications						
+ Constant bequests	-1.18	10.0	34.1	27.0	14.9	8.0
+ Constant mortality	-1.23	10.9	34.1	27.1	13.8	8.0
+ Constant taxes and transfers	-1.33	11.9	34.1	30.1	14.5	8.0
+ Constant retirement age	-1.49	13.4	34.1	34.1	14.6	8.0
+ No income risk	-1.47	13.2	33.9	33.9	13.8	8.0
+ Annuities	-1.33	11.5	34.2	34.2	17.2	8.0
Alternative fiscal rules						
Only lower expenditures	-1.29	11.0	34.1	32.6	17.9	8.0
Only higher taxes	-0.88	6.7	34.1	19.4	14.6	8.0
Only lower benefits	-1.50	12.9	34.1	39.1	18.4	8.0

A great demographic reversal?

Worldwide: decreasing S_t/Y_t everywhere

• Perform same exercise, but projecting S/Y from composition



Declining r despite falling savings?

- Will dissaving of the old reverse the effects of demographics? [Lane 2020, Goodhart-Pradhan 2020, Mian-Straub-Sufi 2021, Summers 2023]
- Measured S_t/Y_t from composition does decline
- But: r does not increase

Declining r despite falling savings?

- Will dissaving of the old reverse the effects of demographics? [Lane 2020, Goodhart-Pradhan 2020, Mian-Straub-Sufi 2021, Summers 2023]
- Measured S_t/Y_t from composition does decline
- But: r does not increase
- Why? Savings is misleading with declining pop. growth. In steady state

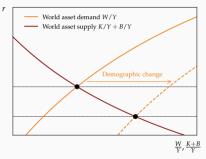
$$\frac{W}{Y} = \frac{S/Y}{g}$$

where g is GDP growth

• With demographic change, S/Y falls, but g falls by more!

Flows can give the wrong sign for the change in *r*!

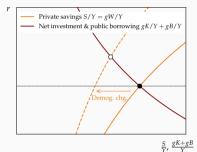
A. Asset demand vs supply



Flows can give the wrong sign for the change in r!

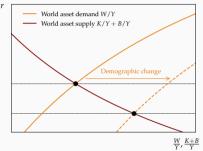
A. Asset demand vs supply r World asset demand W/Y World asset supply K/Y + B/Y Demographic change WK K+B W/Y + W/Y

B. Net savings vs investment

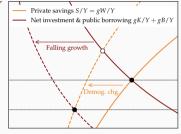


Flows can give the wrong sign for the change in *r*!

A. Asset demand vs supply



B. Net savings vs investment



 $\frac{S}{Y}, \frac{gK+gB}{Y}$

• How do demographics affect wealth-output ratios, real interest rates, capital flows?

 \rightarrow what matters most is the compositional effect $\Delta^{\textit{comp}}$

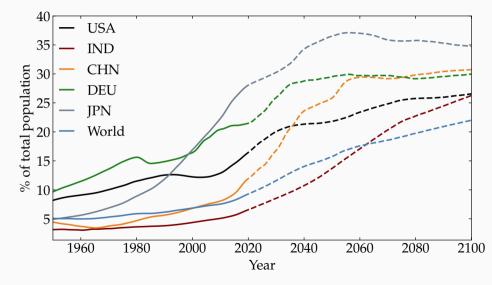
large and heterogeneous in the data

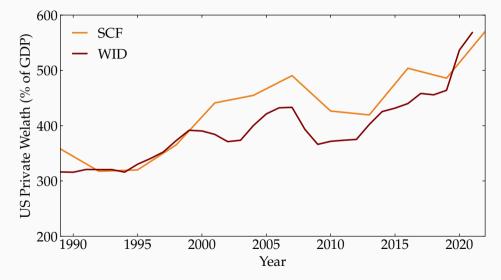
- For the 21st century, our approach:
 - Refutes great demographic reversal hypothesis: r definitively falls
 - Suggests the "global savings glut" has just begun

Thank you!

Additional slides

Share of the population aged 65+



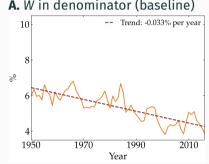


- Baseline safe return r_t^{safe} is 10 year constant maturity interest rate minus HP-filtered PCE deflator
- Baseline total return is

$$r_t = rac{(s_{\mathcal{K}} \mathbf{Y} - \delta \mathbf{K})_t + r_t^{safe} B_t}{W_t - NFA_t}$$

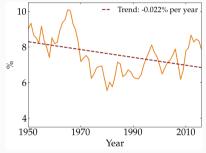
where $(s_K Y - \delta K)_t$ is net capital income

Calculating return: wealth or capital

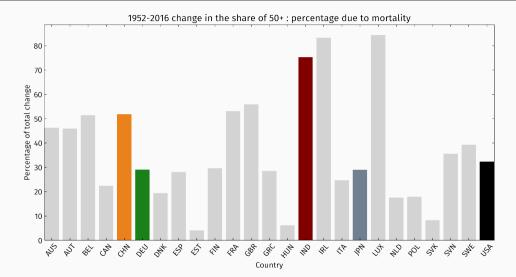


A. *W* in denominator (baseline)

B. *K* in denominator

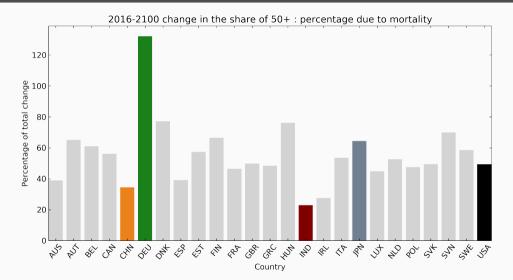


Contribution of mortality to aging since 1950s



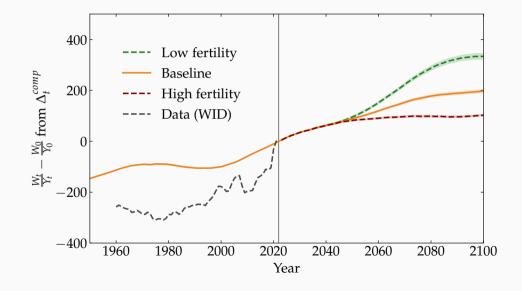
A Back

Contribution of mortality to aging in 21st century

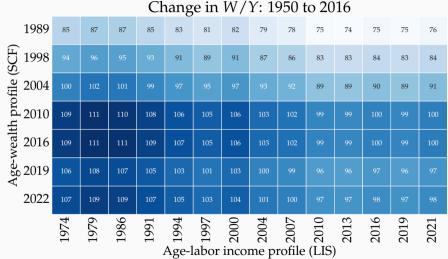


A Back

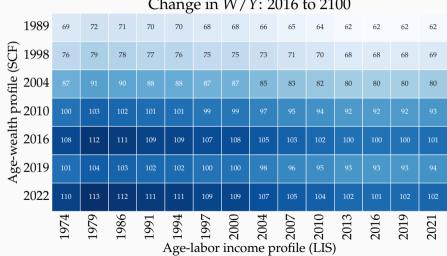
Δ^{comp} in the United States: 1950-2100 (base year: 2022)



Robustness to base year for age profiles (past)

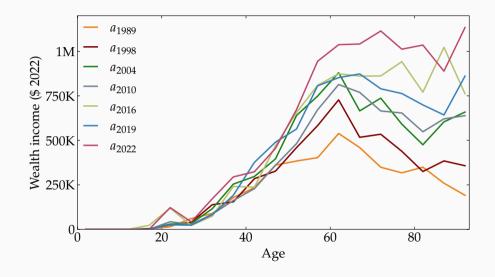


Robustness to base year for age profiles (future)

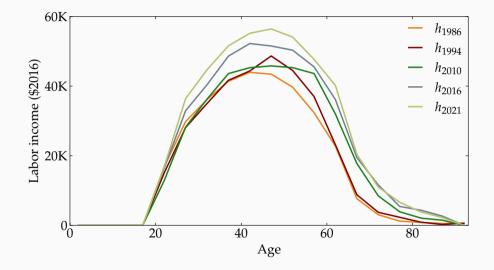


Change in *W*/*Y*: 2016 to 2100

Age-wealth profiles in the U.S.



Age-labor income profiles in the U.S.



Back

Semielasticities of asset demand and supply

• Asset supply elasticity $\epsilon^{s} \equiv \frac{\partial \log(A^{s}/Y)}{\partial r}$:

"how will bonds and capital change, relative to GDP, if steady-state r changes?"

• Given common capital-labor substitution elasticity η , average elasticity is

$$\bar{\epsilon}^{\rm s} = \frac{\eta}{r_{\rm o} + \delta} \overline{\left(\frac{K_{\rm o}}{W_{\rm o}}\right)}$$

 \rightarrow Measurable from observables and knowledge of η

Semielasticities of asset demand and supply

• Asset supply elasticity $\epsilon^{s} \equiv \frac{\partial \log(A^{s}/Y)}{\partial r}$:

"how will bonds and capital change, relative to GDP, if steady-state r changes?"

• Given common capital-labor substitution elasticity η , average elasticity is

$$\bar{\epsilon}^{\rm s} = \frac{\eta}{r_{\rm o} + \delta} \overline{\left(\frac{K_{\rm o}}{W_{\rm o}}\right)}$$

 \rightarrow Measurable from observables and knowledge of η

- - Hard to measure [Saez and Stantcheva 2018: "paucity of empirical estimates"]
 - **Result**: dropping idiosyncratic risk and borrowing constraint from model, **exact formula** for ϵ^d in terms of σ, η , and observables [numerically similar in quantitative model]

Semielasticities of asset demand and supply

• Asset supply elasticity $\epsilon^{s} \equiv \frac{\partial \log(A^{s}/Y)}{\partial r}$:

"how will bonds and capital change, relative to GDP, if steady-state r changes?"

• Given common capital-labor substitution elasticity η , average elasticity is

$$\bar{\epsilon}^{\rm s} = \frac{\eta}{r_{\rm o} + \delta} \overline{\left(\frac{K_{\rm o}}{W_{\rm o}}\right)}$$

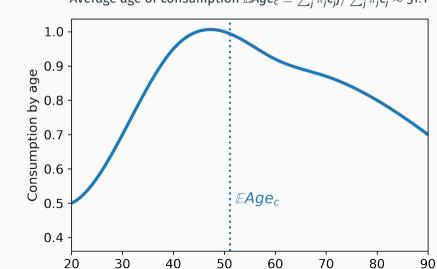
 \rightarrow Measurable from observables and knowledge of η

- - Hard to measure [Saez and Stantcheva 2018: "paucity of empirical estimates"]
 - **Result**: dropping idiosyncratic risk and borrowing constraint from model, **exact formula** for ϵ^d in terms of σ, η , and observables [numerically similar in quantitative model]

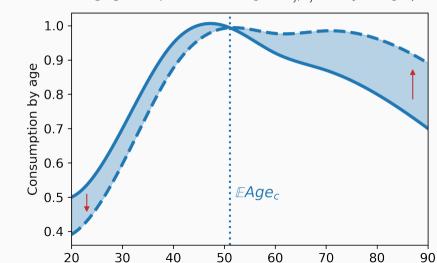
We'll separate **substitution** (via Euler equation) and **income** (via budget constraint) effects, and first derive for r = g = 0 and $\eta = 1$.



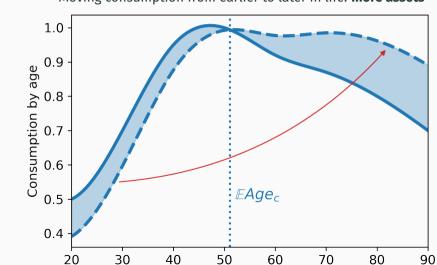
Start with arbitrary lifecycle consumption profile:



Average age of consumption $\mathbb{E}Age_c\equiv\sum_j\pi_jc_jj/\sum_j\pi_jc_jpprox$ 51.1

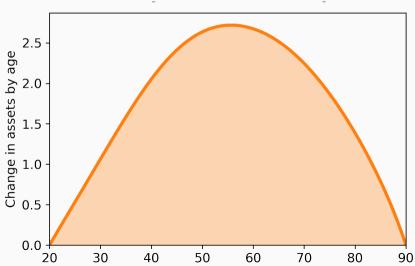


Changing *r* tilts path around $\mathbb{E}Age_c$: $dc_i/c_i = -\sigma(j - \mathbb{E}Age_c)dr$



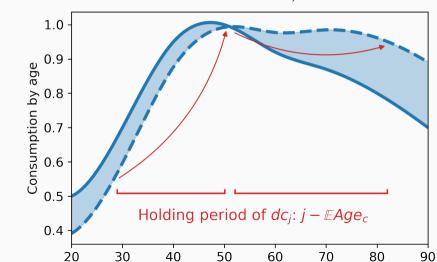
Moving consumption from earlier to later in life: more assets

Integrating implies perturbation to asset path



$$\pi_j da_j = -\int_j^J \pi_k dc_k$$
, and we want $dW = \int_j^J \pi_j da_j$

Decomposing overall effect on wealth



Age *j* "contribution" to assets: $dc_i \cdot (j - \mathbb{E}Age_c)$

Putting together contributions to wealth

Aggregating dc_j (extra savings held) times $j - \mathbb{E}Age_c$ (period held):

$$dW = \sum_{j} \pi_{j} dc_{j} (j - \mathbb{E}Age_{c}) = dr \sum_{j} \pi_{j} \sigma (j - \mathbb{E}Age_{c})c_{j} (j - \mathbb{E}Age_{c})$$
$$= \sigma dr \sum_{j} \pi_{j} c_{j} (j - \mathbb{E}Age_{c})^{2}$$
$$= \sigma C dr \underbrace{\sum_{j} \frac{\pi_{j} c_{j}}{C} (j - \mathbb{E}Age_{c})^{2}}_{= VarAge_{c}}$$

Putting together contributions to wealth

Aggregating dc_j (extra savings held) times $j - \mathbb{E}Age_c$ (period held):

$$dW = \sum_{j} \pi_{j} dc_{j} (j - \mathbb{E}Age_{c}) = dr \sum_{j} \pi_{j} \sigma (j - \mathbb{E}Age_{c})c_{j} (j - \mathbb{E}Age_{c})$$
$$= \sigma dr \sum_{j} \pi_{j} c_{j} (j - \mathbb{E}Age_{c})^{2}$$
$$= \sigma C dr \sum_{j} \frac{\pi_{j} c_{j}}{C} (j - \mathbb{E}Age_{c})^{2}$$

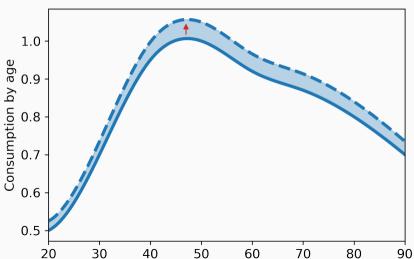
Log change from substitution effect therefore

$$\frac{dW}{W} = \sigma \frac{C}{W} \text{VarAge}_c dr$$

Note **linear** in EIS σ , **quadratic** in spread of consumption

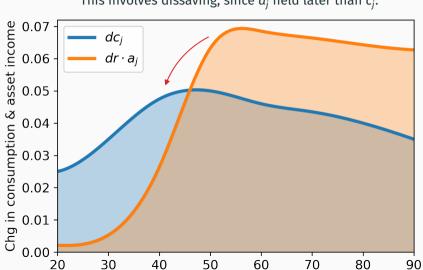
About 50 σ if C/W \approx 1/6 and consumption uniform from ages 20 to 80 (so VarAge_c = 300)

Income effect of *dr* on *c_i*: uniform proportional increase



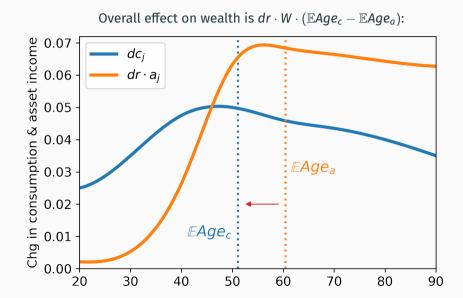
Higher asset income reallocated across all ages:

Increment to asset income vs. consumption



This involves dissaving, since a_i held later than c_i :

Increment to asset income vs. consumption



Overall semielasticity of asset demand:

$$\epsilon^{d} = \frac{\partial log(W/Y)}{\partial r} = \sigma \underbrace{\frac{C}{W} \text{VarAge}_{c}}_{\equiv \epsilon^{d}_{substitution}} + \underbrace{\mathbb{E}Age_{c} - \mathbb{E}Age_{a}}_{\equiv \epsilon^{d}_{income}}$$

Allowing $r = g \neq o$ identical except some 1 + r factors, general case close and has new term with labor share s_L :

$$\epsilon^{d} = \sigma \underbrace{\epsilon^{d}_{substitution}}_{\approx 39.5} + \underbrace{\epsilon^{d}_{income}}_{\approx -2} + (\eta - 1) \underbrace{\frac{(1 - s_{L})/s_{L}}{r + \delta}}_{\approx 5.5}$$

Now: calculate GE results for reasonable σ and η

Multiple assets

• Model demand for risky assets: households now solve

$$\max \quad \mathbb{E}_{k} \left[\sum_{j} \beta_{j} \Phi_{j} \frac{\left(c_{jt} - a_{jt} \mathbf{V}_{j}^{c}\left(\mathbf{S}_{jt}\right)\right)^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}} \right]$$
s.t.
$$c_{jt} + \phi_{j} a_{j+1,t+1} \leq W_{t}((1 - \tau)\ell(\mathbf{Z}_{jt}) + tr(\mathbf{Z}^{jt})) + (1 + r_{t}^{f} + \mathbf{S}_{jt}(\mathbf{r}_{t}^{r} - \mathbf{r}_{t}^{f}))a_{jt}$$

$$a_{j+1,t+1} \geq -\underline{a}(1 + \gamma)^{t}$$

where \mathbf{s}_{jt} is risky portfolio share of age *j*, and $\mathbf{v}_j(\mathbf{s}_{jt})$ is utility cost of bearing risk

$$v_j^{c}(s_{jt}) = \overline{r^{r} - r^{f}} \cdot (s_{jt} - \overline{s}_j^{c}) + \frac{1}{2\Psi}(s_{jt} - \overline{s}_j^{c})^2$$

• New FOC is:

$$s_{jt}^{c} = \bar{s}_{j}^{c} + \Psi\left(r_{t}^{r} - r_{t}^{f} - \overline{r^{r} - r^{f}}
ight)$$

• Now in addition to aggregate asset demand, must clear market for risky assets

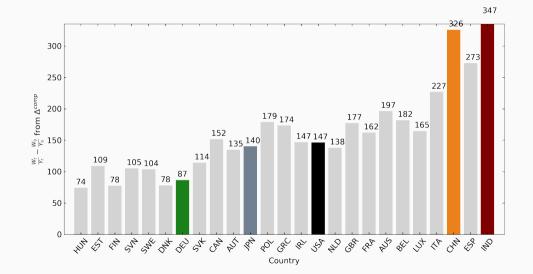
$$\sum_{c} \sum_{j} N_{jt}^{c} \mathbb{E} \left[s_{jt}^{c} a_{jt}^{c} \right] = \sum_{c} K_{t}^{c}$$

• Long-run adjustment in asset market:

$$\left(\begin{array}{c} \Delta r \\ \Delta r^r \end{array}\right) = \Sigma \cdot \left(\begin{array}{c} \Delta \log W / Y^{comp} \\ \Delta \log W^r / Y^{comp} \end{array}\right)$$

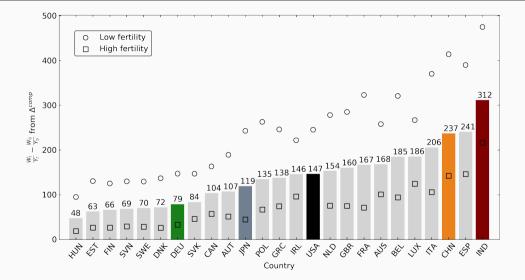
- New term: compositional effect on risky asset demand $\Delta \log W^r/Y^{comp}$
- Matrix of inverse elasticities Σ affected by Ψ
- Calibrate model as before + matching portfolio shares by age
- For small enough Ψ , predictions for Δr are close to baseline

Composition effect using common US age profiles

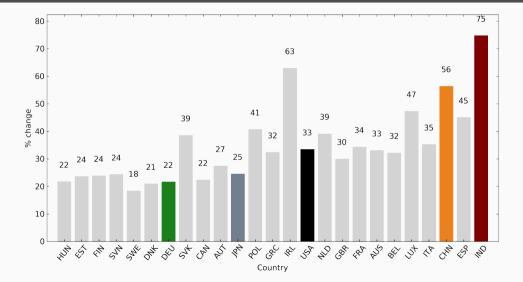


Back

Low and high fertility scenarios



Percentage change in W/Y from comp. effect



Validating the model: regressing $\Delta NFA/Y$ on predictors (1970-2015)

	OLS	WLS	OLS	WLS	OLS	WLS
Predicted $\Delta \frac{NFA}{Y}$	0.898	0.696	1.094	1.727	0.912	1.069
	(2.489)	(3.183)	(2.125)	(3.397)	(1.218)	(1.347)
Change in Debt-to-GDP			-0.068	-0.762	0.099	-0.730
			(-0.167)	(-2.105)	(0.132)	(-1.279)
Average TFP growth	83.029	59.880	84.846	89.511	97.551	67.197
	(2.068)	(1.564)	(1.782)	(2.139)	(1.415)	(0.978)
Average real GDP pc. growth	-78.630	3.549	-96.021	-17.656	-106.083	-4.194
	(-3.087)	(0.180)	(-3.463)	(-0.632)	(-2.479)	(-0.100)
Change in Gini					0.099	-0.730
					(0.132)	(-1.279)
Change in Top 10%					-622.507	580.584
t-stat.					(-0.329)	(0.286)
Ν	18	18	15	15	13	13
R ²	0.537	0.518	0.731	0.677	0.714	0.445
\overline{R}^2	0.437	0.415	0.623	0.548	0.427	-0.110

Validating the model: panel regression for NFA

$\frac{NFA_{ct}}{Y_{ct}} = \alpha_{c} + \delta_{t} + \beta \cdot \left(\frac{NFA_{ct}}{Y_{ct}}\right)^{pred} + \eta_{t} \cdot \text{Controls}_{ct} + \varepsilon_{ct}$								
	Baseline			Shorter sample		Alternative NFA		
Predicted NFA-to-GDP	0.404	0.413	0.545	0.808	1.517	1.238	0.438	0.836
	(3.209)	(3.664)	(2.702)	(2.846)	(3.599)	(3.229)	(1.854)	(3.229)
Debt-to-GDP			-0.231	-0.882	-0.581	-1.040	-0.213	-0.908
			(-1.106)	(-4.767)	(-2.149)	(-4.949)	(-0.960)	(-5.071)
TFP growth			-1.729	-3.409	-5.356	-6.118	-0.643	0.619
_			(-1.044)	(-2.166)	(-2.643)	(-3.482)	(-0.608)	(0.770)
GDP pc. growth			-0.257	-0.281	-0.192	-0.048	0.458	0.027
			(-0.744)	(-0.438)	(-0.573)	(-0.091)	(1.068)	(0.074)
Income Gini				-2.602		-2.347		-0.766
				(-0.491)		(-0.285)		(-0.247)
Top 10% inc. share				4.657		3.335		0.829
				(0.652)		(0.313)		(0.229)
Country FE	YES	YES	YES	YES	YES	YES	YES	YES
Time FE	NO	YES	YES	YES	YES	YES	YES	YES
N	828	828	690	470	345	299	690	470
\bar{R}^2	0.467	0.460	0.491	0.589	0.691	0.694	0.612	0.777

Back

Validating model predictions: Fair-Dominguez-Higgins regressions

• Fair-Dominguez (91), Higgins (98) proposed regressions of the type:

$$\mathbf{y}_{\mathsf{ct}} = \alpha_{\mathsf{c}} + \beta \cdot \mathbf{D}_{\mathsf{ct}} + \gamma \cdot \operatorname{Control}_{\mathsf{ct}} + \delta \cdot \mathbf{D}_{\mathsf{ct}} \times \operatorname{Control}_{\mathsf{ct}} + \epsilon_{\mathsf{ct}}$$

where D_{ct} are 15 age group dummies (coefficients restricted to quadratic in age)

• Run this with $y_{ct} \equiv (W/Y)_c$ and r_c ; compare to Δ^{comp} ; control for TFP

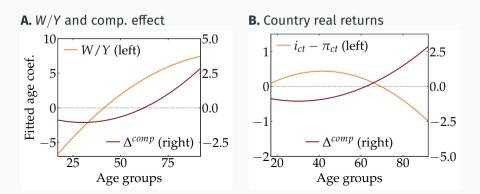
Validating model predictions: Fair-Dominguez-Higgins regressions

• Fair-Dominguez (91), Higgins (98) proposed regressions of the type:

$$\mathbf{y}_{\mathsf{ct}} = \alpha_{\mathsf{c}} + \beta \cdot \mathbf{D}_{\mathsf{ct}} + \gamma \cdot \operatorname{Control}_{\mathsf{ct}} + \delta \cdot \mathbf{D}_{\mathsf{ct}} \times \operatorname{Control}_{\mathsf{ct}} + \epsilon_{\mathsf{ct}}$$

where D_{ct} are 15 age group dummies (coefficients restricted to quadratic in age)

• Run this with $y_{ct} \equiv (W/Y)_c$ and r_c ; compare to Δ^{comp} ; control for TFP

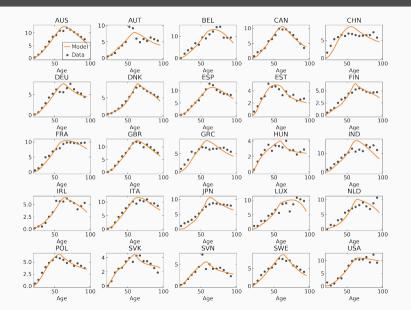


World economy calibration

	Δ_{con}	ıp,c	Components of wealth			Government policy		
Country	Model	Data	$\frac{W^{c}}{Y^{c}}$	$\frac{B^{c}}{Y^{c}}$	$\frac{NFA^{c}}{Y^{c}}$	$ au^{c}$	$\frac{Ben^{c}}{Y^{c}}$	
AUS	30	29	5.09	0.40	-0.46	0.29	0.04	
CAN	21	20	4.63	0.92	0.20	0.31	0.04	
CHN	47	45	4.20	0.44	0.25	0.30	0.04	
DEU	21	20	3.64	0.69	0.58	0.50	0.10	
ESP	42	37	5.33	0.99	-0.74	0.39	0.10	
FRA	31	30	4.85	0.98	-0.05	0.48	0.13	
GBR	27	26	5.35	0.88	0.08	0.31	0.06	
IND	65	56	4.16	0.68	-0.08	0.30	0.01	
ITA	34	30	5.83	1.31	-0.02	0.48	0.13	
JPN	24	22	4.85	2.36	0.66	0.32	0.09	
NLD	34	33	3.92	0.62	0.70	0.37	0.05	
USA	32	29	4.38	1.07	-0.36	0.32	0.06	

Back

World economy calibration



• Population evolves as

$$N_{jt} = (N_{j-1,t-1} + M_{j-1,t-1}) \phi_{j-1,t-1}$$

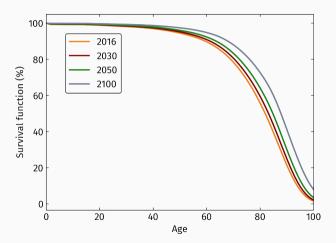
where

- N_{jt} denotes the numbers of individuals aged j in year t
- *M_{j,t}* is migration
- $\phi_{j,t}$ are survival probabilities
- Total population is

$$N_t = \sum_j N_{jt}$$

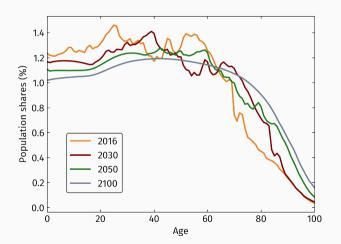
• Population converges to stationary distribution with constant ϕ_j , $n \equiv N_{o,t}/N_{o,t-1} - 1$.

Projected survival functions

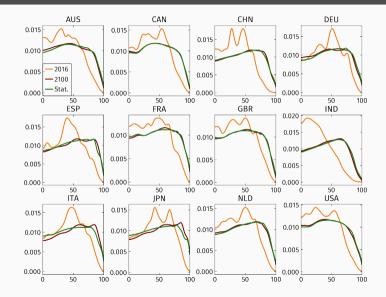


🔹 🖣 Back

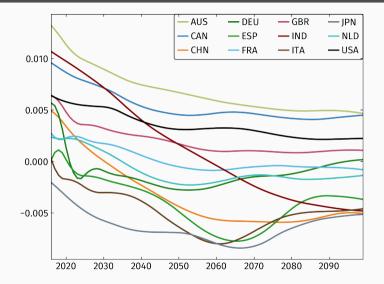
Projected population shares



Demographics: population distributions

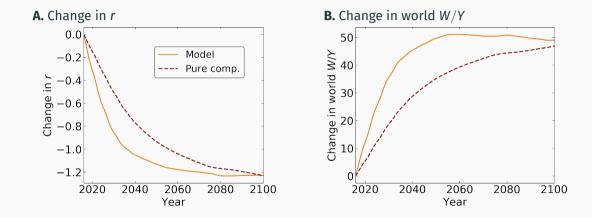


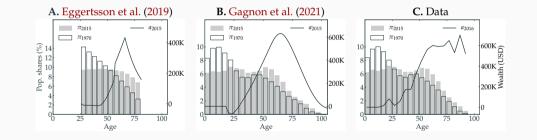
Demographics: population growth rates



◀ Back

Robustness of conclusions: transitions





	Eggertsson et al. (2019)	Gagnon et al. (2021)	Sufficient statistic					
Time-period	1970–2015	1970-2015	1970-2015					
GE transition								
Δr^{GE}	-3.44%	-0.92%						
<i>First-order approximation</i> $\Delta r = \frac{-\Delta^{soe}}{e^d + e^s}$								
Δr	-4.30%	-0.97%	-0.49%					
Δ^{comp}	45.4%	13.4%	12.4%					
$\Delta^{soe} - \Delta^{comp}$	21.1%	25.3%	0%					
ϵ^{s}	2.8	11.1	8.0					
ϵ^d	12.7	28.5	17.5					
σ	0.75	0.5	0.5					
η	0.6	1.0	1.0					