The Macroeconomics of Household Debt Relief

Adrien Auclert Kurt Mitman
Stanford IIES

INET Private Debt Conference
February 2022
High household debt in the U.S.

Source of concern?
Delinquencies shot up during Great Recession (though fell recently)
Debt relief?

- Frequent proposals for household debt relief, e.g:
 - Biden plan to cancel $10,000/person of student debt
 - covid-19 moratoria on foreclosures and student debt repayment
Debt relief?

- Frequent proposals for household debt relief, e.g:
 - Biden plan to cancel $10,000/person of student debt
 - covid-19 moratoria on foreclosures and student debt repayment

- Why would the government interfere with private debt contracts?
Debt relief?

- Frequent proposals for household debt relief, e.g:
 - Biden plan to cancel $10,000/person of student debt
 - covid-19 moratoria on foreclosures and student debt repayment

- Why would the government interfere with private debt contracts?
 1. want to achieve a certain level of redistribution
 2. want to increase aggregate demand, and think debt holds it back
Debt relief?

- Frequent proposals for household debt relief, e.g:
 - Biden plan to cancel $10,000/person of student debt
 - covid-19 moratoria on foreclosures and student debt repayment

- Why would the government interfere with private debt contracts?
 1. want to achieve a certain level of redistribution
 2. want to increase aggregate demand, and think debt holds it back

- Not obvious that any given debt relief proposal will achieve these!
 - Need to account for losers from debt relief, response of credit supply

- Today: a simple macro model of debt relief to think about all this
 - what types of debt relief are effective at achieving these goals?
Outline

1. Model

2. Ex-post debt relief
 Macro effect
 Welfare effect

3. Ex-ante debt relief
 Macro effect
 Welfare effect

4. Systematic debt relief
Outline

1. Model

2. Ex-post debt relief
 Macro effect
 Welfare effect

3. Ex-ante debt relief
 Macro effect
 Welfare effect

4. Systematic debt relief
Timeline

- Two periods $t = 0, 1$

\begin{align*}
\text{Income shock } e_0 & \quad \xrightarrow{\text{Repay } b_0} \\
\text{Initial debt } b_0 & \quad \xrightarrow{\text{Default}} \quad \text{Borrow } b_1, \text{ consume} \\
& \quad \xrightarrow{\text{Consume income}}
\end{align*}
Timeline

- Two periods $t = 0, 1$

Income shock e_0 ➔ Repay b_0 ➔ Income shock e_1 ➔ Repay b_1

Initial debt b_0 ➔ Default ➔ Borrow b_1, consume ➔ Default ➔ Income shock e_1 ➔ Consume income ➔ Consume income

Log utility over consumption, utility penalty for defaulting of K_t
Timeline

- Two periods $t = 0, 1$

Income in period t is $e_t y_t$, where y_t is aggregate income (GDP)

Log utility over consumption, utility penalty for defaulting of K_t
Timeline

- Two periods $t = 0, 1$

- Income in period t is $e_t y_t$, where y_t is aggregate income (GDP)

- Log utility over consumption, utility penalty for defaulting of K_t

- Period 1: GDP is at potential $y_1 = 1$, consumer with b_1 chooses:

$$\max \{ \log (e_1 - b_1); \log (e_1) - K_1 \}$$
Period 1 choice

\[V(e_1, b_1) = \max \{ \log(e_1 - b_1); \log(e_1) - K_1 \} \]
Period 1 choice

\[V(e_1, b_1) = \max \{ \log(e_1 - b_1); \log(e_1) - K_1 \} \]

- Default decision characterized by an *income threshold* \(\bar{e}_1 \)
- High income people repay, low income default
Period 1 choice

\[V(e_1, b_1) = \begin{cases} \log(e_1) - K_1 & e_1 \leq \bar{e}_1(b_1) \equiv \frac{b_1}{1-e^{-K_1}} \\ \log(e_1 - b_1) & e_1 > \bar{e}_1(b_1) \end{cases} \]

- Here consumption effect of default is equal to \(b_1 \)
- Intuitively, debt repayment is foregone consumption
Entering period 1: probability of default

- Bottom line: default if $e_1 \leq \bar{e}_1(b_1)$
- More likely to default if more indebted, or lower income
Entering period 1: probability of default

- Bottom line: default if $e_1 \leq \bar{e}_1(b_1)$
- More likely to default if more indebted, or lower income
- Income shocks e_1 distributed i.i.d with cdf F
- Fraction of borrowers that default given b_1: $d_1(b_1) = F(\bar{e}_1(b_1))$
Loan pricing: banks internalize default risk

- Competitive intermediaries face cost of funds R, diversify loan risks
- Amount they offer to a borrower that promises to repay b_1:

$$Q(b_1) = \frac{b_1}{R} (1 - d_1(b_1))$$
Loan pricing: banks internalize default risk

- Competitive intermediaries face cost of funds R, diversify loan risks
- Amount they offer to a borrower that promises to repay b_1:

$$Q(b_1) = \frac{b_1}{R} (1 - d_1(b_1)) = \frac{b_1}{R} (1 - F(e_1(b_1)))$$

![Borrowing amount schedule](image1)

![Borrowing interest rate schedule](image2)
Period 0 choice

Initial debt b_0

Income shock e_0 → Repay b_0 → Income shock e_1 → Repay b_1

- Borrow b_1, consume
- Default
- Consume income

Consumption income

Period 0 GDP equals y_0

Household with income shock e_0 chooses max \{ $V_r(e_0)$, $V_d(e_0)$ \}.

$V_r(e_0) = \max_b \{ \log (y_0 e_0 - b_0 + Q(b_1)) + \beta E e_1 [V(e_1, b_1)] \}$

$V_d(e_0) = \log (y_0 e_0) + \beta E e_1 [\log (e_1)] - K_0$
Period 0 choice

Income shock e_0 Repay b_0 Income shock e_1 Repay b_1

Initial debt b_0 Borrow b_1, consume Default Consume

Consume income Income shock e_1 Default Consume income

$V_r(e_0) = \max b_1 \{ \log (y_0 e_0 - b_0 + Q(b_1)) + \beta E[e_1[V(e_1, b_1)]] \}$

$V_d(e_0) = \log (y_0 e_0) + \beta E[e_1[\log (e_1)] - K_0$
Period 0 choice

- Period 0 GDP equals y_0
- Household with income shock e_0 chooses $\max \{ V^r (e_0) , V^d (e_0) \}$ w.r.t.

\[
V^r (e_0) = \max_{b_1} \{ \log (y_0 e_0 - b_0 + Q(b_1)) + \beta \mathbb{E}_{e_1} [V(e_1, b_1)] \}
\]

\[
V^d (e_0) = \log (y_0 e_0) + \beta \mathbb{E}_{e_1} [\log (e_1)] - K_0
\]
Period 0 choice and default rate

\[V_0 (e_0) = \max \{ V^r (e_0); V^d (e_0) \} \]
Period 0 choice and default rate

\[V_0(e_0) = \max \{ V^r(e_0); V^d(e_0) \} \]

- Consumption effect of default still positive, but less than \(b_0 \)
- Repayers can roll over some of their debt (depending on \(Q \))
Period 0 choice and default rate

\[V_0(e_0) = \max \{ V^r(e_0); V^d(e_0) \} \]

- Income shocks \(e_0 \) distributed i.i.d with cdf \(F \) (mean 1)
- Fraction of consumers who default at date 0: \(d_0 = F(\bar{e}_0) \)
General equilibrium

- Savers own financial intermediaries, have $e_t = 1$ & are unconstrained
 - consume MPC^S out of the PV of income and intermediary profits:

 $$c^S_0 = MPC^S \left(y_0 + \frac{1}{R} + b_0 (1 - d_0) \right)$$
General equilibrium

- Savers own financial intermediaries, have $e_t = 1$ & are unconstrained
 - consume MPC^S out of the PV of income and intermediary profits:
 \[
 c_0^S = MPC^S \left(y_0 + \frac{1}{R} + b_0 (1 - d_0) \right)
 \]
- Mass 1/2 each of borrowers and savers
- Aggregate spending in period 0:
 \[
 c_0 = \frac{1}{2} \int c_0^B (e_0) \, dF (e_0) + \frac{1}{2} c_0^S
 \]
General equilibrium

- Savers own financial intermediaries, have \(e_t = 1 \) & are unconstrained
 - consume \(MPC^S \) out of the PV of income and intermediary profits:
 \[
 c_0^S = MPC^S \left(y_0 + \frac{1}{R} + b_0 (1 - d_0) \right)
 \]
- Mass 1/2 each of borrowers and savers
- Aggregate spending in period 0:
 \[
 c_0 = \frac{1}{2} \int c_0^B (e_0) dF (e_0) + \frac{1}{2} c_0^S
 \]
- Given \(K_0, K_1 \), in **general eqbm** everyone maximizes and mkts clear
 1. Small open economy: \(R \) fixed, \(c_0 - y_0 \equiv \text{imports} \)
 2. Demand-determined economy: \(R \) fixed, \(y_0 \) adjusts so that \(c_0 = y_0 \)
Debt relief in the model

- We model debt relief as unexpected declines in K_0 and/or K_1
- Idea: make it easier for borrowers to default, but let them still choose what is optimal for them
Debt relief in the model

- We model debt relief as unexpected declines in K_0 and/or K_1
- Idea: make it easier for borrowers to default, but let them still choose what is optimal for them, e.g.
 - Make student loans dischargeable in bankruptcy
 - Lower bankruptcy fees or time bankruptcy stays on credit report
 - Information campaign explaining bankruptcy, or lowering stigma...
Debt relief in the model

- We model debt relief as unexpected declines in K_0 and/or K_1

- Idea: make it easier for borrowers to default, but let them still choose what is optimal for them, e.g.
 - Make student loans dischargeable in bankruptcy
 - Lower bankruptcy fees or time bankruptcy stays on credit report
 - Information campaign explaining bankruptcy, or lowering stigma...

- These are all ways to give debt relief to those who need it most
 - Blanket transfers actually reduce default rates in the model
Debt relief in the model

- We model debt relief as unexpected declines in K_0 and/or K_1

- Idea: make it easier for borrowers to default, but let them still choose what is optimal for them, e.g.
 - Make student loans dischargeable in bankruptcy
 - Lower bankruptcy fees or time bankruptcy stays on credit report
 - Information campaign explaining bankruptcy, or lowering stigma...

- These are all ways to give debt relief to those who need it most
 - Blanket transfers actually reduce default rates in the model

- Distinguish between:
 - *Ex-post* debt relief: $K_0 \downarrow$ (after debt issued, but before it’s repaid)
 - *Ex-ante* debt relief: $K_1 \downarrow$ (before debt is issued)
Outline

1. Model

2. Ex-post debt relief
 Macro effect
 Welfare effect

3. Ex-ante debt relief
 Macro effect
 Welfare effect

4. Systematic debt relief
Consumption effect of ex-post debt relief

- Given existing b_0, unexpectedly lower K_0 by ΔK_0

- For now, no aggregate demand feedback (small open economy)

- Consequences:

 1. Consumer defaults rise by Δd_0
 2. Aggregate borrower spending increases by $ACED \cdot b_0 \cdot \Delta d_0$ where $ACED$ is the consumption effect of default for the marginal defaulter, normalized by her debt b_0
 3. Bank profits fall by $b_0 \Delta d_0$
 4. Saver spending falls by $MPC_S \cdot b_0 \Delta d_0$

Effect on aggregate spending:

$$\Delta c_{soe0} = (ACED - MPC_S) b_0^2 \Delta d_0$$
Consumption effect of ex-post debt relief

Given existing b_0, unexpectedly lower K_0 by ΔK_0

For now, no aggregate demand feedback (small open economy)

Consequences: [assuming ΔK_0 small enough]

1. Consumer defaults **rise** by Δd_0
2. Aggregate borrower spending **increases** by

 \[
 ACED \cdot b_0 \cdot \Delta d_0
 \]

 where $ACED$ is the consumption effect of default for the marginal defaulter, normalized by her debt b_0
 Consumption effect of ex-post debt relief

- Given existing b_0, unexpectedly lower K_0 by $ΔK_0$
- For now, no aggregate demand feedback (small open economy)
- Consequences: [assuming $ΔK_0$ small enough]

1. Consumer defaults rise by $Δd_0$
2. Aggregate borrower spending increases by
 \[ACED \cdot b_0 \cdot Δd_0 \]
 where $ACED$ is the consumption effect of default for the marginal defaulter, normalized by her debt b_0
3. Bank profits fall by $b_0Δd_0$
4. Saver spending falls by $MPC^S \cdot b_0Δd_0$
Consumption effect of ex-post debt relief

- Given existing b_0, unexpectedly lower K_0 by ΔK_0
- For now, no aggregate demand feedback (small open economy)
- Consequences: [assuming ΔK_0 small enough]
 1. Consumer defaults **rise** by Δd_0
 2. Aggregate borrower spending **increases** by
 \[ACED \cdot b_0 \cdot \Delta d_0 \]
 where $ACED$ is the consumption effect of default for the marginal defaulter, normalized by her debt b_0
 3. Bank profits **fall** by $b_0 \Delta d_0$
 4. Saver spending **falls** by $MPC^S \cdot b_0 \Delta d_0$

- Effect on aggregate spending:
 \[\Delta c_{soe}^0 = (ACED - MPC^S) \frac{b_0}{2} \Delta d_0 \]
Effect of fall in K_0 on default rate and borrower spending

Values: repaying vs default

Consumption: repaying vs default

Total spending effect: $\Delta d_0 \times ACED \cdot b_0$
Effect of fall in K_0 on default rate and borrower spending

- $K_0 \downarrow$ changes V^d, not decisions conditional on defaulting/repaying
Effect of fall in K_0 on default rate and borrower spending

Values: repaying vs default

Consumption: repaying vs default

Total spending effect: $\Delta d_0 \times ACED \cdot b_0$

- Δd_0: effect per switcher
- $ACED \cdot b_0$: number of switchers
Macro effect of ex-post debt relief: $ACED$ vs MPC^S

- Now, we allow a feedback between consumption and output
- In this demand determined economy, Keynesian-cross logic implies

$$\Delta y_0 = M \cdot (ACED - MPC^S) \frac{b_0}{2} \Delta d_0$$

where M is the (government) spending multiplier

- In the model, $M > 1$, so the direct consumption effect is amplified
Macro effect of ex-post debt relief: $ACED$ vs MPC^S

- Now, we allow a feedback between consumption and output
- In this demand determined economy, Keynesian-cross logic implies

$$
\Delta y_0 = M \cdot (ACED - MPC^S) \frac{b_0}{2} \Delta d_0
$$

where M is the (government) spending multiplier
- In the model, $M > 1$, so the direct consumption effect is amplified
- **Key question**: how large is $ACED$ vs MPC^S?
 - $MPC^S \simeq 0$ to 0.15 from studies of spending from illiquid accounts
 - $ACED$ is more complicated: requires unobserved counterfactual
Macro effect of ex-post debt relief: $ACED$ vs MPC^S

- Now, we allow a feedback between consumption and output
- In this demand determined economy, Keynesian-cross logic implies
 \[\Delta y_0 = M \cdot (ACED - MPC^S) \frac{b_0}{2} \Delta d_0 \]
 where M is the (government) spending multiplier
- In the model, $M > 1$, so the direct consumption effect is amplified
- **Key question**: how large is $ACED$ vs MPC^S?
 - $MPC^S \simeq 0$ to 0.15 from studies of spending from illiquid accounts
 - $ACED$ is more complicated: requires unobserved counterfactual
 - Strategy from Indarte (2021): ratio of Δd_0 from raising income in both states vs only in default state reveals the $ACED$.
 - Her estimates imply $ACED \simeq 0.1$ to 0.5 [depending on risk aversion]
Implementing this to calculate macro effect

- Back-of envelope calculation:
 - Suppose ex-post debt relief that causes default rate on unsecured consumer credit to rise by $\Delta d_0 = 1\%$
 - Upper bound on effect on level of GDP in that year:

\[
\frac{\Delta y_0}{y_0} = \frac{M}{2} \cdot \left(\frac{ACED}{0.5} - \frac{MPC^S}{0} \right) \cdot \frac{b_0}{2y_0} \cdot \Delta d_0 = 0.25\%
\]
Implementing this to calculate macro effect

- Back-of-envelope calculation:
 - Suppose ex-post debt relief that causes default rate on unsecured consumer credit to rise by $\Delta d_0 = 1\%$
 - Upper bound on effect on level of GDP in that year:
 $$\frac{\Delta y_0}{y_0} = \frac{M}{2} \cdot \left(\frac{ACED}{0.5} - \frac{MPC}{0} \right) \cdot \frac{b_0}{2y_0} \cdot \Delta d_0 = 0.25\%$$

- Is this reasonable?
 - Direct estimates from cross-regional effects suggest yes
 [Verner-Gyöngyösi 2020, Auclert-Dobbie-Goldsmith-Pinkham 2022]
Implementing this to calculate macro effect

▶ Back-of envelope calculation:

▶ Suppose ex-post debt relief that causes default rate on unsecured consumer credit to rise by $\Delta d_0 = 1\%$

▶ Upper bound on effect on level of GDP in that year:

$$\frac{\Delta y_0}{y_0} = M \cdot \left(\frac{ACED}{0.5} - \frac{MPC^S}{0} \right) \cdot \frac{b_0}{2y_0} \cdot \Delta d_0 = 0.25\%$$

▶ Is this reasonable?

▶ Direct estimates from cross-regional effects suggest yes

[Verner-Gyöngyösi 2020, Auclert-Dobbie-Goldsmith-Pinkham 2022]

▶ Is this big or small?

▶ For a comparison, the CBO estimates the 783 billion in stimulus checks in CARES Act boosted GDP by 0.6%, so multiplier of 0.16

▶ Here, debt relief multiplier is 1 (GDP 0.25% per 52bn of debt relief)

▶ Caveat: likely an upper bound, and assumes only ex-post relief.
Welfare effect

- Logic for welfare is different
 - Borrower: no effect at margin (indifferent!)
 - ...but inframarginal effect on all d_0 defaulters of ΔK_0
 - Savers: lose wealth from extra defaults

- Assume social welfare is $W = \int U^B(e_0) \, dF(e_0) + \lambda U^S$
Welfare effect

- Logic for welfare is different
 - Borrower: no effect at margin (indifferent!)
 - ...but inframarginal effect on all d_0 defaulter of ΔK_0
 - Savers: lose wealth from extra defaults

Assume social welfare is $W = \int U^B(e_0) \, dF(e_0) + \lambda U^S$ then:

$$\Delta W^{soe} = d_0 - \lambda u'(c_0) \frac{b_0}{2} \Delta d_0$$

Debt relief improves welfare if $\lambda u'(c_0)$ small enough.
Welfare effect

- Logic for welfare is different
 - Borrower: no effect at margin (indifferent!)
 - ...but inframarginal effect on all d_0 defaulters of ΔK_0
 - Savers: lose wealth from extra defaults

- Assume social welfare is $W = \int U^B (e_0) \, dF (e_0) + \lambda U^S$ then:

\[
\Delta W^{soe} = d_0 - \lambda u' (c_0) \frac{b_0}{2} \Delta d_0
\]

Debt relief improves welfare if $\lambda u' (c_0)$ small enough.

- Further improvement from $\Delta y_0 > 0$ if there is an aggregate demand externality (in demand-determined economy)
Welfare effect

- Logic for welfare is different
 - Borrower: no effect at margin (indifferent!)
 - ...but inframarginal effect on all d_0 defaulters of ΔK_0
 - Savers: lose wealth from extra defaults

- Assume social welfare is $W = \int U^B (e_0) \, dF (e_0) + \lambda U^S$ then:

$$\Delta W^{soe} = d_0 - \lambda u' (c_0) \frac{b_0}{2} \Delta d_0$$

Debt relief improves welfare if $\lambda u' (c_0)$ small enough.

- Further improvement from $\Delta y_0 > 0$ if there is an aggregate demand externality (in demand-determined economy)

- Questions here:
 - is there no other way to do this redistribution? eg tax system
 - again assumes all ex-post effect. what about ex-ante? next
Outline

1. Model

2. Ex-post debt relief
 Macro effect
 Welfare effect

3. Ex-ante debt relief
 Macro effect
 Welfare effect

4. Systematic debt relief
Ex-ante debt relief

- Ex-ante debt relief: at time 0, unexpectedly lower K_1 by ΔK_1
 - \textit{before} banks choose interest rates (Q) and borrowers choose b_1

- Consequences:

 1. Banks change their debt price schedule to restore zero profits
 2. Aggregate borrower spending unambiguously declines by $\Delta c_{B0} < 0$
 3. Bank profits do not change
 4. Saver spending does not change

Effect on aggregate spending $\Delta c_{soe0} = \Delta c_{B0} < 0$ why? adverse credit supply shift!
Ex-ante debt relief

- Ex-ante debt relief: at time 0, unexpectedly lower K_1 by ΔK_1
 - before banks choose interest rates (Q) and borrowers choose b_1

Consequences: [assuming ΔK_1 small enough and small open economy]

1. Banks change their debt price schedule to restore zero profits
2. Aggregate borrower spending unambiguously declines by $\Delta c_0^B < 0$
3. Bank profits do not change
4. Saver spending does not change
Ex-ante debt relief

- Ex-ante debt relief: at time 0, unexpectedly lower K_1 by ΔK_1
 - *before* banks choose interest rates (Q) and borrowers choose b_1

- Consequences: [assuming ΔK_1 small enough and small open economy]
 1. Banks change their debt price schedule to restore zero profits
 2. Aggregate borrower spending **unambiguously declines** by $\Delta c_0^B < 0$
 3. Bank profits do not change
 4. Saver spending does not change

- Effect on aggregate spending

 $$\Delta c_0^{soe} = \frac{\Delta c_0^B}{2} < 0$$

 why? adverse credit supply shift!
Lenders understand that default probability goes up in period 1

- Respond with higher rates/tighter credit limits
Discussion: magnitudes and implementation

- Effect aggravated in demand determined economy:

\[\Delta y_0 = M \cdot \frac{\Delta c_0^B}{2} < 0 \]

- Not easy to discipline the magnitude of \(\Delta c_0^B \)
 - Existing literature suggests it is negative and non-trivial

 [Mitman, Albanesi-Nosal, Gross-Kluender-Liu-Notowidigdo-Wang,...]
Discussion: magnitudes and implementation

- Effect aggravated in demand determined economy:
 \[\Delta y_0 = M \cdot \frac{\Delta c_0^B}{2} < 0 \]

- Not easy to discipline the magnitude of \(\Delta c_0^B \)
 - Existing literature suggests it is negative and non-trivial
 [Mitman, Albanesi-Nosal, Gross-Kluender-Liu-Notowidigdo-Wang,...]

- Can we lower \(K_0 \) without also inducing expectation of lower \(K_1 \)?
 - In general, we will have:
 \[\Delta c_0 = \underbrace{\Delta c_0}_{>0} \bigg|_{\Delta K_0} + \underbrace{\Delta c_0}_{<0} \bigg|_{\Delta K_1} \]
 and no guarantee that this will be positive.

- Remember the mass of borrowers \(\gg \) mass of defaulters, and spending of all borrowers is impacted by credit supply contraction from \(\Delta K_1 \)
Welfare effect of ex-ante debt relief

- Again, ΔK_1 has no effect on saver welfare
 - Just a shift in the timing of payments
Welfare effect of ex-ante debt relief

- Again, ΔK_1 has no effect on saver welfare
 - Just a shift in the timing of payments

- Effect on borrowers:
 1. Reduce utility penalties tomorrow for all inframarginal defaulters
 2. but make it harder to borrow today for all ($\Delta Q < 0$ at each b_1)
Welfare effect of ex-ante debt relief

- Again, ΔK_1 has no effect on saver welfare
 - Just a shift in the timing of payments

- Effect on borrowers:
 1. Reduce utility penalties tomorrow for all inframarginal defaulters
 2. but make it harder to borrow today for all ($\Delta Q < 0$ at each b_1)

- Total effect balances these two [from envelope theorem]

$$\Delta W_0^{soe} = \frac{1}{2} \left(\beta d_1 - u' \left(c_0^{B,r} \right) \Delta Q \right)$$

This provides a theory of optimal K_1 [Zame, Chatterjee-Corbae-Nakajima-Ríos-Rull, Livshits-McGee-Tertilt, Dávila]

“Smoothing across states vs smoothing over time”
Welfare effect of ex-ante debt relief

- Again, ΔK_1 has no effect on saver welfare
 - Just a shift in the timing of payments

- Effect on borrowers:
 1. Reduce utility penalties tomorrow for all inframarginal defaulters
 2. but make it harder to borrow today for all ($\Delta Q < 0$ at each b_1)

- Total effect balances these two [from envelope theorem]
 \[
 \Delta W_{0}^{soe} = \frac{1}{2} \left(\beta d_1 - u' \left(c_{0,B,r}^B \right) \Delta Q \right)
 \]

- This provides a theory of optimal K_1
 [Zame, Chatterjee-Corbae-Nakajima-Ríos-Rull, Livshits-McGee-Tertilt, Dávila]
 - “Smoothing across states vs smoothing over time”
Outline

1. Model

2. Ex-post debt relief
 Macro effect
 Welfare effect

3. Ex-ante debt relief
 Macro effect
 Welfare effect

4. Systematic debt relief
Consider demand-determined economy

Suppose desired spending increases by Δy_0^{exo}

Effect on spending:

1. Defaults **decline** by Δd_0
2. Δd_0 borrowers lower their spending by $ACED \cdot b_0 \Delta d_0$
3. Savers increase their spending by $MPC^S \cdot b_0 \Delta d_0$
Countercyclical defaults and automatic stabilization

Consider demand-determined economy

Suppose desired spending increases by Δy_0^{exo}

Effect on spending:

1. Defaults decline by Δd_0
2. Δd_0 borrowers lower their spending by $ACED \cdot b_0 \Delta d_0$
3. Savers increase their spending by $MPC^S \cdot b_0 \Delta d_0$

Consequence: default is an automatic stabilizer

“Effective” spending only rises by $\Delta y_0^{exo} - (ACED - MPC) \frac{b_0}{2} \Delta d_0$
Quantifying the automatic stabilizer effect

- In Auclert-Mitman we prove that the excess fluctuations of GDP y_0^* in an economy without a countercyclical default rate are given by:

$$\frac{\text{std}(\Delta y_0^*)}{\text{std}(\Delta y_0)} = 1 + M \cdot (ACED - MPC^S) \frac{1}{2 y_0} \left(- \frac{\Delta d_0}{\Delta \log y_0} \right)$$

with parameters above, this is about 1.12

- This is like any other automatic stabilizer [eg government spending, income tax], and can be similarly effective.
An even better automatic stabilizer?

- Our proposal: *build* on opposite response of c_0 to K_0 and K_1
- Commit to a policy rule of the type:

 $$K_t (y_t, y_{t-1}) = \bar{K} + \psi (y_t - y_{t-1})$$

 where \bar{K} can be set (e.g.) based on standard tradeoff
- Make it easier to default when realized GDP growth is low.

Low realized growth \rightarrow ex-post debt relief today

Expect future growth \rightarrow expect less debt relief, crowd in credit supply

This is what we call: "Consumer Bankruptcy as Aggregate Demand Management"

Full paper coming soon!
An even better automatic stabilizer?

- Our proposal: *build* on opposite response of c_0 to K_0 and K_1
- Commit to a policy rule of the type:

$$K_t (y_t, y_{t-1}) = \bar{K} + \psi (y_t - y_{t-1})$$

where \bar{K} can be set (e.g.) based on standard tradeoff

- Make it easier to default when realized GDP growth is low. Then:
 - Low realized growth \rightarrow ex-post debt relief today
 - Expect future growth \rightarrow expect less debt relief, crowd in credit supply
An even better automatic stabilizer?

- Our proposal: *build* on opposite response of c_0 to K_0 and K_1

- Commit to a policy rule of the type:

$$K_t(y_t, y_{t-1}) = \overline{K} + \psi(y_t - y_{t-1})$$

where \overline{K} can be set (e.g.) based on standard tradeoff

- Make it easier to default when realized GDP growth is low. Then:
 - Low realized growth \rightarrow ex-post debt relief today
 - Expect future growth \rightarrow expect less debt relief, crowd in credit supply

- This is what we call:

 “Consumer Bankruptcy as Aggregate Demand Management”

- Full paper coming soon!
Towards a practical implementation

- In our model, household incomes and GDP are tightly linked
- Further, we assume that the policy maker knows GDP in real time
- In the U.S., the unemployment rate is:
 - available in “real time”, at a disaggregated level
 - perhaps a more accurate indicator of borrower income & default risk
- One concrete proposal would be to set the bankruptcy filing fee and means test to vary with the growth rate of state unemployment:
 - When state unemployment ↑, fees ↓ and the means test is relaxed
 - When state unemployment ↓, fees ↑ and the means test is tightened
Conclusion

- Ex-post debt relief can boost GDP and raise welfare
- But ex-ante debt relief tends to hurt GDP (and possibly welfare)
- In our proposal, we would:
 - Conduct debt relief through existing legal framework for default
 - Make it easier to default when realized GDP growth is low
- Our model suggests that this would dampen GDP fluctuations and realize the stabilization potential of debt relief
Thank you!