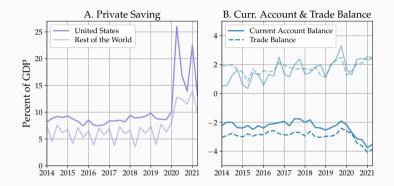
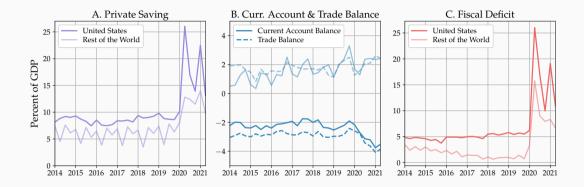

Excess Savings and Twin Deficits: The Transmission of Fiscal Stimulus in Open Economies


Rishabh Aggarwal, Adrien Auclert, Matthew Rognlie, and Ludwig Straub

European Central Bank, April 2022


• Fact 1: large increase in private savings around the world, esp. in the U.S.

Three facts about the world economy since the beginning of the pandemic


• Fact 2: recent increase in the current account and trade deficits in the U.S.

Three facts about the world economy since the beginning of the pandemic

• Fact 3: large increase in fiscal deficits around the world, esp. in the U.S.

Three facts about the world economy since the beginning of the pandemic

What caused "excess savings" and the U.S. current account deficit?

• Our argument: Fact 3 caused both Fact 1 and Fact 2

What caused "excess savings" and the U.S. current account deficit?

- **Our argument**: Fact 3 caused both Fact 1 and Fact 2
- We introduce a new model of open-economy fiscal policy transmission
 - At micro level, consistent with spending and saving behavior from transfers
 - At macro level, quantitatively gets Fact 1 and Fact 2 as consequence of Fact 3

What caused "excess savings" and the U.S. current account deficit?

- **Our argument**: Fact 3 caused both Fact 1 and Fact 2
- We introduce a new model of open-economy fiscal policy transmission
 - At micro level, consistent with spending and saving behavior from transfers
 - At macro level, quantitatively gets Fact 1 and Fact 2 as consequence of Fact 3
- We also rule out leading alternative explanations for Fact 1 and Fact 2

- Leading models of open-economy fiscal policy assume either:
 - 1. Ricardian equivalence, or 2. Hand-to-Mouth agents

These models are inconsistent with two salient facts from the pandemic.

- Leading models of open-economy fiscal policy assume either:
 - 1. Ricardian equivalence, or 2. Hand-to-Mouth agents

These models are inconsistent with two salient facts from the pandemic.

1. Significant MPCs out of government transfers

[Coibion-Gordnichenko-Weber, Parker-Schild-Erhard-Johnson, Ganong-Greig-Liebeskind-Sullivan-Vavra]

 $ightarrow\,$ Rules out models with Ricardian equivalence

- Leading models of open-economy fiscal policy assume either:
 - 1. Ricardian equivalence, or 2. Hand-to-Mouth agents

These models are inconsistent with two salient facts from the pandemic.

1. Significant MPCs out of government transfers

[Coibion-Gordnichenko-Weber, Parker-Schild-Erhard-Johnson, Ganong-Greig-Liebeskind-Sullivan-Vavra]

- $ightarrow\,$ Rules out models with Ricardian equivalence
- 2. Among those who saved their transfer, many later "spent down savings" [Cox et al, Greig-Deadman-Sonthalia, Goldman Sachs, TD Bank, European Central Bank, Namakura]

- Leading models of open-economy fiscal policy assume either:
 - 1. Ricardian equivalence, or 2. Hand-to-Mouth agents

These models are inconsistent with two salient facts from the pandemic.

1. Significant MPCs out of government transfers

[Coibion-Gordnichenko-Weber, Parker-Schild-Erhard-Johnson, Ganong-Greig-Liebeskind-Sullivan-Vavra]

- $ightarrow\,$ Rules out models with Ricardian equivalence
- 2. Among those who saved their transfer, many later "spent down savings" [Cox et al. Greig-Deadman-Sonthalia, Goldman Sachs, TD Bank, European Central Bank, Namakura]
 - $\rightarrow \,$ Rules out Hand-to-Mouth models

- Leading models of open-economy fiscal policy assume either:
 - 1. Ricardian equivalence, or 2. Hand-to-Mouth agents

These models are inconsistent with two salient facts from the pandemic.

1. Significant MPCs out of government transfers

[Coibion-Gordnichenko-Weber, Parker-Schild-Erhard-Johnson, Ganong-Greig-Liebeskind-Sullivan-Vavra]

- $ightarrow\,$ Rules out models with Ricardian equivalence
- 2. Among those who saved their transfer, many later "spent down savings" [Cox et al, Greig-Deadman-Sonthalia, Goldman Sachs, TD Bank, European Central Bank, Namakura]
 - $\rightarrow \,$ Rules out Hand-to-Mouth models
- We show that moving away from 1. and 2. has major implications for both excess savings and twin deficits

- Build a many-country "HANK" model with the following key features:
 - 1. Heterogeneous agents
 - Target-stock behavior \rightarrow transfers lead to excess savings, then spending down

What we do

- Build a many-country "HANK" model with the following key features:
 - 1. Heterogeneous agents
 - Target-stock behavior \rightarrow transfers lead to excess savings, then spending down
 - 2. Many-country open-economy
 - Get twin deficit for countries with large fiscal deficits ("divergence" in others)
 - Spending down leads to highly persistent effect on current accounts

What we do

- Build a many-country "HANK" model with the following key features:
 - 1. Heterogeneous agents
 - Target-stock behavior \rightarrow transfers lead to excess savings, then spending down
 - 2. Many-country open-economy
 - Get twin deficit for countries with large fiscal deficits ("divergence" in others)
 - Spending down leads to highly persistent effect on current accounts
- Provide analytical expressions for GE dynamics from a fiscal expansion
 - "sequence-space" formula for output, private savings and the current account
- Study counterfactual effect of worldwide covid-related fiscal interventions

More evidence on our three Facts

Measuring excess savings

- Take sample of 26 advanced economies with balance of payments data
- For each country *k*, starting in 2020Q1, define:

excess private savings_t^k =
$$\sum_{s=1}^{t} \left(\frac{PS_{s}^{k}}{Y_{O}^{k} \left(1 + \overline{g^{k}}\right)^{s}} - \overline{\left(\frac{PS}{Y}\right)^{k}} \right)$$

Excess change in private wealth, excluding valuation effects.

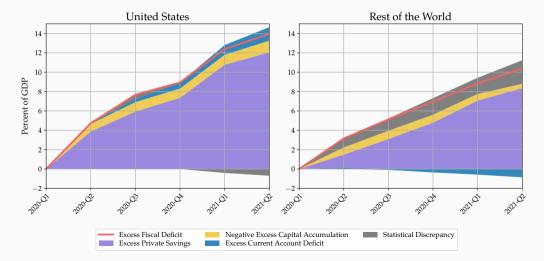
Measuring excess savings

- Take sample of 26 advanced economies with balance of payments data
- For each country *k*, starting in 2020Q1, define:

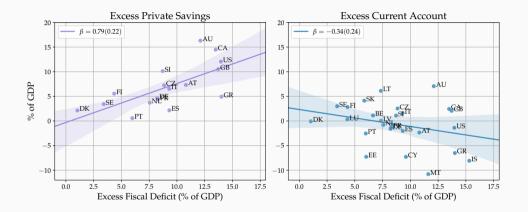
excess private savings_t^k
$$\equiv \sum_{s=1}^{t} \left(\frac{PS_{s}^{k}}{Y_{o}^{k} \left(1 + \overline{g^{k}}\right)^{s}} - \overline{\left(\frac{PS}{Y}\right)^{k}} \right)$$

Excess change in private wealth, excluding valuation effects.

- Do the same with:
 - current account balance CA \rightarrow "excess current accounts"
 - fiscal deficit $\mathit{FD}
 ightarrow$ "excess fiscal deficits"
 - net investment $I \rightarrow$ "excess capital accumulation"

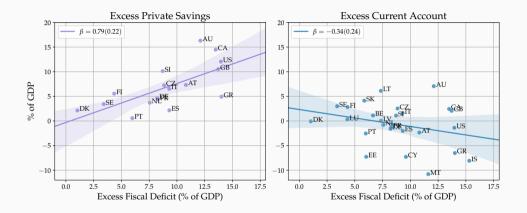

Data: PS from OCED Quarterly National Accounts, Y^k , $\overline{g^k}$ (nominal growth), CA, FD from IMF International Financial Statistics. Averages over 2014Q2-2020Q1 period.

Excess fiscal deficits decomposition


• Use balance of payments $FD_t = PS_t - CA_t - I_t$ to decompose excess deficits:

Excess fiscal deficits decomposition

• Use balance of payments $FD_t = PS_t - CA_t - I_t$ to decompose excess deficits:



Fiscal deficits explain savings and current accounts in cross section

• Larger fiscal deficit \rightarrow more private savings, larger current account deficit

Fiscal deficits explain savings and current accounts in cross section

- Larger fiscal deficit ightarrow more private savings, larger current account deficit
- Covid stories such as "bigger lockdowns made people save more" don't work

A many-country HANK model for fiscal policy analysis

Model overview

- Discrete time, many-country open economy model
 - No aggregate uncertainty + small shocks (first order perturb. wrt aggregates)
- Each country consumes two types of goods
 - "Home": *H*, produced at home, home price *P*_{Ht}
 - "World": W, basket of goods from all countries, home price P_{Wt}
 - Substitution elasticities: η between H and W, γ b/w different countries in W
 - Bundle of home and world good has home price *P*_t (consumer price index)
 - Nominal rigidities in wages, flexible prices, law of one price

Model overview

- Discrete time, many-country open economy model
 - No aggregate uncertainty + small shocks (first order perturb. wrt aggregates)
- Each country consumes two types of goods
 - "Home": H, produced at home, home price P_{Ht}
 - "World": W, basket of goods from all countries, home price P_{Wt}
 - Substitution elasticities: η between H and W, γ b/w different countries in W
 - Bundle of home and world good has home price *P*_t (consumer price index)
 - Nominal rigidities in wages, flexible prices, law of one price
- Countries have:
 - exogenous, fixed productivity differences ($\Theta) \rightarrow \text{GDP}$ differences
 - each a mass 1 of domestic households, s.t. idiosyncratic income risk

Consumption behavior of households

• Intertemporal problem of home agents:

$$\max_{\{c_{it}\}} \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta_{i}^{t} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - v(N_{t}) \right\}$$

$$c_{it} + a_{it+1} = (1+r_{t})a_{it} + \kappa_{t} \left(e_{it} \frac{W_{t}}{P_{t}} N_{t} \right)^{1-\lambda} \qquad a_{it+1} \ge 0 \qquad C_{t} \equiv \int c_{it} di$$

- gross labor income taxed progressively, index λ [Heathcote-Storesletten-Violante]
- a_{it} = savings in domestic real assets

Consumption behavior of households

• Intertemporal problem of home agents:

$$\max_{\{c_{it}\}} \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta_{i}^{t} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - v(N_{t}) \right\}$$

$$c_{it} + a_{it+1} = (1+r_{t})a_{it} + \kappa_{t} \left(e_{it} \frac{W_{t}}{P_{t}} N_{t} \right)^{1-\lambda} \qquad a_{it+1} \ge 0 \qquad C_{t} \equiv \int c_{it} di$$

- gross labor income taxed progressively, index λ [Heathcote-Storesletten-Violante]
- a_{it} = savings in domestic real assets
- Intratemporal problem: divide c_{it} into c_{iHt} and c_{ikt} , in aggregate:

$$C_{Ht} = (1 - \alpha) \left(\frac{P_{Ht}}{P_t}\right)^{-\eta} C_t \qquad C_{kt} = \alpha \omega^k \left(\frac{P_{kt}}{P_{Wt}}\right)^{-\gamma} \left(\frac{P_{Wt}}{P_t}\right)^{-\eta} C_t$$

Consumption behavior of households

• Intertemporal problem of home agents:

$$\max_{\{c_{it}\}} \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta_{i}^{t} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - v(N_{t}) \right\}$$

$$c_{it} + a_{it+1} = (1+r_{t})a_{it} + \kappa_{t} \left(e_{it} \frac{W_{t}}{P_{t}} N_{t} \right)^{1-\lambda} \qquad a_{it+1} \ge 0 \qquad C_{t} \equiv \int c_{it} di$$

- gross labor income taxed progressively, index λ [Heathcote-Storesletten-Violante]
- $a_{it} =$ savings in domestic real assets
- Intratemporal problem: divide c_{it} into c_{iHt} and c_{ikt} , in aggregate:

$$C_{Ht} = (1 - \alpha) \left(\frac{P_{Ht}}{P_t}\right)^{-\eta} C_t \qquad C_{kt} = \alpha \omega^k \left(\frac{P_{kt}}{P_{Wt}}\right)^{-\gamma} \left(\frac{P_{Wt}}{P_t}\right)^{-\eta} C_t$$

• Domestic production linear in labor: $Y_t = \Theta N_t$

Prices, nominal rigidities, and goods market clearing

- Exchange rates quoted wrt virtual "star" currency, which has $P_t^* = P_{Wt}^* = 1$.
 - Nominal exchg rate \mathcal{E}_t , real $Q_t \equiv \mathcal{E}_t/P_t$, \uparrow is depreciation of home currency

Prices, nominal rigidities, and goods market clearing

- Exchange rates quoted wrt virtual "star" currency, which has $P_t^* = P_{Wt}^* = 1$.
 - Nominal exchg rate \mathcal{E}_t , real $Q_t \equiv \mathcal{E}_t/P_t$, \uparrow is depreciation of home currency
- Standard nominal wage rigidity: [Erceg-Henderson-Levin, Auclert-Rognlie-Straub]

$$\pi_{wt} = \kappa_{w} \left(\frac{v'(N_t) / u'(C_t)}{\mu_{w} W_t / P_t} - 1 \right) + \beta \pi_{wt+1}$$

• Flexible prices everywhere (as in producer currency pricing paradigm):

$$P_{Ht} = rac{W_t}{\Theta}$$
 $P_{Wt} = \mathcal{E}_t$ $P_{kt} = \mathcal{E}_t rac{P_{Ht}^k}{\mathcal{E}_t^k}$

Prices, nominal rigidities, and goods market clearing

- Exchange rates quoted wrt virtual "star" currency, which has $P_t^* = P_{Wt}^* = 1$.
 - Nominal exchg rate \mathcal{E}_t , real $Q_t \equiv \mathcal{E}_t/P_t$, \uparrow is depreciation of home currency
- Standard nominal wage rigidity: [Erceg-Henderson-Levin, Auclert-Rognlie-Straub]

$$\pi_{wt} = \kappa_{w} \left(\frac{v'(N_t) / u'(C_t)}{\mu_{w} W_t / P_t} - 1 \right) + \beta \pi_{wt+1}$$

• Flexible prices everywhere (as in producer currency pricing paradigm):

$$P_{Ht} = rac{W_t}{\Theta}$$
 $P_{Wt} = \mathcal{E}_t$ $P_{kt} = \mathcal{E}_t rac{P_{Ht}^k}{\mathcal{E}_t^k}$

• Domestic goods market clearing ($G_t \equiv$ government purchases):

$$Y_{t} = (1 - \alpha) \left(\frac{P_{Ht}}{P_{t}}\right)^{-\eta} C_{t} + \omega \left(\frac{P_{Ht}}{P_{Wt}}\right)^{-\gamma} \underbrace{\left(\sum_{k=1}^{K} \alpha^{k} \left(Q_{t}^{k}\right)^{-\eta} C_{t}^{k}\right)}_{C_{t}^{*}} + G_{t}$$

Fiscal and monetary policy

• Fiscal policy sets G_t and bonds B_t ; adjusts tax intercept κ_t so that

$$B_{t} = (1 + r_{t-1})B_{t-1} + \frac{P_{Ht}}{P_{t}}G_{t} - \left(\frac{W_{t}}{P_{t}}N_{t} - \kappa_{t}\int\left(e_{it}\frac{W_{t}}{P_{t}}N_{t}\right)^{1-\lambda}di\right)$$

- Aggregate supply of assets \equiv world bonds B_t^k :
 - Asset market clearing at home $A_t = B_t + NFA_t$, for world as whole $\sum \frac{A_t^k}{O^k} = \sum \frac{B_t^k}{O^k}$

Fiscal and monetary policy

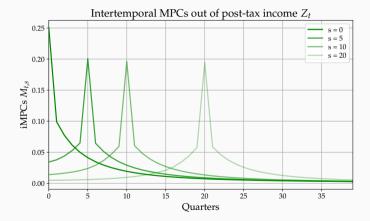
• Fiscal policy sets G_t and bonds B_t ; adjusts tax intercept κ_t so that

$$B_{t} = (1 + r_{t-1}) B_{t-1} + \frac{P_{Ht}}{P_{t}} G_{t} - \left(\frac{W_{t}}{P_{t}} N_{t} - \kappa_{t} \int \left(e_{it} \frac{W_{t}}{P_{t}} N_{t}\right)^{1-\lambda} di\right)$$

- Aggregate supply of assets \equiv world bonds B_t^k :
 - Asset market clearing at home $A_t = B_t + NFA_t$, for world as whole $\sum \frac{A_t^k}{\Omega^k} = \sum \frac{B_t^k}{\Omega^k}$
- Home cental bank sets home nominal rate i_t
 - Policy rules: constant CPI-based real interest rate, $i_t = r + \pi_{t+1}$, or Taylor rules
- Star country central bank sets i_t^* to target $P_{Wt}^* = 1$

Fiscal and monetary policy

• Fiscal policy sets G_t and bonds B_t ; adjusts tax intercept κ_t so that


$$B_{t} = (1 + r_{t-1}) B_{t-1} + \frac{P_{Ht}}{P_{t}} G_{t} - \left(\frac{W_{t}}{P_{t}} N_{t} - \kappa_{t} \int \left(e_{it} \frac{W_{t}}{P_{t}} N_{t}\right)^{1-\lambda} di\right)$$

- Aggregate supply of assets \equiv world bonds B_t^k :
 - Asset market clearing at home $A_t = B_t + NFA_t$, for world as whole $\sum \frac{A_t^R}{\Omega^R} = \sum \frac{B_t^R}{\Omega^R}$
- Home cental bank sets home nominal rate i_t
 - Policy rules: constant CPI-based real interest rate, $i_t = r + \pi_{t+1}$, or Taylor rules
- Star country central bank sets i_t^* to target $P_{Wt}^* = 1$
- Financial intermediaries can invest freely in asset in the world
 - equalized $\mathbb E$ returns \rightarrow UIP holds:

$$1 + i_t = (1 + i_t^*) \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \qquad 1 + r = (1 + i_t^*) \frac{Q_{t+1}}{Q_t}$$

Benchmark model calibration

• Two key objects: α (openness) and "iMPC" matrix **M**, with $M_{t,s} = \frac{\partial C_t}{\partial Z_c}$

• Calibration is otherwise standard, unitary elasticities as in Cole-Obstfeld

Excess savings and twin deficits in the small open economy

- Take very small economy (SOE). Assume r = 0.
- Consider a permanent shock to bonds $B_t \uparrow$, holding G fixed
 - Government issues debt to finance transfers to households
- What happens in the long-run? In the short-run?

Long-run result

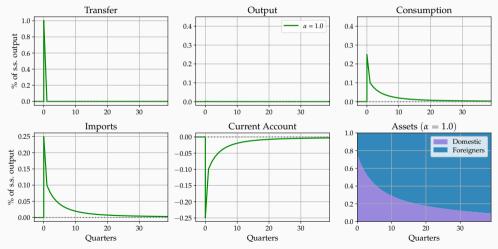
Proposition

In the long-run natural allocation, the country has zero excess savings and a perfect twin deficit:

$$\Delta A = 0$$
 $\Delta NFA = -\Delta B$

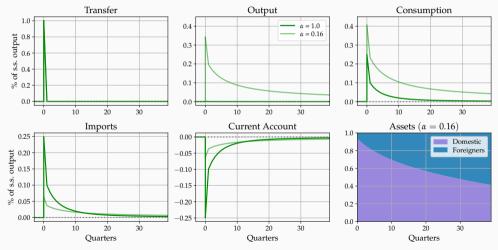
- Intuition: r = o + SOE implies no fiscal consequence of increase in debt.
- Post-tax incomes are unchanged \rightarrow private wealth returns to target.
- All debt must be held abroad.

Long-run result

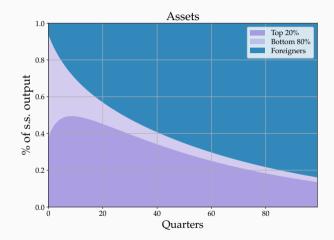

Proposition

In the long-run natural allocation, the country has zero excess savings and a perfect twin deficit:

$$\Delta A = 0$$
 $\Delta NFA = -\Delta B$

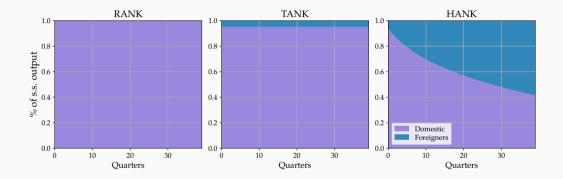

- Intuition: r = o + SOE implies no fiscal consequence of increase in debt.
- Post-tax incomes are unchanged \rightarrow private wealth returns to target.
- All debt must be held abroad.
- How do we get there?

Suppose first country has no home bias $\alpha = 1$. iMPCs \Rightarrow slow dynamics

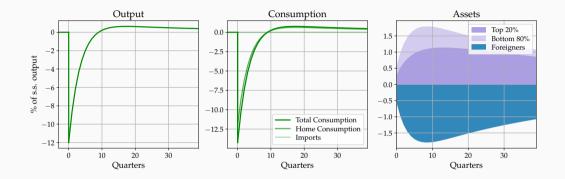


Short run dynamics: importance of MPCs and openness

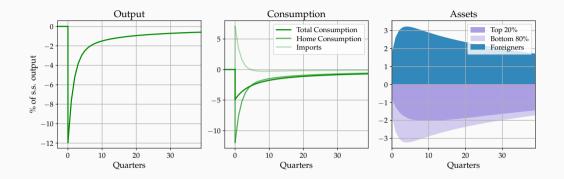
Next, country has realistic α < 1. Dynamics of nfa much slower! (" α × M")



Distributional dynamics: three phases of asset ownership


• In closed enough economies, wealth of the rich rises initially

Standard models behave very differently!

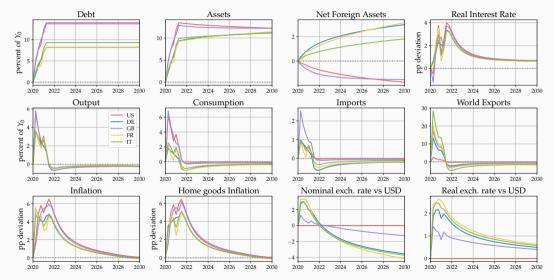

- RANK model (Ricardian Equivalence): no spending down at all
- TANK model (Hand-to-Mouth agents): no spending down of excess savings

Can a covid shock explain excess savings?

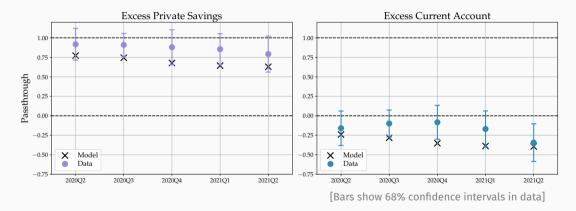
- Shock to overall spending: yes, but magnitude small
- Why? Fall in desired spending mostly causes fall in domestic income

Can a covid shock explain excess savings?

- Shock to domestic spending (eg services): no!
- Reallocation towards foreign good causes CA deficit, country dissaves

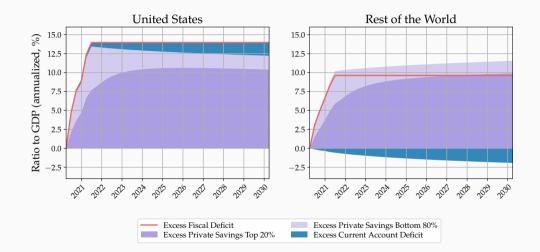


Application to world covid fiscal expansion


- Now simulate a realistic calibration of our 26-country HANK model
 - Feed in path of $\Delta B_t^k \equiv$ observed path of excess fiscal deficits
- World natural rate rises to convince households to hold the extra debt
 - Central banks slowly increase in their Taylor rule intercept in response
- 26 wealth distributions \rightarrow not an easy model to solve!
 - Solution adapts sequence-space Jacobian method to this case

[Auclert-Bardóczy-Rognlie-Straub]

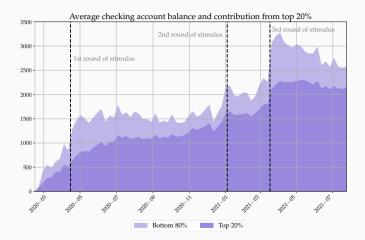
Effect of worldwide fiscal interventions alone



Model successfully predicts cross-country passthrough

• Compare regressions of $\triangle A^k$ and $\triangle NFA^k$ on $\triangle B^k$ in model vs data

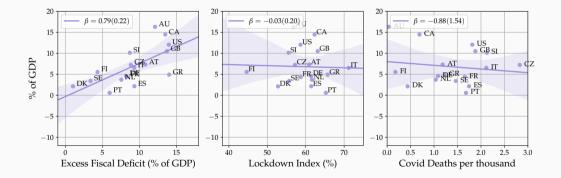
Dynamics of ownership of the public debt


• By the end of the decade, most of the debt is held by the world's rich

Excess savings are there to last....

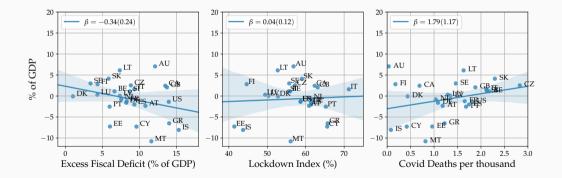
- but held increasingly by the world's rich
- and twin deficits pool them across countries
- model predicts that they will boost output and inflation for a while

Evidence of "spending down" effect



• Excess savings from transfers mostly held by the rich after a few Q

Source JP Morgan Chase Institute [Cox et al 2020, Greig, Deadman and Sonthalia 2021.]



Excess Private Savings

Excess Current Accounts

Preferences

• In baseline, consumption c_{it} aggregates H and F with elasticity η ,

$$\boldsymbol{c}_{it} = \left[(1-\alpha)^{\frac{1}{\eta}} \left(\boldsymbol{c}_{iHt} \right)^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} \left(\boldsymbol{c}_{iWt} \right)^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

and preferences for goods produced in countries k are

$$c_{iWt} = \left(\sum_{k=1}^{K} \left(\omega^{k}\right)^{\frac{1}{\gamma}} \left(c_{it}^{k}\right)^{\frac{\gamma-1}{\gamma}} dk\right)^{\frac{\gamma}{\gamma-1}}$$

with $\gamma > 0$ and $\eta > 0$. Nominal budget constraint:

$$P_{Ht}c_{iHt} + \sum_{k} P_{kt}c_{it}^{k} + A_{it+1} \leq (1+i_{t})A_{it} + P_{t} \cdot \kappa_{t} \left(e_{it}\frac{W_{t}}{P_{t}}N_{t}\right)^{1-\lambda}$$

• Demand for country *k* good by consumer *i*:

$$\boldsymbol{c}_{it}^{k} = \alpha \omega^{k} \left(\frac{P_{kt}}{P_{Wt}}\right)^{-\gamma} \left(\frac{P_{Wt}}{P_{t}}\right)^{-\eta} \boldsymbol{c}_{it}$$

28

Parameter	Value (U.S.)	Parameter	Value (U.S.)
r	0%	G/Y	0.14
σ	1	B/Y	0.82
η	1	nfa/Y	0
γ	1	β	0.992
α	0.16	δ	0.098
ϕ	2	κ_{W}	0.1
λ	0.181	ϕ_{π}	1.5

Proposition

Assume constant-r monetary policy, r = 0. The response of output d**Y**, the current account d**CA**, and private savings d**PS** to a change in the fiscal deficit d**FD** is given by

$$d\mathbf{Y} = (\mathbf{1} - \alpha) \,\mathbf{M} \left(\sum_{k} (\mathbf{1} - \alpha)^{k} \,\mathbf{M}^{k}\right) d\mathbf{FD}$$
$$-d\mathbf{CA} = \alpha \mathbf{M} \left(\sum_{k} (\mathbf{1} - \alpha)^{k} \,\mathbf{M}^{k}\right) d\mathbf{FD}$$
$$d\mathbf{PS} = (l - \mathbf{M}) \left(\sum_{k} (\mathbf{1} - \alpha)^{k} \,\mathbf{M}^{k}\right) d\mathbf{FD}$$

