Discussion of "What Do We Learn From Cross-Sectional Empirical Estimates in Macro?" by Guren, McKay, Nakamura and Steinsson

Adrien Auclert

Stanford

AEA Meetings, San Diego January 4, 2020

This paper

- ▶ Past decade has seen a "credibility revolution" in macro:
 - Turned to cross-section for identification
 - Very influential papers used heterogeneous cross-sectional exposure to identify effects of: fiscal policy [Nakamura Steinsson 2014], housing net worth channel [Mian Sufi 2014], China shock [Autor Dorn Hanson 2013], credit market disruptions [Chodorow-Reich 2014], UI extensions [Hagedorn Manovskii Mitman 2015]...
- ► Throughout, the **key question** has been:

"What Do We Learn From Cross-Sectional Empirical Estimates in Macroeconomics?"

This paper

- ▶ Past decade has seen a "credibility revolution" in macro:
 - ► Turned to cross-section for identification
 - ▶ Very influential papers used heterogeneous cross-sectional exposure to identify effects of: fiscal policy [Nakamura Steinsson 2014], housing net worth channel [Mian Sufi 2014], China shock [Autor Dorn Hanson 2013], credit market disruptions [Chodorow-Reich 2014], UI extensions [Hagedorn Manovskii Mitman 2015]...
- ► Throughout, the **key question** has been:

"What Do We Learn From Cross-Sectional Empirical Estimates in Macroeconomics?"

▶ This paper offers the following answer:

From regional variation, you may be able to learn about partial equilibrium effects (here: MPC out of housing wealth, MPCH)

This paper

- ▶ Past decade has seen a "credibility revolution" in macro:
 - ► Turned to cross-section for identification
 - Very influential papers used heterogeneous cross-sectional exposure to identify effects of: fiscal policy [Nakamura Steinsson 2014], housing net worth channel [Mian Sufi 2014], China shock [Autor Dorn Hanson 2013], credit market disruptions [Chodorow-Reich 2014], UI extensions [Hagedorn Manovskii Mitman 2015]...
- ► Throughout, the **key question** has been:

"What Do We Learn From Cross-Sectional Empirical Estimates in Macroeconomics?"

▶ This paper offers the following answer:

From <u>regional variation</u>, you <u>may</u> be able to learn about <u>partial</u> equilibrium effects (here: MPC out of housing wealth, MPCH)

The paper in context

- What do we already know about regional regressions?
 - 1. They contain certain "local" GE effects [eg nontradable multipliers]
 - 2. They difference out "national" GE effects [eg monetary policy]

The paper in context

- What do we already know about regional regressions?
 - 1. They contain certain "local" GE effects [eg nontradable multipliers]
 - 2. They difference out "national" GE effects [eg monetary policy]
- Often, the problem is to recover the national GE effects in 2
 - Example: local to national fiscal multiplier [Nakamura Steinsson 2014]

The paper in context

- What do we already know about regional regressions?
 - 1. They contain certain "local" GE effects [eg nontradable multipliers]
 - 2. They difference out "national" GE effects [eg monetary policy]
- Often, the problem is to recover the national GE effects in 2
 - Example: local to national fiscal multiplier [Nakamura Steinsson 2014]

- ▶ This paper proposes a method to **take out** the local GE effects in 1
 - Objective: "pure" MPCH

- Why do we care about PE objects such as the pure MPCH?
 - ► From intro: "for [model] calibration purposes"
- But these models are ultimately designed to answer GE questions!
 - eg "what's the contribution of net worth channel to Great Recession?"

- Why do we care about PE objects such as the pure MPCH?
 - ► From intro: "for [model] calibration purposes"
- But these models are ultimately designed to answer GE questions!
 - eg "what's the contribution of net worth channel to Great Recession?"

- Why do we care about PE objects such as the pure MPCH?
 - From intro: "for [model] calibration purposes"
- But these models are ultimately designed to answer GE questions!
 - eg "what's the contribution of net worth channel to Great Recession?"

- 1. Does this extra leg make GE answer more credible?
- 2. Can't we get the PE from some other type of cross-X?
- 3. What can we learn about the final step, PE to GE?

- Why do we care about PE objects such as the pure MPCH?
 - From intro: "for [model] calibration purposes"
- But these models are ultimately designed to answer GE questions!
 - eg "what's the contribution of net worth channel to Great Recession?"

- 1. Does this extra leg make GE answer more credible? Yes sometimes
- 2. Can't we get the PE from some other type of cross-X?
- 3. What can we learn about the final step, PE to GE?

- Why do we care about PE objects such as the pure MPCH?
 - From intro: "for [model] calibration purposes"
- But these models are ultimately designed to answer GE questions!
 - eg "what's the contribution of net worth channel to Great Recession?"

- 1. Does this extra leg make GE answer more credible? Yes sometimes
- 2. Can't we get the PE from some other type of cross-X? Maybe not
- 3. What can we learn about the final step, PE to GE?

- Why do we care about PE objects such as the pure MPCH?
 - From intro: "for [model] calibration purposes"
- But these models are ultimately designed to answer GE questions!
 - eg "what's the contribution of net worth channel to Great Recession?"

- 1. Does this extra leg make GE answer more credible? Yes sometimes
- 2. Can't we get the PE from some other type of cross-X? Maybe not
- 3. What can we learn about the final step, PE to GE? **Not much here**

- Why do we care about PE objects such as the pure MPCH?
 - From intro: "for [model] calibration purposes"
- But these models are ultimately designed to answer GE questions!
 - eg "what's the contribution of net worth channel to Great Recession?"

1. Does this extra leg make GE answer more credible? Yes sometimes

4/8

- 2. Can't we get the PE from some other type of cross-X? Maybe not
- 3. What can we learn about the final step, PE to GE? **Or can we?**Adrien Auclert (Stanford)

 Discussion of GMNS

 January 4, 2020

What is the core idea of the method?

➤ Start from Theorem 4 in Auclert-Rognlie (2018), or Proposition 6 in Auclert-Rognlie-Straub (2018), which say:

$$GE = M \cdot PE$$
 (1)

where M is multiplier matrix; PE, GE are impulse response vectors

► Here, GMNS show a regional version of this result:

$$GE^{local} = M^{local} \cdot PE$$

so, the paper proposes to calculate

$$PE = \left(M^{local}\right)^{-1} GE^{local} \tag{2}$$

Very nice idea. Sufficient statistics!

What is the core idea of the method?

► Start from Theorem 4 in Auclert-Rognlie (2018), or Proposition 6 in Auclert-Rognlie-Straub (2018), which say:

$$GE = M \cdot PE$$
 (1)

where M is multiplier matrix; PE, GE are impulse response vectors

► Here, GMNS show a regional version of this result:

$$GE^{local} = M^{local} \cdot PE$$

so, the paper proposes to calculate

$$PE = \left(M^{local}\right)^{-1} GE^{local} \tag{2}$$

- Very nice idea. Sufficient statistics!
- ▶ Why not combine (2) with (1) to get *GE* from *GE*^{local}?

What is the core idea of the method?

➤ Start from Theorem 4 in Auclert-Rognlie (2018), or Proposition 6 in Auclert-Rognlie-Straub (2018), which say:

$$GE = M \cdot PE$$
 (1)

where M is multiplier matrix; PE, GE are impulse response vectors

► Here, GMNS show a regional version of this result:

$$GE^{local} = M^{local} \cdot PE$$

so, the paper proposes to calculate

$$PE = \left(M^{local}\right)^{-1} GE^{local} \tag{2}$$

- Very nice idea. Sufficient statistics!
- ▶ Why not combine (2) with (1) to get GE from GE^{local} ?
 - ▶ A: M too complex, M^{local} may be simpler, and PE useful for M (eg MPC out of lotteries used for fiscal policy in ARS 2018, MPC out of stock market used for monetary policy in ARS 2020)

What can we say about PE to GE in this paper?

- ► Model is textbook example in which PE-to-GE map *M* is highly sensitive to parameters
- ▶ Why? GHH preferences! From Nakamura-Steinsson:

TABLE 7-GOVERNMENT SPENDING MULTIPLIER IN GHH MODEL

	Closed economy aggregate multiplier	Open economy relative multiplier
Panel A. Sticky prices		
Volcker-Greenspan monetary policy	0.12	1.42
Constant real rate	7.00	1.42
Constant nominal rate	∞	1.42

What can we say about PE to GE in this paper?

- ► Model is textbook example in which PE-to-GE map *M* is highly sensitive to parameters
- ▶ Why? GHH preferences! From Nakamura-Steinsson:

TABLE 7-GOVERNMENT SPENDING MULTIPLIER IN GHH MODEL

	Closed economy aggregate multiplier	Open economy relative multiplier
Panel A. Sticky prices		
Volcker-Greenspan monetary policy	0.12	1.42
Constant real rate	7.00	1.42
Constant nominal rate	∞	1.42

Makes it reasonable to focus on stopping at PE rather than GE

What can we say about PE to GE in this paper?

- ► Model is textbook example in which PE-to-GE map *M* is highly sensitive to parameters
- ▶ Why? GHH preferences! From Nakamura-Steinsson:

TABLE 7-GOVERNMENT SPENDING MULTIPLIER IN GHH MODEL

	Closed economy aggregate multiplier	Open economy relative multiplier
Panel A. Sticky prices		
Volcker-Greenspan monetary policy	0.12	1.42
Constant real rate	7.00	1.42
Constant nominal rate	∞	1.42

- ▶ Makes it reasonable to focus on stopping at PE rather than GE
- ▶ Is this going too far? GHH arguably extreme
 - Rejected by other data, such as direct estimates of GE multipliers?
 - ► HANK may deliver large local multipliers without need for GHH

▶ Implementation: assume M^{local} is diagonal and apply static version

$$PE \simeq \frac{GE^{local}}{M^{local}} \tag{3}$$

$$MPCH = \frac{\mathrm{Measured\ Housing\ Wealth\ Effect}}{\mathrm{Local\ Fiscal\ Multiplier}} = \frac{0.033}{1.5} = 0.022$$

▶ Implementation: assume M^{local} is diagonal and apply static version

$$PE \simeq \frac{GE^{local}}{M^{local}} \tag{3}$$

$$MPCH = \frac{\text{Measured Housing Wealth Effect}}{\text{Local Fiscal Multiplier}} = \frac{0.033}{1.5} = 0.022$$

- ▶ Problem: large approximation error in (3)
 - In all but simplest model, "relative error" of 0.33 to 0.57
 → mutiplier should be multiplied by 1.5 to 2
 - ▶ Very dependent on exact model: (2) is structural, but (3) is not

▶ Implementation: assume M^{local} is diagonal and apply static version

$$PE \simeq \frac{GE^{local}}{M^{local}} \tag{3}$$

$$MPCH = \frac{\mathrm{Measured\ Housing\ Wealth\ Effect}}{\mathrm{Local\ Fiscal\ Multiplier}} = \frac{0.033}{1.5} = 0.022$$

- ▶ Problem: large approximation error in (3)
 - In all but simplest model, "relative error" of 0.33 to 0.57
 → mutiplier should be multiplied by 1.5 to 2
 - ▶ Very dependent on exact model: (2) is structural, but (3) is not
- ▶ Underlying issue is non-diagonal *M*^{local} (dynamic linkages)
 - ▶ Think $(I \text{Home Bias} \cdot MPC)^{-1}$ and MPC matrix not diagonal!

ightharpoonup Implementation: assume M^{local} is diagonal and apply static version

$$PE \simeq \frac{GE^{local}}{M^{local}} \tag{3}$$

$$MPCH = \frac{\mathrm{Measured\ Housing\ Wealth\ Effect}}{\mathrm{Local\ Fiscal\ Multiplier}} = \frac{0.033}{1.5} = 0.022$$

- ▶ Problem: large approximation error in (3)
 - In all but simplest model, "relative error" of 0.33 to 0.57
 → mutiplier should be multiplied by 1.5 to 2
 - ▶ Very dependent on exact model: (2) is structural, but (3) is not
- ▶ Underlying issue is non-diagonal *M*^{local} (dynamic linkages)
 - ▶ One solution: study model M^{local} to find a good parametrization for off-diagonal elements, use to correct the approximation error

Conclusion

- What Do We Learn From Cross-X Empirical Estimates in Macro?
- Question of the decade, paper makes significant progress!

From <u>regional variation</u>, you <u>may</u> be able to learn about <u>partial</u> equilibrium effects (here: MPCH)

- My suggestions:
- 1. Provide extra context as to why PE is useful
- 2. Parametrize M^{local} to improve quality of approximation
- 3. Justify using regional variation to get MPCH