Discussion of "Trade with Nominal Rigidities: Understanding the Unemployment and Welfare Effects of the China Shock" by Rodriguez-Clare, Ulate and Vasquez

Adrien Auclert

Stanford

NBER Monetary Economics Meeting Chicago Fed, March 1, 2024

Welfare effect of the China shock

- Q: How has trade with China affected U.S. household welfare?
 - 1. Lower prices for everyone (+)
 - 2. Lost jobs due to import competition (- for some)
 - 3. Lost/gained jobs in other (eg export) industries (+/-?)
- Standard trade models help us quantify 1, but how about 2-3?
- Step forward: Autor, Dorn, Hanson 2013 AER paper ("ADH")
 - Compare regions more vs less affected by import competition
 - Find: job losses in manufacturing and non-mfg, rise in unemployment and nonparticipation, and outmigration in more affected regions
- ► Existing "structural China shock" literature attempts to match these estimates, but assumes away unemployment
- ▶ Here: revisit these results by explicitly modeling unemployment

This paper

- 1. Take state-of-the-art structural China shock model
 - ► Caliendo, Dvorkin, Parro 2019 ECTA ("CDP")
 - ► Trade model with frictional sectoral reallocation + migration
- 2. Add downward nominal wage rigidity a la Schmitt-Grohe-Uribe
- 3. Calibrate model so it can quantitatively match ADH cross-X results
- 4. Reevaluate aggregate + welfare implications of China shock

Findings:

- lacktriangle Welfare gains for almost everyone despite unemployment $(P\downarrow)$
- ▶ But, nominal rigidities reduce these gains by about 25%

My discussion: perspective on motivation, modeling, and quant. results

The China shock paper

- ▶ Basic regression in ADH is a Bartik-type cross-regional regression
- ▶ If *i* is U.S. commuting zone then run, between 2000 and 2007,

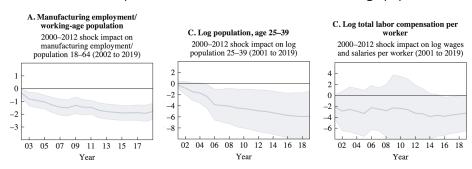
$$\Delta y_i = \alpha + \beta \cdot \left(\sum_{s} \frac{L_{is}}{L_i} \underbrace{\frac{\Delta Import_s}{L_s}}_{\Delta import \ exposure \ per \ worker \ in \ sector \ s} \right) + \epsilon_i$$

for various outcomes y_i (using an instrument for $\Delta Import_s$)

- Paper points out that if what changes is sector price p_s , and model is neoclassical, this is not the theoretically correct regression to run!)
- ▶ This is cross-X, use model to address the missing intercept problem

China shock paper results: employment

Table 5—Imports from China and Employment Status of Working-Age Population WITHIN CZs, 1990–2007: 28LS Estimates


Dependent variables: Ten-year equivalent changes in log population counts and population shares by employment status

	Mfg emp	Non-mfg emp	Unemp	NILF	SSDI receipt
	(1)	(2)	(3)	(4)	(5)
Panel A. 100 × log change in population co	unts				
(Δ imports from China to US)/worker	-4.231***	-0.274	4.921***	2.058*	1.466***
	(1.047)	(0.651)	(1.128)	(1.080)	(0.557)
Panel B. Change in population shares All education levels					
(Δ imports from China to US)/worker	-0.596***	-0.178	0.221***	0.553***	0.076***
, , , , , , , , , , , , , , , , , , , ,	(0.099)	(0.137)	(0.058)	(0.150)	(0.028)
College education					
(Δ imports from China to US)/worker	-0.592***	0.168	0.119***	0.304***	_
, ,	(0.125)	(0.122)	(0.039)	(0.113)	
No college education					
(Δ imports from China to US)/worker	-0.581***	-0.531***	0.282***	0.831***	_
, - ,,	(0.095)	(0.203)	(0.085)	(0.211)	

- More affected regions have lower employment in manufacturing
- Workers go to unemployment or exit labor force (not non-mfg)
- ▶ Paper targets these moments directly in calibration

Even more important motivation: persistence+wage effects

▶ From "On the persistence of the China shock" Brookings paper:

- ▶ Movements out of manufacturing and outmigration build up slowly
- ► Wage effects appear limited throughout

What are leading models to understand this?

- Canonical model here: Artuc, Chaudhuri, McLaren (2010 AER)
 - Dynamic equilibrium in sectoral labor markets
 - Extended to GE (goods market eqbm with trade) by CDP
- Simplest possible het-agent model: pure dynamic discrete choice
 - homogeneous workers in each (sector, region) cell
 - live hand to mouth, have fixed costs of changing cell, and EV taste shocks to smoothe out the discrete choice and create churn
- For instance with just sectors *s*, we have:

$$V_{st} = \log\left(W_{st}/P_{t}\right) + \max_{k}\left\{\nu\epsilon_{kt} - C_{sk} + \beta\mathbb{E}\left[V_{kt+1}\right]\right\}$$

► Generates share of workers in sector *s* as a fn of path of sector wages

$$N_{st}^{supply}\left(\left\{W_{kt'}/P_{t'}\right\}_{k,t'}\right)$$

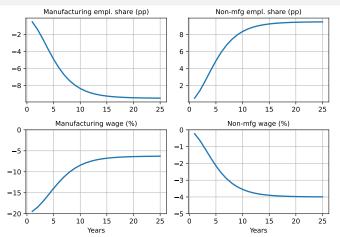
ightarrow dynamic labor supply function. Note: completely inelastic in SR

Closing the model + labor demand shock

- ▶ Suppose sector s firms produce from labor using $F_s(N_s)$
- Perfect competition, no adjustment costs:

$$p_{st}F_s'(N_{st})=W_{st}$$

so static labor demand function


$$N_{st}^{demand} = \left(F_s'\right)^{-1} \left(\frac{W_{st}}{p_{st}}\right)$$

lacktriangle Given path of prices $\{p_{st}\}$, equilibrium is set of $\{W_{kt}\}$ such that

$$N_{st}^{demand}\left(\left\{W_{st'}
ight\}_{t'},\left\{p_{st'}
ight\}_{t'}
ight)=N_{st}^{supply}\left(\left\{W_{kt'}
ight\}_{k,t'}
ight) \quad \forall s,t$$

- ▶ Say $s \in {Mfg, Other}$. Calibrate C_{sk} 's to steady state flows
- ▶ Reduce p_{Mfg} once and for all, what happens?

Impulse response to manufacturing labor demand shock

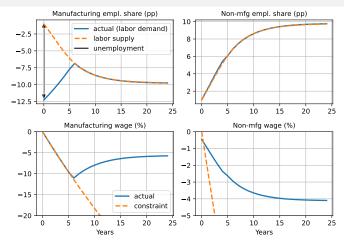
- ► Slow moving manufacturing decline. As in data ✓
- ▶ All job reallocation. Not in data! **メ** (Want unemp.+ nonparticip.)
- Manufacturing wage overshoot. Not in data! X

Wage ridigity comes in naturally

- Nominal wage rigitity can simultaneously solve these two issues (get nonparticipation by adding another sector as in CDP)
- ► Many possible ways to do this...
- This paper follows Schmitt-Grohe-Uribe: in each sector impose

$$W_{st} \geq \delta W_{st-1}$$

when binding, get unemployment


$$U_{\mathsf{st}} = N_{\mathsf{st}}^{\mathsf{supply}}\left(\left\{W_{\mathsf{st}}\right\}\right) - N_{\mathsf{st}}^{\mathsf{demand}}\left(\left\{W_{\mathsf{st}'}, p_{\mathsf{st}'}\right\}\right)$$

Income is rationed proportionally in each sector:

$$\left(1-U_{st}/N_{st}^{supply}\right)W_{st}/P_{t}$$

risk sharing... among hand-to-mouth families!

Implications of labor demand shock - DNWR

- ▶ No longer a wage overshoot! √
- Delivers unemployment... but now spiking on impact! X
- Odd contrast with slow movement of workers across sectors

Bottom line on motivation and modeling

- Nice way to add nominal rigidities to model while staying inside the realm of what the "hat algebra" solution method can do
- ► Fixes some implausible dynamics (wages) in the standard model, but adds others (unemployment)
- Please show your impulse responses!

Results

- ▶ Get China shock in model, backing out path of sector-specific Chinese productivity $\{A_{st}\}$ that explains $\Delta Imports_{st}$
- Pick ν , κ (migration elasticity) and δ to hit three moments:

Table 1: Employment, population, wage, and welfare effects of exposure to China across U.S. regions and associated parameters generating them

	ADH	Baseline	NM	$\nu = \kappa$	DNWRM
	(1)	(2)	(3)	(4)	(5)
Change in Population Shares					
Unemployment (targeted)	0.221**	0.221	0.221	0.221	0.221
NILF (targeted)	0.553**	0.553	0.553	0.553	0.553
Mfg Employment	-0.596**	-0.331	-0.337	-0.340	-0.543
Non-mfg Employment	-0.178	-0.442	-0.437	-0.434	-0.230
Percentage Changes					
Population (targeted)	-0.050	-0.050	-0.000	-0.521	-0.050
Mfg Wage	0.150	-0.214	-0.182	-0.049	0.152
Non-mfg Wage	-0.761**	-0.689	-0.717	-0.623	-1.065
Welfare					
Welfare vs exposure		-0.053	-0.079	-0.044	-0.047
Mean welfare change		0.229	0.235	0.225	0.197
Mean welf. change no DNWR		0.310	0.313	0.311	0.298
Parameters					
ν		0.551	0.594	0.562	0.496
κ		12.30		0.562	11.21
δ		0.980	0.980	0.981	0.987

Few non-targetted moments. Show full impulse responses vs data!

Is $\nu \neq \kappa$ really important? Outmigration

- ▶ Nice feature of paper: separate
 - sectoral reallocation elasticity $1/\nu$ (large)
 - ightharpoonup migration elasticity $1/\kappa$ (much lower) to match limited outmigration results from ADH
- ▶ But... is outmigration really that limited?

	I. E	I. By education level			II. By age group			
	All (1)	College (2)	Noncollege (3)	Age 16–34 (4)	Age 35-49 (5)	Age 50-64 (6)		
Panel A. No census divisie	on dummies or	other contro	ls					
(Δ imports from China to US)/worker	-1.031** (0.503)	-0.360 (0.660)	-1.097** (0.488)	-1.299 (0.826)	-0.615 (0.572)	-1.127*** (0.422)		
R^2	_	0.03	0.00	0.17	0.59	0.22		
Panel B. Controlling for c	ensus division	dummies						
(Δ imports from China to US)/worker	-0.355 (0.513)	0.147 (0.619)	-0.240 (0.519)	-0.408 (0.953)	-0.045 (0.474)	-0.549 (0.450)		
\mathbb{R}^2	0.36	0.29	0.45	0.42	0.68	0.46		
Panel C. Full controls								
(Δ imports from China to US)/worker	-0.050 (0.746)	-0.026 (0.685)	-0.047 (0.823)	-0.138 (1.190)	0.367 (0.560)	-0.138 (0.651)		
R^2	0.42	0.35	0.52	0.44	0.75	0.60		

For most other specs (+ persistence paper), $\kappa = \nu$ seems fine!

Welfare impact with unemployment

Main result: positive welfare effects, but smaller than CDP

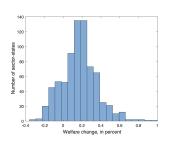


FIGURE 10.-Welfare effects of the China shock across U.S. labor markets. Note: The figure presents the

- ▶ Makes sense... but clearly an overstatement still, given risk sharing!
- cf large cost of business cycle with uninsured unemployment

Monetary and fiscal policy

- Other limitation of this setting: can only study token monetary policy (eg constant nominal GDP), and not at all fiscal policy
- ▶ But these are very relevant questions!
 - ► What implications of trade with China for monetary policy, given impacts on inflation, reallocation, unemployment?
 - ► How can fiscal policy respond? Trade assitance, etc
- Requires breaking hand-to-mouth assumption; have model with full distribution of agents in each sector-region cell
- ► Recent advances in computation (Auclert, Majic, Rognlie, Straub) make these types of regional HANK models feasible to solve!
 - "Sequence-space Jacobian" becomes "dynamic hat algebra" in the case of only hand-to-mouth agents and pure discrete choice

Concluding thoughts

- Great paper! Very well done and very clear
- Unemployment is clearly a first-order issue for the China shock. But are DWNR the way to go?
- Embracing heterogeneity even more, and moving beyond dynamic hat algebra, could increase quantitative realism