How Should Heterogeneity Affect the Design of Optimal Monetary and Fiscal Policy?

Adrien Auclert, Stanford

Heterogeneity in Macroeconomics: Implication for Policy
NY Fed, November 2021
Overview

• **New Keynesian literature** provides us with a framework for thinking about:
 • **positive questions**: how monetary and fiscal policy *work*
 • **normative questions**: how monetary and fiscal policy *should be set*, on average and over the business cycle, if goal is to maximize welfare

• Coherent microfoundations essential to success of this research program
 • **positive**: e.g., to make sense of role of expectations
 • **normative**: e.g., “loss function” that comes from within the model

• Past decade: HANK literature has been revisiting these microfoundations
 • can match key micro moments (esp. MPCs). How does the big picture change?
 • **positive**: real progress made on general principles/forces [cf Greg & Veronica]
 • **normative**: comparatively at its infancy. A bit too early to take stock!

Today: overview of what we do know, my take on the key outstanding issues.
Overview

- **New Keynesian literature** provides us with a framework for thinking about:
 - **positive questions**: how monetary and fiscal policy *work*
 - **normative questions**: how monetary and fiscal policy *should be set*, on average and over the business cycle, if goal is to maximize welfare

- **Coherent microfoundations** essential to success of this research program
 - **positive**: e.g., to make sense of role of expectations
 - **normative**: e.g., “loss function” that comes from within the model

Past decade: HANK literature has been revisiting these microfoundations
- can match key micro moments (esp. MPCs). How does the big picture change?
- positive: real progress made on general principles/forces [cf Greg&Veronica]
- normative: comparatively at its infancy. A bit too early to take stock!

Today: overview of what we do know, my take on the key outstanding issues.
Overview

- **New Keynesian literature** provides us with a framework for thinking about:
 - **positive questions**: how monetary and fiscal policy *work*
 - **normative questions**: how monetary and fiscal policy *should be set*, on average and over the business cycle, if goal is to maximize welfare

- **Coherent microfoundations** essential to success of this research program
 - **positive**: e.g., to make sense of role of expectations
 - **normative**: e.g., “loss function” that comes from within the model

- Past decade: **HANK literature** has been revisiting these microfoundations
 - can match key micro moments (esp. MPCs). How does the big picture change?
Overview

- **New Keynesian literature** provides us with a framework for thinking about:
 - **positive questions**: how monetary and fiscal policy *work*
 - **normative questions**: how monetary and fiscal policy *should be set*, on average and over the business cycle, if goal is to maximize welfare

- **Coherent microfoundations** essential to success of this research program
 - **positive**: e.g., to make sense of role of expectations
 - **normative**: e.g., “loss function” that comes from within the model

- **Past decade**: **HANK literature** has been revisiting these microfoundations
 - can match key micro moments (esp. MPCs). How does the big picture change?
 - **positive**: real progress made on general principles/forces [cf Greg&Veronica]
 - **normative**: comparatively at its infancy. A bit too early to take stock!
Overview

- **New Keynesian literature** provides us with a framework for thinking about:
 - **positive questions**: how monetary and fiscal policy *work*
 - **normative questions**: how monetary and fiscal policy *should be set*, on average and over the business cycle, if goal is to maximize welfare

- **Coherent microfoundations** essential to success of this research program
 - **positive**: e.g., to make sense of role of expectations
 - **normative**: e.g., “loss function” that comes from within the model

- Past decade: **HANK literature** has been revisiting these microfoundations
 - can match key micro moments (esp. MPCs). How does the big picture change?
 - **positive**: real progress made on general principles/forces [cf Greg&Veronica]
 - **normative**: comparatively at its infancy. A bit too early to take stock!

Today: overview of what we do know, my take on the key outstanding issues.
• Three fundamental questions:

1. What is the model?

2. What is our concept of optimal policy?
 • Ad-hoc objective function?
 • Objective function from within the model?

3. How do we solve each of these problems?
Outline of key issues for optimal policy in HANK

- Three fundamental questions:

1. What is the model? **we’re getting close**

2. What is our concept of optimal policy?
 - Ad-hoc objective function? **we can do this**
 - Objective function from within the model? **still a lot to do**

3. How do we solve each of these problems?
What is the model?

- Can only make progress on normative once we understand the positive

NK literature organized around:
- textbook /two.osf-equation model: canonical consensus model with optimal policy solution known in closed form. Acts as clear benchmark for the literature.
- quantitative models: built on top of textbook model [typically variations on CEE/Smets-Wouters], estimated to particular economies, with known algorithms to obtain optimal policy solution numerically.

Situation is more complex for HANK:
- no single canonical tractable model. Instead, a host of useful models that each capture some, but not all the relevant forces in HANK.
- no consensus on how to set up quantitative models, details matter a lot more than for RA models, only a few examples of models estimated on macro data.

But, we have made progress on /one.osf and /two.osf!
What is the model?

- Can only make progress on normative once we understand the positive

- NK literature organized around:
 1. **textbook 2-equation model**: canonical consensus model with optimal policy solution known in closed form. Acts as clear benchmark for the literature.
 2. **quantitative models**: built on top of textbook model [typically variations on CEE/Smets-Wouters], estimated to particular economies, with known algorithms to obtain optimal policy solution numerically.

- Situation is more complex for HANK:
 1. no single canonical tractable model. Instead, a host of useful models that each capture some, but not all the relevant forces in HANK.
 2. no consensus on how to set up quantitative models, details matter a lot more than for RA models, only a few examples of models estimated on macro data.

- But, we have made progress on textbook and quantitative models!
What is the model?

• Can only make progress on normative once we understand the positive

• NK literature organized around:
 1. textbook 2-equation model: canonical consensus model with optimal policy solution known in closed form. Acts as clear benchmark for the literature.
 2. quantitative models: built on top of textbook model [typically variations on CEE/Smets-Wouters], estimated to particular economies, with known algorithms to obtain optimal policy solution numerically.

• Situation is more complex for HANK:
 1. no single canonical tractable model. Instead, a host of useful models that each capture some, but not all the relevant forces in HANK.
 2. no consensus on how to set up quantitative models, details matter a lot more than for RA models, only a few examples of models estimated on macro data.
What is the model?

• Can only make progress on normative once we understand the positive

• NK literature organized around:
 1. textbook 2-equation model: canonical consensus model with optimal policy solution known in closed form. Acts as clear benchmark for the literature.
 2. quantitative models: built on top of textbook model [typically variations on CEE/Smets-Wouters], estimated to particular economies, with known algorithms to obtain optimal policy solution numerically.

• Situation is more complex for HANK:
 1. no single canonical tractable model. Instead, a host of useful models that each capture some, but not all the relevant forces in HANK.
 2. no consensus on how to set up quantitative models, details matter a lot more than for RA models, only a few examples of models estimated on macro data.

• But, we have made progress on 1 and 2!
Progress with tractable models

- **Two agent models** [Bilbiie 08, Bilbiie 19, Debortoli-Gali]
 - Captures high MPCs, but miss precautionary savings motive
 - Optimal policy: usual loss function, possibly with cons. inequality term added

- **Zero liquidity models** [Challe, Bilbiie, McKay-Reis]
 - Captures extreme precautionary motive, but miss MPC&wealth distribution
 - Usual loss function, natural rates of y and r affected by precautionary motive

- **CARA models** [Acharya-Dogra, Acharya-Challe-Dogra]
 - Captures reasonable precautionary savings motive, but miss high MPCs
 - Optimal policy “target criterion” stabilizes output to avoid cons. dispersion

Bottom line: models very useful to understand aggregate transmission (eg, discounted Euler equation) and give sense of shape of loss function. Too limited to build on for quantitative purposes.
Progress with tractable models

- **Two agent models** [Bilbiie 08, Bilbiie 19, Debortoli-Gali]
 - Captures high MPCs, but miss precautionary savings motive
 - Optimal policy: usual loss function, possibly with cons. inequality term added

- **Zero liquidity models** [Challe, Bilbiie, McKay-Reis]
 - Captures extreme precautionary motive, but miss MPC&wealth distribution
 - Usual loss function, natural rates of y and r affected by precautionary motive

- **CARA models** [Acharya-Dogra, Acharya-Challe-Dogra]
 - Captures reasonable precautionary savings motive, but miss high MPCs
 - Optimal policy “target criterion” stabilizes output to avoid cons. dispersion

- **Bottom line:** models very useful to understand aggregate transmission (eg, discounted Euler equation) and give sense of shape of loss function. Too limited to build on for quantitative purposes.
Progress with quantitative models

- Progress has been on three fronts:
 1. We are getting closer to figuring out a "canonical" HANK model, for example, rigid wages/flexible prices, rather than rigid prices/flexible wages (shuts off profit distribution issues and wealth effects on labor supply).
 2. We now have systematic and fast methods to get first-order perturbation solutions for realistic models with thousands of idiosyncratic states in the "state space" (Reiter method) and "sequence space" (sequence-space jacobian method, no dimension reduction).
 3. We are getting close to having "plug-and-play" tools for writing down models, obtaining their solution and estimating them on macro data.
Progress with quantitative models

- Progress has been on three fronts:

1. We are getting closer to figuring out a “canonical” HANK model
 - eg, rigid wages/flexible prices, rather than rigid prices/flexible wages
 - (shuts off profit distribution issues and wealth effects on labor supply)
 - simple versatile model that we can teach in courses, usefully build upon
Progress with quantitative models

• Progress has been on three fronts:

1. We are getting closer to figuring out a “canonical” HANK model
 • eg, rigid wages/flexible prices, rather than rigid prices/flexible wages
 • (shuts off profit distribution issues and wealth effects on labor supply)
 • simple versatile model that we can teach in courses, usefully build upon

2. We now have systematic and fast methods to get first-order perturbation solution for realistic models with thousands of idiosyncratic states
 • in the “state space” [Reiter method + dimension reduction]
 • in the “sequence space” [sequence-space jacobian method, no dim. reduction]
Progress with quantitative models

- Progress has been on three fronts:

 1. We are getting closer to figuring out a “canonical” HANK model
 - eg, rigid wages/flexible prices, rather than rigid prices/flexible wages
 - (shuts off profit distribution issues and wealth effects on labor supply)
 - simple versatile model that we can teach in courses, usefully build upon

 2. We now have systematic and fast methods to get first-order perturbation solution for realistic models with thousands of idiosyncratic states
 - in the “state space” [Reiter method + dimension reduction]
 - in the “sequence space” [sequence-space jacobian method, no dim. reduction]

 3. We are getting close to having “plug-and-play” tools for writing down models, obtaining their solution and estimating them on macro data
What is our concept of optimal policy?

- **NK model**: with relevant constant subsidy from fiscal policy in place, second order approximation to welfare delivers loss function from within the model

\[
E \left[\sum \beta^t \left((y_t - y_t^*)^2 + \lambda \pi_t^2 \right) \right]
\]
(1)

- Key success: this is how policymakers viewed their objective already!
What is our concept of optimal policy?

• **NK model**: with relevant constant subsidy from fiscal policy in place, second order approximation to welfare delivers loss function from within the model

\[
\mathbb{E} \left[\sum \beta^t ((y_t - y_t^*)^2 + \lambda \pi_t^2) \right]
\]

(1)

• Key success: this is how policymakers viewed their objective already!

• Problem in HANK: **no equivalent simple loss function**
 • Not clear how the “cons. inequality” term from tractable models generalizes
What is our concept of optimal policy?

- **NK model**: with relevant constant subsidy from fiscal policy in place, second order approximation to welfare delivers loss function from within the model

\[E \left[\sum \beta^t \left((y_t - y_t^*)^2 + \lambda \pi_t^2 \right) \right] \]

(1)

- Key success: this is how policymakers viewed their objective already!

- Problem in HANK: **no equivalent simple loss function**
 - Not clear how the “cons. inequality” term from tractable models generalizes

- Two approaches from here:
 1. Specify an ad-hoc, non-microfounded loss function
 2. Directly solve for optimal policy
Ad-hoc loss function approach

• In this approach, we pre-specify the loss function directly [e.g. Barnichon-Mesters, McKay-Wolf]

• Akin to using (1), but with something else than $\lambda = \frac{\epsilon}{\kappa}$ and/or arbitrary y_t^*

• Can include explicit consideration of distribution, etc.
Ad-hoc loss function approach

- In this approach, we pre-specify the loss function directly [e.g. Barnichon-Mesters, McKay-Wolf]

- Akin to using (1), but with something else than $\lambda = \frac{e}{\kappa}$ and/or arbitrary y_t^*

- Can include explicit consideration of distribution, etc.

- Pros:
 1. May reflect outside mandate, or central banker formalizing their objective
 2. Natural if we don’t trust second-order properties of the model
 3. Optimal policy follows immediately from first-order perturbation solution
Ad-hoc loss function approach

• In this approach, we pre-specify the loss function directly [e.g. Barnichon-Mesters, McKay-Wolf]

• Akin to using (1), but with something else than $\lambda = \frac{c}{k}$ and/or arbitrary y_t^*

• Can include explicit consideration of distribution, etc.

• Pros:
 1. May reflect outside mandate, or central banker formalizing their objective
 2. Natural if we don’t trust second-order properties of the model
 3. Optimal policy follows immediately from first-order perturbation solution

• Cons:
 1. May miss out on important forces that the model cries for (e.g., insurance role)
 2. No guidance on what measure of distribution to use, or how to trade off any given measure of inequality vs aggregate objectives
Ad-hoc loss function approach: solution

• Suppose for instance that the loss function is

\[L = \frac{1}{2} (y'y + \lambda \pi' \pi) \]

where \(y, \pi \) are \(T \times 1 \) paths, and the policy tool is the path of the real rate \(r \)
Ad-hoc loss function approach: solution

• Suppose for instance that the loss function is

\[L = \frac{1}{2} (\mathbf{y}'\mathbf{y} + \lambda \pi'\pi) \]

where \(\mathbf{y}, \pi \) are \(T \times 1 \) paths, and the policy tool is the path of the real rate \(r \)

• The first-order perturbation solution in sequence space gives us

\[\mathbf{y} = \mathbf{y}_0 - \mathbf{B} \cdot \mathbf{r} \]
\[\pi = \pi_0 - \mathbf{D} \cdot \mathbf{r} \]

where \(\mathbf{y}_0, \pi_0 \) are \(T \times 1 \) shocks and \(\mathbf{B}, \mathbf{D} \) are \(T \times T \) sequence-space Jacobians
Ad-hoc loss function approach: solution

• Suppose for instance that the loss function is

\[L = \frac{1}{2} (y'y + \lambda \pi'\pi) \]

where \(y, \pi \) are \(T \times 1 \) paths, and the policy tool is the path of the real rate \(r \)

• The first-order perturbation solution in sequence space gives us

\[y = y_o - B \cdot r \]
\[\pi = \pi_o - D \cdot r \]

where \(y_o, \pi_o \) are \(T \times 1 \) shocks and \(B, D \) are \(T \times T \) sequence-space Jacobians

• This is the canonical QP problem with solution

\[r = (B'B + \lambda D'D)^{-1} (B'y_o + \lambda D'\pi_o) \]

giving the optimal response of monetary policy to the shocks (cf OLS!)
An example: cost-push shock, optimal monetary policy

• Compare simple HA model vs RA. Solve optimal monetary policy:

![Graphs showing output, inflation, and interest rate responses to a cost-push shock with and without optimal monetary policy.](image-url)
An example: cost-push shock, optimal monetary policy

- Compare simple HA model vs RA. Solve optimal monetary policy:

 ![Output Graph](#)
 ![Inflation Graph](#)
 ![Interest Rate Graph](#)

- Open question: when is optimal ad-hoc policy very different in HA vs RA?
Objective function from within the model

- **Goal**: solve for optimal policy under commitment in given HANK model
- **First step**: determine the steady state of the optimal Ramsey plan
 - i.e. where the planned economy goes absent any shocks
 - not the same as the “optimal steady state” in macro-PF!
Objective function from within the model

- **Goal**: solve for optimal policy under commitment in given HANK model
- **First step**: determine the steady state of the optimal Ramsey plan
 - i.e. where the planned economy goes absent any shocks
 - not the same as the “optimal steady state” in macro-PF!
- **Problem**: not easy to find this steady state. Not even clear that it exists!
Objective function from within the model

• **Goal**: solve for optimal policy under commitment in given HANK model

• **First step**: determine the steady state of the optimal Ramsey plan
 • i.e. where the planned economy goes absent any shocks
 • not the same as the “optimal steady state” in macro-PF!

• **Problem**: not easy to find this steady state. Not even clear that it exists!

• **Existing approaches here**:
 • Parameterized search for optimal transition paths [Dyrda-Pedroni]
 • Lagrangian approach in state space [Hagedorn et al]
 • Perturbation around current point rather than steady-state [Bhandari et al]
 • Truncation of histories [Legrand-Ragot]
 • Analytical solution to tractable model [Chien-Wen]
Objective function from within the model

- **Goal**: solve for optimal policy under commitment in given HANK model

- **First step**: determine the steady state of the optimal Ramsey plan
 - i.e. where the planned economy goes absent any shocks
 - not the same as the “optimal steady state” in macro-PF!

- **Problem**: not easy to find this steady state. Not even clear that it exists!

- **Existing approaches here**:
 - Parameterized search for optimal transition paths [Dyrda-Pedroni]
 - Lagrangian approach in state space [Hagedorn et al]
 - Perturbation around current point rather than steady-state [Bhandari et al]
 - Truncation of histories [Legrand-Ragot]
 - Analytical solution to tractable model [Chien-Wen]

- **Next**: work in progress with Lagrangian approach in sequence space
 [Auclert-Cai-Rognlie-Straub]
Simplest steady state problem

- Gov. issues bonds to provide liquidity, levies proportional income tax τ_t
- Labor supply is exogenous; agents solve

$$\mathcal{U}_i (\{r_t, \tau_t\}) = \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it})$$

subject to

$$b_{it} + c_{it} = (1 + r_{t-1})b_{i,t-1} + (1 - \tau_t)e(s_{it})$$

$$b_{it} \geq 0$$
Simplest steady state problem

• Gov. issues bonds to provide liquidity, levies proportional income tax \(\tau_t \)
• Labor supply is exogenous; agents solve

\[
U_i (\{r_t, \tau_t\}) = \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}) \\
\text{s.t. } b_{it} + c_{it} = (1 + r_{t-1}) b_{it-1} + (1 - \tau_t) e(s_{it}) \\
b_{it} \geq 0
\]

• Let \(\mathbb{E} \) denote average across distribution, utilitarian government solves

\[
\max_{\{r_t, \tau_t\}} \mathbb{E} [U_i (\{r_t, \tau_t\})] \\
\text{s.t. } (1 + r_{t-1}) b_{t-1} = b_t + \tau_t \quad \forall t \\
b_t = B_t(\{r_s, \tau_s\}) \quad \forall t
\]
Simplest steady state problem

- Gov. issues bonds to provide liquidity, levies proportional income tax τ_t
- Labor supply is exogenous; agents solve

$$U_i (\{r_t, \tau_t\}) = \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it})$$

s.t. $b_{it} + c_{it} = (1 + r_{t-1}) b_{it-1} + (1 - \tau_t) e(s_{it})$

$$b_{it} \geq 0$$

- Let \mathbb{E} denote average across distribution, utilitarian government solves

$$\max_{\{r_t, \tau_t\}} \mathbb{E} [U_i (\{r_t, \tau_t\})]$$

s.t. $(1 + r_{t-1}) b_{t-1} = b_t + \tau_t \quad \forall t$

$$b_t = B_t(\{r_s, \tau_s\}) \quad \forall t$$

- Sequence-space method gives us $B_t(\{r_s, \tau_s\})$ and $U_i (\{r_t, \tau_t\})$
Solution to steady-state problem

- Steady state (if exists) solves

$$\tau = rb$$

$$b = B^{ss}(r, \tau)$$

$$(1 - \beta(1 + r)) \lambda^{gov} = \lambda^{asset}$$

$$\mathbb{E} \left[u'(c_i) \frac{e_i}{\mathbb{E}[e_i]} \right] - \lambda^{gov} = \lambda^{asset} \lim_{s \to \infty} \sum_{t=0}^{\infty} \beta^{t-s} \frac{\partial B_t}{\partial \tau_s}$$

$$\mathbb{E} \left[u'(c_i) \frac{b_i}{\mathbb{E}[b_i]} \right] - \lambda^{gov} = -\beta^{-1} \lambda^{asset} \lim_{s \to \infty} \sum_{t=0}^{\infty} \beta^{t-s} \frac{\partial \log B_t}{\partial r_s}$$
Solution to steady-state problem

- Steady state (if exists) solves
 \[
 \tau = rb \\
 b = B^{ss}(r, \tau) \\
 (1 - \beta(1 + r)) \lambda^{gov} = \lambda^{asset}
 \]

\[
\mathbb{E} \left[u'(c_i) \frac{e_i}{\mathbb{E} [e_i]} \right] - \lambda^{gov} = \lambda^{asset} \lim_{s \to \infty} \sum_{t=0}^{\infty} \beta^{t-s} \frac{\partial B_t}{\partial \tau_s}
\]

\[
\mathbb{E} \left[u'(c_i) \frac{b_i}{\mathbb{E} [b_i]} \right] - \lambda^{gov} = -\beta^{-1} \lambda^{asset} \lim_{s \to \infty} \sum_{t=0}^{\infty} \beta^{t-s} \frac{\partial \log B_t}{\partial r_s}
\]

- Sequence-space objects \(\sum_{t=0}^{\infty} \beta^{t-s} \frac{\partial B_t}{\partial \tau_s} \) in planner FOCs!

Results so far: steady-state does not exist for this model (\(b \) diverges).

In endogenous-labor model, exists only for certain \(u(c, n) \).
Solution to steady-state problem

- Steady state (if exists) solves

\[\tau = rb \]

\[b = B^{ss}(r, \tau) \]

\[(1 - \beta(1 + r)) \lambda^{gov} = \lambda^{asset} \]

- Sequence-space objects \(\sum_{t=0}^{\infty} \beta^{t-s} \frac{\partial B_t}{\partial \tau_s} \) in planner FOCs!

- **Results so far:** steady-state does not exist for this model \((b \) diverges). In endogenous-labor model, exists only for certain \(u(c, n) \).
• Suppose we have the s.s. of the Ramsey plan. How to solve for dynamics?

• **Usual issue:** the Ramsey plan is not time consistent
 • cf inflationary bias in usual NK model
 • specific HANK issues: want to use unexpected policy changes for redistribution
Suppose we have the s.s. of the Ramsey plan. How to solve for dynamics?

Usual issue: the Ramsey plan is not time consistent
- cf inflationary bias in usual NK model
- specific HANK issues: want to use unexpected policy changes for redistribution

Approach 1: embrace date-o reoptimization!
- solve for transition paths from any s.s. towards the Ramsey steady state
Suppose we have the s.s. of the Ramsey plan. How to solve for dynamics?

Usual issue: the Ramsey plan is not time consistent
- cf inflationary bias in usual NK model
- specific HANK issues: want to use unexpected policy changes for redistribution

Approach 1: embrace date-0 reoptimization!
- solve for transition paths from any s.s. towards the Ramsey steady state

Approach 2: get “timeless perspective” solution
- write down the full Ramsey problem and take FOCs
- systematic algorithm still far off (but sequence-space approach does simplify)
What general principles will emerge?

- Existing results from the literature that will certainly generalize:
 - Aggregate shocks have redistributive effects. Optimal Ramsey policy tries to undo these redistributive effects [Bhandari et al]
 - Date-o planner inflates away nominal assets to redistribute to high $u'(c)$ agents [Nuno-Thomas]
 - Date-o planner lowers real rates to redistribute to high $u'(c)$ agents [Acharya-Challe-Dogra]

- Specific findings from existing papers may or may not generalize:
 - Monetary policy seeks to undo redistribution from markup shocks by creating a demand-induced boom to redistribute back to workers [Bhandari et al]
 - Stabilize output level to stabilize cons. inequality [Acharya-Challe-Dogra]
 - Price stability as continued dominant concern [Legrand-Martin Baillon-Ragot]
What general principles will emerge?

• Existing results from the literature that will certainly generalize:
 • Aggregate shocks have redistributive effects. Optimal Ramsey policy tries to undo these redistributive effects [Bhandari et al]
 • Date-0 planner inflates away nominal assets to redistribute to high $u'(c)$ agents [Nuno-Thomas]
 • Date-0 planner lowers real rates to redistribute to high $u'(c)$ agents [Acharya-Challe-Dogra]

• Specific findings from existing papers may or may not generalize:
 • Monetary policy seeks to undo redistribution from markup shocks by creating a demand-induced boom to redistribute back to workers [Bhandari et al]
 • Stabilize output level to stabilize cons. inequality [Acharya-Challe-Dogra]
 • Price stability as continued dominant concern [Legrand-Martin Baillon-Ragot]
• Optimal policy is an exciting frontier research area
• Next decade will likely see enormous progress, the way the past decade has seen progress on the positive front
• Let’s reconvene then and take stock at that point!