Aggregate Demand and the Top 1%

Adrien Auclert Matthew Rognlie
Stanford Northwestern

AEA Meetings, Chicago
January 7, 2017
Two canonical models of inequality

1. Income inequality literature:
 ▶ Considers random growth income processes
 ▶ Gets Pareto tail of the income distribution

2. Incomplete markets literature:
 ▶ Considers variety of income processes (typically lognormal)
 ▶ Gets predictions for aggregate consumption, savings and wealth

This paper combines 1 and 2 to examine macro consequences of an increase in top 1% of labor incomes, leaving average income constant. Focus on aggregate demand (partial equilibrium) outcomes. Top 1% ↑ ⇒ desired consumption ↓ in short run, wealth ↑ in long run. General equilibrium consequences depend on monetary policy response. See "Inequality and Aggregate Demand". Case study: US labor income inequality, 1980–today.
Two canonical models of inequality

1. Income inequality literature:
 - Considers *random growth* income processes
 - Gets Pareto tail of the income distribution

2. Incomplete markets literature:
 - Considers variety of income processes (typically lognormal)
 - Gets predictions for aggregate consumption, savings and wealth

 This paper: combines 1 and 2 to examine macro consequences of an increase in top 1% of labor incomes, leaving average income cst
Two canonical models of inequality

1. Income inequality literature:
 ▶ Considers random growth income processes
 ▶ Gets Pareto tail of the income distribution

2. Incomplete markets literature:
 ▶ Considers variety of income processes (typically lognormal)
 ▶ Gets predictions for aggregate consumption, savings and wealth

▶ This paper: combines 1 and 2 to examine macro consequences of an increase in top 1% of labor incomes, leaving average income cst
 ▶ Focus on aggregate demand (partial equilibrium) outcomes
 ▶ Top 1% ↑ ⇒ desired consumption ↓ in short run, wealth ↑ in long run
Two canonical models of inequality

1. Income inequality literature:
 - Considers random growth income processes
 - Gets Pareto tail of the income distribution

2. Incomplete markets literature:
 - Considers variety of income processes (typically lognormal)
 - Gets predictions for aggregate consumption, savings and wealth

► This paper: combines 1 and 2 to examine macro consequences of an increase in top 1% of labor incomes, leaving average income cst
 - Focus on aggregate demand (partial equilibrium) outcomes
 - Top 1% ↑ ⇒ desired consumption ↓ in short run, wealth ↑ in long run
 - General equilibrium consequences depend on mon. policy response
 - See “Inequality and Aggregate Demand”
Two canonical models of inequality

1. Income inequality literature:
 ▶ Considers random growth income processes
 ▶ Gets Pareto tail of the income distribution

2. Incomplete markets literature:
 ▶ Considers variety of income processes (typically lognormal)
 ▶ Gets predictions for aggregate consumption, savings and wealth

▶ This paper: combines 1 and 2 to examine macro consequences of an increase in top 1% of labor incomes, leaving average income cst
 ▶ Focus on aggregate demand (partial equilibrium) outcomes
 ▶ Top 1% ↑ ⇒ desired consumption ↓ in short run, wealth ↑ in long run
 ▶ General equilibrium consequences depend on mon. policy response
 ▶ See “Inequality and Aggregate Demand”
 ▶ Case study: US labor income inequality, 1980–today
Simple random growth income process

- Suppose process for gross labor income z_{it} follows

$$d \log z_{it} = -\mu dt + \sigma dZ_{it}$$

with Z_{it} standard Brownian motion and reflecting barrier at $z_{it} = z$

- ⇒ stationary distribution is Pareto

$$P(z_i \geq z) \propto z^{-\alpha}$$

with tail coefficient

$$\alpha = \frac{2\mu}{\sigma^2}$$

- Parsimonious, explains incomes within top 1% well
Top 1% labor income shares in US (wages and salaries)

$$\alpha = \frac{1}{1 - \frac{\log(\text{top 1\% share})}{\log(1\%)}}$$

<table>
<thead>
<tr>
<th>Year</th>
<th>Top 1% share</th>
<th>Top 0.1% share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td></td>
<td>2.47</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>1.91</td>
</tr>
</tbody>
</table>

Source: World Top Incomes Database
Top 1% labor income shares in US (wages and salaries)

\[\alpha = \frac{1}{1 - \frac{\log(\text{top 1% share})}{\log(1\%)}} \Rightarrow \left\{ \begin{array}{l} \alpha_{1980} = 2.47 \end{array} \right\} \]

Source: World Top Incomes Database
Top 1% labor income shares in US (wages and salaries)

\[
\alpha = \frac{1}{1 - \frac{\log(\text{top 1\% share})}{\log(1\%)}} \Rightarrow \begin{cases}
\alpha_{1980} = 2.47 \\
\alpha_{\text{today}} = 1.91
\end{cases}
\]

Source: World Top Incomes Database
Parameterizing the model

- Estimates of income risk: $\sigma^2 \in [0.01, 0.04]$, possibly rising over time
 - Set $\sigma^2_{1980} = 0.02$
 - Then $\mu_{1980} = 0.024$ matches α_{1980}

- Consider three explanations for fall in α:

 $$ \alpha = \frac{2\mu}{\sigma^2}, \quad \frac{2\mu}{\sigma^2} \uparrow, \quad \frac{2\mu}{\sigma^2} \uparrow\uparrow $$

 ie

 $$ \sigma^2_{\text{today}} = \sigma^2_{1980} \left(\frac{\alpha_{1980}}{\alpha_{\text{today}}} \right)^k \quad k = 0, 1, 2 $$

- Our benchmark is $k = 2$
 - Transitions between income percentiles unchanged, but levels spread
 - Interpretation: secular trend in relative skill prices
 - Transition can be infinitely fast: Gabaix, Lasry, Lions and Moll (2016)
Model: households

- Mass 1 of ex-ante identical households. Purely idiosyncratic risk:
 - pre-tax income z_{it}, discretized version of above process
 - stationary (Pareto) distribution of income states, $\mathbb{E} [z] = 1$

- Separable preferences, constant EIS ν: $u(c) = \frac{c^{1-\nu-1}}{1-\nu-1}$

- Incomplete markets: trade in risk-free asset a_{it} with return r_t

$$\max \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t u(c_{it}) \right]$$

s.t. $c_{it} + a_{it} = y_{it} + (1 + r_{t-1}) a_{it-1}$

$a_{it} \geq 0$

- Post-tax income: affine transformation of pre-tax

$$y_{it} = \tau^r + (1 - \tau^r) z_{it}$$
Model calibration and experiment

- Calibration to 1980 steady-state:
 - $\sigma_{1980} = 2\%$, $\mu_{1980} = 2.4\%$
 - $\tau^r = 17.5\%$ consistent with progressivity of US tax system
 - $\beta = 0.95$ generates wealth/post-tax income ratio W_{1980} when $r = 4\%$

- Our quantitative experiment:
 - Achieve $\alpha \downarrow$ through $k = 0, 1, 2$; leaving $\mathbb{E}[z] = \mathbb{E}[y] = 1$
 - Phased in between 1980 and today
 - Maintain $r = 4\%$ constant
 - Trace out impact on consumption path dC_t and ss wealth $\frac{dW}{W}$
Why this matters

- In Auclert-Rognlie “Inequality and Aggregate Demand”, we embed above framework in general equilibrium:
 - Neoclassical GE same as Aiyagari (1994)
 - full employment at all times
 - With downward nominal wage rigidities and binding zero lower bound
 - can have depressed employment
 - temporarily or permanently (’secular stagnation’)
In Auclert-Rognlie “Inequality and Aggregate Demand”, we embed above framework in general equilibrium:

- Neoclassical GE same as Aiyagari (1994)
 - full employment at all times
- With downward nominal wage rigidities and binding zero lower bound
 - can have depressed employment
 - temporarily or permanently (‘secular stagnation’)

Key result: dC_t and $\frac{dW}{W}$ **sufficient statistics** for effects on macro aggregates of changes in income inequality

- real interest rates, consumption, employment, and output, e.g.

 Output effect = (GE multiplier) \cdot (PE sufficient statistic)
Partial eqbm path for aggregate wealth dW_t/W

- Recall $k = 0$ has constant σ and lower μ
- → not just a precautionary savings effect
Decomposing steady-state dW/W

When $k = 2$

\[
\frac{dW}{W} = 1.98 = \text{Cov}(\epsilon_{W,y}, dy)
\]

where $\epsilon_{W,y}$ is effect of only increasing income level 'y'
Decomposing impact effect dC

When change in distribution is temporary

$$dC = -1.8\% = \text{Cov}(MPC_y, dy)$$

where dC is effect, MPC is average for income $'y'$ at $t = 0$
Conclusion

- Rise in top 1% may have depressed aggregate demand:
 - Lower aggregate consumption via MPC channel (likely small effect)
 - Raise aggregate savings via precautionary savings + wealth effect channels (possibly very large)

- Macroeconomic consequences depend on monetary policy:
 - Away from the ZLB, lowers equilibrium interest rate
 - In our experiments $dr = -45$bp to -85bp
Predicted path for equilibrium interest rates

\[r_t^k \]

- \(k = 0 \)
- \(k = 1 \)
- \(k = 2 \)
Conclusion

- Rise in top 1% may have depressed aggregate demand:
 - Lower aggregate consumption via MPC channel (likely small effect)
 - Raise aggregate savings via precautionary savings + wealth effect channels (possibly very large)

- Macroeconomic consequences depend on monetary policy:
 - Away from the ZLB, lowers equilibrium interest rate
 - In our experiments $dr = -45\text{bp}$ to -85bp
 - One factor contributing to bringing economy to ZLB, may persist

- At the ZLB, generates unemployment
 - Model implies permanent depression (secular stagnation)
 - Mitigated by expansionary fiscal policy
 - see Auclert-Rognlie