Discussion of “The Transmission of Monetary Policy through Redistributions and Durables Purchases” by Silvana Tenreyro and Vincent Sterk

Adrien Auclert

Stanford (visiting Princeton)

Conference on Monetary Policy Implementation and Transmission in the Post-Crisis Period
Federal Reserve Board
November 12, 2015
What this paper does

This paper:
▶ Provides impulse responses to monetary policy shocks without constraining impact price effect, following Gertler and Karadi (2015)
▶ Rationalizes these responses in a flexible price model in which nominal redenomination provides a key redistributive impulse
▶ Brings back focus on nature of open market operations in implementation of monetary policy

This discussion:
▶ Focuses on the model mechanism and its quantitative importance
▶ Identifies another channel that could act in the other direction
Key facts from S-VAR exercise

Figure 1: Responses to an Expansionary Monetary Policy Shock in the VAR.

- Gertler-Karadi high-frequency identification, monthly data
- \hat{P}_0 is unrestricted
 - “better” than Cholesky
- 75bp identified fall in $i \Rightarrow$
 - 0.5% sustained P increase
 - 1-2% D increase
 - 0-0.5% ND increase
 - 1.5% fall in B
- But GK find $\hat{P}_0 \simeq 0$
 - Difference?

Note: horizontal axes denote months after the shock.
Key mechanism

- Overlapping generations of households (HH), all nominal savers
- Government (G) nominal borrower
- OMO: $M \uparrow \Rightarrow P \uparrow$, redistributes from HH to G
- G gains not fully rebated to the currently alive (OLG+fiscal policy rule) \Rightarrow negative wealth effect
 - Labor supply \uparrow, Consumption \downarrow
 - Real rate $r \downarrow$ to clear markets
 - In equilibrium:
 - Labor and output \uparrow, durables \uparrow, nondurables \downarrow
 - $i \downarrow$
 - Qualitatively consistent with data, except for nondurables
 - Quantitative responses are very small in benchmark model
Key results from calibrated model

Figure 2: Responses to an Expansionary Monetary Policy Shock in the Baseline Model and the Model with Search and Matching Frictions.

- 75bp identified fall in $i \Rightarrow$
 - 2% reversing P increase
 - 0.3% D increase
 - 0.1% ND decrease
 - 0.02% Y increase
 - 1.5% fall in B

Note: horizontal axes denote quarters after the shock.
Outline

1. Simplified version of model
2. Model mechanism and quantification
3. Alternative mechanism and conclusion
Simplified version: OLG model

- Two groups: young y and old o.
 - $y \rightarrow o$ with probability ρ_0
 - Old die with probability ρ_x
 - Steady-state: νy agents and $1 - \nu o$ agents
 - First death draw at retirement: $\rho_x = 1$ limit is $\nu = 1$
- Calibration: $\frac{1}{\rho_0} = 40$ years, $\frac{1}{\rho_x} = 20$ years, $\nu \simeq \frac{2}{3}$
- **No annuity markets:** self-save for retirement
- Simplified model with only nondurable consumption:
 $$\mathbb{E} \left[\sum \beta^t \frac{c^{1-\sigma}}{1-\sigma} \right]$$
- One real bond, gross real rate R.
- Endowment: $y = 1$ for young, 0 for old
- Calibration: $R = 4\%$ annual, $\beta^{-1} - 1 = 11\%$ annual, $\sigma = 1$
Old problem (Fisher (1930), Yaari (1965))

- solve:

\[V^o(a) = \max \frac{c^{1-\sigma}}{1-\sigma} + \beta (1-\rho_x) V^o(a') \]

\[c + \frac{a'}{R} = a \]

Fisherian solution: \(\ln \left(\frac{c_{t+1}}{c_t} \right) \approx \frac{r-\rho-\rho_x}{\sigma} \approx \frac{4-11-5}{1} = -12\% \)

\[c_{t+1} = \left[\beta R (1-\rho_x) \right]^{\frac{1}{\sigma}} c_t \]

\[c_t = \gamma a_t \]

Marginal propensity to consume:

\[\gamma = 1 - \left[\beta (1-\rho_x) \right]^{\frac{1}{\sigma}} R^{\frac{1}{\sigma}-1} \approx 0.039/\text{quarter} \]
Young problem

- y solve:

\[
V^y(a) = \max \frac{c^{1-\sigma}}{1-\sigma} + \beta (1 - \rho_0) V^y(a') + \beta \rho_0 (1 - \rho_x) V^o(a')
\]

\[
c + \frac{a'}{R} = a + y
\]

Euler equation shows **precautionary savings**

\[
c_t^{-\sigma} = \beta R (1 - \rho_0) c_{t+1}^{-\sigma} + \beta R \rho_0 (1 - \rho_x) (\gamma a_{t+1})^{-\sigma}
\]

- Insert $c_t = a_t - \frac{a_{t+1}}{R} + y$, find second-order ODE in a_{t+1}

- Steady state has buffer stock $a^* = y \left(\gamma \left[\frac{\beta R \rho_0 (1 - \rho_x)}{1 - \beta R (1 - \rho_0)} \right]^{-\frac{1}{\sigma}} + \frac{1}{R} - 1 \right)^{-1}$

 - $a^* = 1.80 \times \text{annual income}$

- Shooting solution: given a_0, find a_1 such that $a_\infty = a^*$
Solution assuming young starts at $a = a^*$

- Representative young agent
- Large c jump at retirement
- $\Rightarrow \beta R \ll 1$ in steady-state
Simplified version of model

Solution assuming young starts away from a^*

- Long transition to a^*
- Explains slow unwind of P^\uparrow

- Depressed c in transition
Explaining the model mechanism

- Wealth distribution has closed-form solution. Total
 \[a = \nu a^* + (1 - \nu) (.3) a^* \]
 - young own 87% of wealth
- In full calibrated model, wealth is
 \[a = (1 - \delta) d + m + Rb \]
 - \((1 - \delta) d\): durables, real, 155% of annual GDP
 - \(m\): money, nominal, 16% of annual GDP
 - \(Rb\): government debt, nominal, 60% of annual GDP
- OMO: \(P \uparrow \Rightarrow a_i \downarrow\) with \(da_i = -(m_i + Rb_i) \frac{dP}{P} \equiv -NNP_i \frac{dP}{P}\)
 - \(NNP_i\): \(i\)'s net nominal position (Doepke-Schneider)
 - \(\Rightarrow\) prolonged \(c \downarrow\) and \(n \uparrow\)
 - \(\Rightarrow\) \(r \downarrow\), imbalance correction from **durables** (substitution effect)
Explaining the model mechanism

- Doepke-Schneider (2006) evidence

TABLE 1

Net Nominal Positions of U.S. Households in 1989

<table>
<thead>
<tr>
<th>Type of Instrument</th>
<th>Age Cohort</th>
<th>≤ 35</th>
<th>36–45</th>
<th>46–55</th>
<th>56–65</th>
<th>66–75</th>
<th>> 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. All Households</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortgages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total NNP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- NNPs are *negative* for most working agents! (mortgages)
- They experience a *positive* wealth effect of \(P \uparrow \)
Why are the responses small?

- In the calibration $MPH_i = -MPC_i$
- So individual c and h respond to $\frac{dP}{P}$ by

$$dc_i \simeq -MPC_i \times NNP_i \times \frac{dP}{P}$$
$$dh_i \simeq MPC_i \times NNP_i \times \frac{dP}{P}$$

- Here: $\frac{dP}{P} = 2\%$, $MPC = 5\%$, $NNP = 76\% \times 4$
 - total dh_i, dc_i less than 0.3\% even though $\frac{dP}{P}$ large
 - GE: government rebate and $r \downarrow$ dampen even more!

- Root cause of small aggregate effect
 - small MPCs and MPHs
 - short asset durations

- But MPCs are not small in the (nonlinearized) model

Adrien Auclert (Stanford) Discussion of Tenreyro and Sterk November 12, 2015 14 / 17
Implications for the cross-section of young agents

- Concave (Carroll-Kimball)
- Aggregation only if all at a^*

- SS: MPC = 0.051/quarter
- Away: huge heterogeneity
Plausible alternative mechanism

- MPCs are large for the young, negative-NNP agents
- MPCs are small for the old, positive-NNP agents
 1. Within-household redistribution pushes **up** consumption (Fisher effect)
 2. Households as a whole lose to government, pushes **down** consumption (Pigou effect)

- Which effect dominates?
 - Depends on $\text{Cov}(MPC, NNP)$ and government fiscal rule
 - Empirical evaluation is possible

- Very different role for P redistribution in transmission of MP:
 - Under 1 it is an *amplification mechanism*
 - Under 2 it is a *source* of real interest rate effects of MP
Conclusion

- Very nice and tractable framework, very well written paper
- Plausible mechanism that explains effects of monetary policy with flexible prices (great)
- Allows one to think about consequences of MP implementation via OMOs vs Helicopter Drops (nice)
- Benchmark effects are small, higher MPCs and MPHs would increase them
- Going forward: more work needs to be done to evaluate Fisher vs Pigou hypotheses