Problem definition

Several image editing tasks employ the following distance measure:

\[d(p, p') = \min_{C(p, p')} \int \sqrt{I(C(t)) \cdot \dot{C}(t)} \, dt = \min_{C(p, p')} \int |\dot{I}(C(t))| \, dt \]

\(d(p, p') \) cannot be approximated faithfully with existing methods (Dijkstra, Fast Marching), applied over the Cartesian grid!

Dijkstra’s algorithm succeeds for

\[d(p_{1,1}, p_{1,2}) = 1 \]

but fails for

\[d(p_{1,1}, p_{1,3}) = 1 \]

Image level set tree

- Tree vertices are connected components of the level sets of \(I \)
 - \(k \)-level set of \(I \) is \(\gamma^k = \{ p \in \Omega | I(p) = k \} \)
 - \(\gamma^k \) is the \(k \)th connected component of \(\gamma \)
- Edge weights \(F(y^k, y^m) = |k - m| \)

Distance computation in level set tree

\[d(p, p') = \min_{C(p, p')} \int |\dot{I}(C(t))| \, dt \]

Decompose \(C(t) \) into a series of segments such that consecutive segments belong to adjacent level sets

\[d(p, p') = \min_{C(p, p')} \sum_{i=0}^{n} |\dot{I}(C_i(t))| = \min_{C(p, p')} \sum_{i=0}^{n} |k_{i+1} - k_i| \]

Application: user-assisted image segmentation

- User input: foreground and background scribbles (marks)
 - Estimate foreground likelihood function per pixel \(P(p) \)
 - Compute distance to scribbles \(d_f(p), d_b(p) \)
 - Assign labels using \(\text{Object} = \{ p | d_f(p) < d_b(p) \} \)

References

Acknowledgements

This work has been supported by grant agreement no. 267414 of the European Community FP7-ERC program – ERC Advanced Grant.