Multi-region active contours with a single level set function

Anastasia Dubrovina*, Guy Rosman* and Ron Kimmel*
*nastya@cs.technion.ac.il, *guyros@csail.mit.edu, *ron@cs.technion.ac.il
**Computer Science Department, Technion
*Computer Science and Artificial Intelligence Laboratory, MIT

Contributions
- A method for multi-region image segmentation using active contours.
- Novel active contour evolution based on the Voronoi Implicit Interface Method (VIIM) [1].
- Level set formulation with a single level set function.
- Number of regions or their intensity statistics unknown a priori.
- Applicable with various region and boundary appearance models [2].

Active Contours
Goal: segment image I(x) into multiple regions \(\{ \Omega_i \} \).
Approach: region boundaries are modelled by a curve \(C \), minimizing an energy functional \(E(C) \).

\[
E(C) = E_{	ext{int}}(C, I) + \mu E_{	ext{ext}}(C, I)
\]

\(C_t = -\frac{\partial E}{\partial C} = F_n \)

\(C(t) = \{ x \mid \phi(x) = 0 \} \)

\(\phi \) implicitly as the zero level set of a 2D level set function \(\phi(x) \).

Implicit treatment of multi-point junctions: No gaps or overlaps!

Level Set Formulation
Define \(C \) implicitly as the zero level set of a 2D level set function \(\phi(x) \):

\[
C = \{ x \mid \phi(x) = 0 \}
\]

\(C_t = \nabla \phi \)

2-region segmentation:
- Object = \(\{ x \mid \phi(x) > 0 \} \)
- Background = \(\{ x \mid \phi(x) < 0 \} \)

Caveat: Extension to > 2 regions is non-trivial!

Voronoi Implicit Interface Method (VIIM)
A method for tracking multiple evolving regions using a single level set function

\[
\phi(x) > 0 \implies \text{unsigned distance from } C
\]

Observation: Motion of zero-level set corresponding to the interface \(C \) is bracketed by the motion of its surrounding \(\epsilon \)-level sets.

The algorithm
1. Define \(C(0) \) and \(C_t = -\frac{\partial E}{\partial C} = F_n \).
2. Extend \(F \) to \(\epsilon \)-level sets of \(C \), \(F_{\epsilon,n} \).
3. Evolve \(\epsilon \)-level sets of \(\phi(x) \) using the VIIM.
4. Reconstruct \(C \) from \(\epsilon \)-level sets. Return to Step (2).

Image appearance models
- Region competition model with geodesic active contours regularization

\[
E(C, \{ \Omega_i \}) = \sum_{i=1}^{M} \int_{\Omega_i} -\log P(I(x) | \Omega_i) + \frac{\mu}{2} \int_{\partial \Omega_i} g(C(x)) dx
\]

Special case: Piecewise constant model

\[
E_{\text{disc}}(C, \{ \epsilon_i \}) = \sum_{i=1}^{M} \int_{\Omega_i} (-\epsilon_i)^2 dx
\]

Pairwise dissimilarity model

\[
E_{\text{disc}}(C) = \int_{\Omega} \sum_{i,j, \Omega_i \cap \Omega_j \neq \emptyset} w(x,y) dxdy, \text{ where } w(x,y) = \text{Dissimilarity}(x,y).
\]

Multi-region Segmentation
The algorithm
1. Define \(C(0) \) and \(C_t = -\frac{\partial E}{\partial C} = F_n \).
2. Extend \(F \) to \(\epsilon \)-level sets of \(C \), \(F_{\epsilon,n} \).
3. Evolve \(\epsilon \)-level sets of \(\phi(x) \) using the VIIM.
4. Reconstruct \(C \) from \(\epsilon \)-level sets. Return to Step (2).

References

Acknowledgements
We thank J. A. Sethian of UC Berkeley for intriguing discussions and introducing the VIIM to our group.
This research was supported by European Community’s FP7-ERC program, grant agreement no. 267414.