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Abstract There is a good deal of miscommunication among experimenters and
theorists about how to evaluate a theory that can be rejected by sufficient data,
but may nevertheless be a useful approximation. A standard experimental design
reports whether a general theory can be rejected on an informative test case. This
paper, in contrast, reports an experiment designed to meaningfully pose the ques-
tion: “how good an approximation does a theory provide on average.” It focuses on
a class of randomly selected games, and estimates how many pairs of experimental
subjects would have to be observed playing a previously unexamined game before
the mean of the experimental observations would provide a better prediction than
the theory about the behavior of a new pair of subjects playing this game. We
call this quantity the model’s equivalent number of observations, and explore its
properties.
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1 Introduction

Conventional experimental methods are well suited to testing whether theories
are false—i.e., if their predictions can be rejected. A single well-chosen example,
carefully examined, is sufficient to demonstrate, for instance, that not every game
quickly elicits equilibrium behavior. Such a design is less well suited to evaluating
whether a theory, although false in this sense, might nevertheless provide a use-
ful approximation for predicting behavior on average. Sometimes this has caused
miscommunication between economists and experimental psychologists, and even
between experimental economists and theorists.1

The study of the descriptive power of equilibrium and learning models is one of
the longest running and most important examples of this miscommunication. Early
experimental research by psychologists on equilibrium of zero-sum and other sim-
ple matrix games revealed that equilibrium could be rejected. Estes (1950), Bush
and Mosteller (1955), Luce (1959), Suppes and Atkinson (1960) and others pro-
posed as alternatives simple learning models that could not be rejected by these
early experiments. However, larger and more varied data sets eventually led to the
rejection of these learning models also (see e.g., Siegel et al. 1964; Edwards 1961),
and interest waned.

O’Neill (1987) critiqued earlier experimenters’ conflicting evidence concern-
ing minimax play, and presented an experiment involving a game in which behavior
seemed to conform closely to the mixed-strategy equilibrium prediction. Brown
and Rosenthal (1990) reanalyzed O’Neill’s data and showed the minimax hypoth-
esis could be rejected, and O’Neill (1991) replied that showing that a theory is not
“exactly correct” is different from showing that it is not close. It is exactly this kind
of debate that we hope to make more precise.

Interest in learning models has been stirred again among economists by the
demonstration that simple learning models could account for behavior in a variety
of games (e.g., Roth and Erev 1995), including matrix games having unique equi-
librium in mixed strategies (Erev and Roth 1998). Selten and Chmura (2005) show
that there are also static models that can predict data from constant sum games
better than equilibrium.

One reason that many different investigators have in the past reached differ-
ent conclusions about equilibrium behavior is that they experiment on or analyze
behavior from different games. Erev and Roth (1998) addressed this by examin-
ing all the published experiments with at least 100 periods of play of games with
a unique mixed strategy equilibrium. They observed that simple learning mod-
els could provide more accurate predictions than equilibrium over these data. But
there was an experimenter effect in the games used in prior experiments, with
equilibrium predicting behavior substantially less well in the games studied by
some experimenters than others. Because the previously studied games were not

1 More than one psychologist has wondered: Are economists simply bad scientists? (see e.g.,
Tversky 1996, and the reply by Roth 1996). In this connection, for example, the robustly replica-
ble deviations from expected utility maximization observed by Allais (1953) showed early in the
history of expected utility theory that not all people acted like expected utility maximizers all the
time. But the continued use of expected utility theory, even in the face of proposed alternatives, is
presumably related to the sense among many users of the theory that it is a useful approximation,
even if not precisely true.
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a random sample of games, no conclusions could be drawn from them about how
close various predictions might be on average to observed behavior.

The present paper is intended to recast these various discussions by using an
experimental design that focuses on the ability of a model to predict behavior well
on average in a specified universe of games. For this reason we will look at a
random sample of two-player two-action constant sum games.2 Each pair of sub-
jects will play a single game. Multiple pairs of subjects will play each game for 500
periods so that the sample mean and variance of observed play can be estimated
over various time scales. These estimates will be compared with the predictions of
(minmax) equilibrium, Selten and Chmura’s impulse balance equilibrium, and of
various learning models.

Looking at how theoretical predictions compare with observed behavior over
a random selection of games will allow us to begin to say something about how
well the predictions compare to average behavior on that class of games. Never-
theless, each of the models we look at is false in the sense that the null hypothesis
that it is precisely correct can be rejected. So we are still left with the question of
how to assess how useful these theoretical models are as approximations (which
will of course depend on the use to which we plan to put them). We will address
this question by examining how well on average each model performs the task
of predicting the proportion of times each action is chosen by each player, for a
previously unobserved pair of subjects playing one of the games.3

1.1 Equivalent number of observations (ENO)

We will compare the predictions of each model with another way to predict how
a new pair of subjects will play one of the games, which is to look at the average
behavior of other pairs of subjects who played the same game. The more subjects
who have already played the game, the better the estimate that past play will give
of the mean behavior from this subject population on this game. So one way to
measure how useful is the prediction of a particular model is to ask how many prior
observations of subjects playing the game would be needed to make as accurate a
prediction as the model. We will call this measure the model’s equivalent number
of observations (ENO).4 The ENO of a model is closely related to how one would
combine the prediction of the model with the observed data to obtain a new pre-
diction: a regression would weight the prior observations and the prediction of the
model equally when there are n = ENO prior observations.

We will look at the ENO of equilibrium and the other models we consider from
the point of view of predicting the observed choices in all 500 periods of play, and
also in the first 100 periods and the last 100 periods, since it might be expected
that learning models will do best at predicting the early periods of play while equi-
librium will do best at predicting play once the players have gained experience
playing with one another. To foreshadow our results (in Table 2), we estimate from

2 As far as we are aware, this is the first experiment to study a random sample of games.
3 Thus, we use these models to examine the proportion of times each action is chosen. We

could also examine many other observable statistics about which the models make predic-
tions; Slonim et al. (2006) for instance look at other statistics including variance and serial
correlation.

4 In Erev et al. (2002) we refer to this measure as “predictive value”.
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the data that equilibrium has an ENO of less than 1 for predicting the first 100
periods, or all 500 periods, and an ENO of between 1 and 2 for predicting the
last 100 periods of play. This means that, when the task is to predict the behavior
of a previously unobserved pair of subjects playing a game from this universe of
games, observing the behavior of a single pair of other players will provide a better
prediction than equilibrium for the choices of the new pair of players in their first
100 periods of play, but the equilibrium will provide a better prediction for the last
100 periods. However, the average proportion of choices of two pairs of players
playing the same game will provide a better prediction than equilibrium even for
the last 100 periods of play.

The other models we investigate all have higher estimated ENOs than equilib-
rium, not only when the players are inexperienced, but also when they are expe-
rienced. The models with the highest ENO for predicting the first 100 periods of
play are simple reinforcement learning models, with ENOs of just over 37. This
means that they provide a better prediction for how a pair of subjects will play
in the first 100 periods than even a fairly large sample of other pairs of subjects
who played the same game. For the last 100 periods, all the models we consider
other than equilibrium have ENO’s greater than 10; i.e., they all provide better
predictions than could be obtained from observing ten pairs of players playing
the game in question. A variant of fictitious play has a higher ENO than rein-
forcement learning, and so does the (static) impulse balance model of Selten and
Chmura.

The paper is organized as follows. Section 2 presents the experimental design
and reports how closely the various models predict observed behavior, as measured
by the mean squared error of the predictions from the data. Mean squared errors
are difficult to interpret by themselves, so Sect. 3 develops the notion of a model’s
ENO, which we motivate by its relation to regression analysis for combining the
predictions of the model and the data. We then compare the ENO of the various
models, and conclude.

2 The random sample of games, and the experimental design

Each subject played 500 repetitions of one of 40 two-player, constant sum games
(shown in Table 1), against a fixed, anonymous opponent. The numbers in each
row represent one of the games by showing the probabilities (×100) that the play-
ers will win a fixed amount v on each trial, for each element of the payoff matrix
resulting from the players’ actions. For example, if in a given period both players
choose action “A,” then player 1 will win v with the specified probability p1 listed
in column AA, and player 2 will win v with probability 1 − p1. A player who
does not win v earns zero for that period. In each of the games played, v was set
at $0.04 and a player’s payoff from the game was the sum of his payoffs over the
500 periods of play (plus a fixed showup fee). Each player played only one game
(defined by the probabilities in one row of Table 1), against a fixed opponent. All
transactions were conducted anonymously via networked computers.

Such a game either has a (weakly) dominant strategy for at least one of the
players, or has a unique mixed-strategy equilibrium at which both players play
each of their strategies with positive probability. In each random sample described
below, the probabilities p1 through p4 were independently chosen from the uniform
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Table 1 The 30- and 10-game samples and the observed choice proportions

Payoff matrix Player 1 Player 2

Game AA BB BA BB 1 2 3 4 5 1 2 3 4 5

30 game sample Choice proportions (in 5 blocks of 100 trials)

1 58 94 98 51 0.56 0.70 0.47 0.55 0.49 0.47 0.67 0.54 0.36 0.33
2 100 24 5 96 0.58 0.61 0.60 0.69 0.57 0.43 0.49 0.41 0.48 0.49
3 82 37 19 84 0.55 0.49 0.55 0.56 0.66 0.66 0.61 0.58 0.59 0.54
4 55 36 26 59 0.46 0.36 0.31 0.35 0.34 0.58 0.41 0.49 0.56 0.51
5 28 85 78 0 0.64 0.45 0.49 0.45 0.46 0.57 0.49 0.46 0.47 0.48
6 7 97 87 38 0.50 0.39 0.37 0.46 0.40 0.54 0.50 0.51 0.60 0.48
7 70 26 41 87 0.61 0.48 0.41 0.08 0.14 0.61 0.46 0.59 0.61 0.47
8 38 87 100 60 0.31 0.30 0.31 0.22 0.19 0.29 0.36 0.44 0.37 0.19
9 91 46 49 71 0.69 0.58 0.52 0.65 0.64 0.42 0.36 0.33 0.34 0.36
10 98 57 15 93 0.82 0.75 0.75 0.75 0.89 0.32 0.15 0.21 0.25 0.17
11 96 49 05 83 0.90 0.67 0.76 0.89 0.78 0.38 0.44 0.51 0.46 0.34
12 55 39 14 64 0.64 0.72 0.65 0.81 0.79 0.74 0.72 0.76 0.60 0.43
13 80 62 67 100 0.52 0.17 0.76 0.19 0.00 0.58 0.66 0.21 0.80 1.00
14 55 16 8 29 0.63 0.36 0.26 0.20 0.19 0.42 0.28 0.16 0.21 0.13
15 95 3 28 49 0.52 0.33 0.16 0.14 0.13 0.21 0.17 0.19 0.24 0.31
16 51 33 05 97 0.98 0.91 0.90 0.90 0.92 0.87 0.66 0.65 0.34 0.37
17 72 44 60 66 0.46 0.30 0.26 0.25 0.29 0.25 0.26 0.16 0.13 0.04
18 48 27 2 36 0.55 0.58 0.44 0.49 0.32 0.51 0.56 0.45 0.75 0.75
19 59 95 78 04 0.92 1.00 0.97 1.00 0.73 0.43 0.45 0.65 0.76 0.77
20 88 15 56 69 0.30 0.22 0.06 0.28 0.33 0.32 0.64 0.58 0.60 0.49
21 57 17 22 31 0.41 0.35 0.36 0.27 0.00 0.19 0.20 0.27 0.21 0.00
22 19 5 1 58 0.58 0.75 0.69 0.75 0.77 0.67 0.60 0.70 0.74 0.71
23 96 27 78 97 0.06 0.06 0.00 0.00 0.00 0.50 0.95 0.89 0.96 1.00
24 100 49 71 76 0.49 0.53 0.65 0.41 0.24 0.34 0.35 0.32 0.33 0.34
25 48 39 0 50 0.93 1.00 0.99 1.00 1.00 0.07 0.00 0.00 0.00 0.00
26 37 97 83 79 0.33 0.06 0.15 0.08 0.21 0.45 0.12 0.22 0.13 0.21
27 35 98 81 79 0.33 0.26 0.13 0.09 0.03 0.60 0.43 0.23 0.10 0.21
28 47 10 46 59 0.40 0.08 0.09 0.00 0.00 0.51 0.39 0.37 0.39 0.20
29 87 0 3 9 0.44 0.28 0.11 0.23 0.20 0.01 0.00 0.00 0.05 0.03
30 25 91 94 90 0.40 0.69 0.36 0.05 0.11 0.63 0.85 0.59 0.29 0.43

10 game sample
31 77 35 8 48 0.59 0.51 0.63 0.61 0.63 0.31 0.28 0.35 0.34 0.31
32 73 74 87 20 0.80 0.90 0.79 0.85 0.86 0.37 0.44 0.36 0.35 0.28
33 63 8 1 17 0.61 0.57 0.65 0.54 0.54 0.22 0.19 0.25 0.23 0.22
34 55 75 73 60 0.32 0.22 0.26 0.29 0.28 0.62 0.52 0.47 0.47 0.43
35 5 64 93 40 0.35 0.38 0.38 0.38 0.40 0.36 0.36 0.34 0.27 0.27
36 46 54 61 23 0.60 0.61 0.66 0.65 0.67 0.38 0.39 0.42 0.40 0.47
37 89 53 82 92 0.35 0.32 0.27 0.28 0.26 0.45 0.53 0.52 0.54 0.57
38 88 38 40 55 0.52 0.47 0.34 0.34 0.34 0.25 0.19 0.22 0.22 0.24
39 40 76 91 23 0.54 0.59 0.59 0.54 0.55 0.41 0.42 0.51 0.48 0.43
40 69 5 13 33 0.33 0.36 0.35 0.26 0.30 0.20 0.21 0.20 0.20 0.19

Each player was asked to select between A and B. The payoff entry i j presents the probability
(×100) that Player 1 wins when she chose i and her opponent chose j . The payoff for each win
was 4 cents. All 40 games were played by fixed pairs for 500 trials. The right hand columns show
the proportion of A choices in five blocks of 100 trial by each of the players

distribution on the values [0.00, 0.01, . . . 0.99, 1.00]. Games generated in
this way were included in the sample if they had a unique mixed strategy
equilibrium.

Each player knew the probabilities that defined the game he was playing. After
each period of play each player learned what action the other player had chosen (and
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therefore with what probability each player would receive the payoff v = $0.04).
Players also knew whether or not they received the payoff v, but did not know
whether the other player received v.

Because the games have binary lottery payoffs, the equilibrium predictions
can be determined without estimating any unobservable parameters involving risk
aversion (Kagel and Roth 1995; Roth and Malouf 1979; Wooders and Shachat
2001).5 Since equilibrium predictions do not require estimating free parameters, a
single random sample of games would be adequate for measuring the closeness of
the equilibrium prediction to the observed behavior. However, since the learning
models have free parameters, which must be estimated, and since we are interested
in predictive power for new games, we collect data from two distinct random sam-
ples of games; we estimate the free parameters of the learning models from one
sample and use these estimates to predict behavior in the other sample.

We examine a 10-game sample and a 30-game sample. Each subject (in either
sample) plays one game, against a fixed opponent. Each game in the 30 game sam-
ple is played by one pair of subjects. Each game in the ten game sample is played
by nine pairs, three each in Boston, Haifa, and Pittsburgh (at the experimental lab-
oratories of Harvard, Technion, and University of Pittsburgh). Because the games
are played by multiple subject pairs, the ten-game random sample can be used to
assess the ENO of the models’ predictions, since each model’s predictions can be
compared with the predictions from the means of subsamples of player pairs for
each game.6

2.1 Equilibrium, impulse balance equilibrium, and five learning models

We will consider the predictive value of equilibrium, impulse balance equilibrium
(Selten and Chmura 2005) and five learning models of choice behavior. Equilibrium
for two-person zero-sum games is one of the oldest ideas in game theory, whose
existence was proved by von Neumann (1928). It is a special case of Nash equilib-
rium (Nash 1950) for general strategic games, in which each player chooses each
of his actions with probabilities such that, given the strategy of the other player, no
change in probabilities would increase his expected payoff. In zero sum games, a
player’s equilibrium strategy can be calculated by maximizing the minimum payoff
he might get for any action of his opponent. The games in our experiment have
only two choices per player, and are randomly chosen from the universe of such
games having a unique equilibrium in nontrivial mixed strategies (strategies such
that no action is played with certainty).7

5 And because the games are constant sum, many of the concerns expressed e.g., by Ochs and
Roth (1989), Bolton and Ockenfels (2000) or Weibull (2004) about experimental control of other
aspects of players’ preferences are ameliorated. Furthermore, the repeated game equilibrium can
be analyzed in terms of the actions in the stage game, which allows us to avoid the difficulties
associated with estimating repeated game strategies (cf. Engle-Warnick and Slonim 2006).

6 Unlike the sample of games, the set of subjects is not a random draw from a well specified
universe. But the robustness of the results across subjects sampled in this diverse set of cities
suggests that these results are not closely dependent on the particular subject pool.

7 Mixed strategies are not only the theoretically difficult case that is the focus of von
Neumann’s minimax theorem, they also constitute a behaviorally difficult test of equilibrium,
because at equilibrium no player has a positive incentive to play the equilibrium mixed strategy.



Learning and equilibrium as useful approximations 35

Four of the learning models considered here can be captured with two basic
assumptions. The first assumption is a stochastic choice rule in which the proba-
bility of selecting action k at trial t is given by

Pk(t) = eqk (t)D(t)

∑2
j=1 eq j (t)D(t)

,

where q j (t) is the propensity to select action j and D(t) modulates how deci-
sive is the decision maker. (When D(t) equals 0, each action is chosen with equal
probability; when it is large, the action with higher propensity is chosen with high
probability.)

The second assumption concerns the adjustment of propensities as experience
is gained. The propensity to select action k at trial t + 1 is a weighted average of
qk(t), the propensity at t , and vk(t), the payoff from selecting this strategy at t

qk(t + 1) = [1 − W (t)] · qk(t) + W (t)vk(t).

The initial value, qk(1) is assumed to equal A(1)—the expected payoff from
random choice [e.g., A(1) of Player I in Game 1 is (58+94+98+51)/4 = 75.25].
The models differ with respect to the decisiveness function D(t), the weighting
function W (t) and the assumed value of the obtained payoff vk(t).

The first model, referred to as reinforcement learning (RL) assumes stable
payoff sensitivity, D(t) = λ, and insensitivity to forgone payoff: W (t) = w (i.e.,
a constant) if k was selected at t , and 0 otherwise. In addition, this model assumes
that vk(t) is the realized payoff (0 or 100 points, depending on the outcome of the
binary lottery).

The second model, referred to as normalized reinforcement learning (NRL),
is similar to the model proposed by Erev et al. (1999). It is identical to RL with
one exception: payoff sensitivity is assumed to decrease with payoff variability.
Specifically,

D(t) = λ

S(t)
,

where S(t) is the weighted average of the difference between the obtained payoff
at trial t and the maximal recent payoff:

S(t + 1) = (1 − w)S(t) + w|max(recent1, recent2) − vk(t)|,
where recenti is the most recent observed payoff from action i (it equals vk(t) if
i = k). Before the first observation of the payoff of action i , recenti = A(1). The
initial value, S(1), is assumed to equal λ.

The third model is stochastic fictitious play (SFP, see Fudenberg and Levine
1998; Goeree and Holt 1999; Cheung and Friedman 1997; Cooper et al. 1997).
It assumes stable payoff sensitivity, D(t) = λ, and sensitivity to forgone payoff
W (t) = w. To capture the logic behind the fictitious play rule this model assumes
that vk(t) is the expected payoff in the selected cell (e.g., when both players select
A in Game 1, vk(t) of Player I is 58, independent of the outcome of the binary
lottery).

For this reason, the earlier experiments referred to above also concentrated on games with mixed
strategy equilibria.
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The fourth model, referred to as normalized fictitious play (NFP), was proposed
in Ert and Erev (2007) to capture choice behavior in individual decision tasks. It
is identical to SFP with the exception of the payoff sensitivity function. Like NRL
it assumes D(t) = λ/S(t).

The fifth model considered here is a non-linear combination of reinforcement
learning and fictitious play introduced by Camerer and Ho (1999). This model,
referred to as experience weighted attraction (EWA), is described in the Appendix.

Besides the five learning models and equilibrium, the final model we con-
sider, called impulse balance equilibrium, is a static model proposed by Selten
and Chmura (2005) to capture behavior of experienced players. We examine this
model because it has been shown to provide a surprisingly good approximation of
aggregate behavior in a wide set of games without fitting parameters to individ-
ual games. This model assumes that observed choice proportions reflect a balance
between the “subjective incentives.” The original version of the model does not
have free parameters. But the authors assume higher sensitivity to losses (relative
to a reference point) than to gains. This assumption is abstracted here with a free
parameter, ϕ, that captures the tendency to overweight losses. The basic model is
presented in Appendix 1. Under our formulation, the original version of the model
assumes ϕ = 2.

Under the assumption of uniform initial propensities, qk(1) = A(1), the first
four learning models have two free parameters, EWA has five parameters, and
impulse balance has one parameter.

2.2 Model comparison

To compare the equilibrium predictions with the predictions of the other models
we used the generalization criterion (see Busemeyer and Wang 2000): the behavior
in the 30 game sample is used to estimate the models’ parameters, and the behavior
in the 10 game sample is used to compare the predictions. The analysis focuses on
the predictions of aggregate choice probability over all 500 periods of each player
in each game, and over the first 100 and last one hundred periods. The right hand
columns of Table 1 present these proportions for the 40 games.

A simulation-based grid search with a mean squared error (MSE) criterion was
used to estimate the parameters. The predictions of each of the models were derived
for a large number of parameter sets. For each parameter set and model we sim-
ulated 100 plays of each game and then determined the mean proportion of plays
of each action. The simulations were run using the SAS� software. The program
(and the necessary data) used to estimate the predictions of the NFP model can
be found in Erev (2006). The parameter set that minimized the MSE between this
prediction and the observed choices over all 500 periods of the 30 game sample
were selected. (For two of the models, NFP and impulse balance equilibrium, we
also present the predictions with the parameters used in previous studies of these
models).

Table 2 shows the MSE’s of the different models. The MSE’s are presented
both for the 30 game sample (on which the models’ parameters were estimated)
and the 10 game sample. So the 30 game sample shows how closely the data can
be fitted by each of the learning models, and the 10 game data shows how closely
their predictions match the observed behavior. Recall that MSE’s are calculated as
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the average of the squared difference between each model’s prediction and each
subject’s average choice, so that smaller MSE’s indicate better fit.

The predictions of all of the models considered are closer to the observed
behavior than is the equilibrium prediction, on each of the time scales considered.

Comparison of the various learning (and impulse balance) models suggests
that the difference between the models is not large. The MSE scores for the 30
game sample (column 2 of Table 2) show that the model with the largest number
of parameters (EWA) can be most closely fitted to the 30 game data.8 But exami-
nation of the MSE scores for the ten game sample (columns 3–5 of Table 2) shows
the difference between fitting data ex post and predicting new data: EWA predicts
slightly less well than the similar models with fewer parameters. Overall, the MSE
scores suggest that the difference between the learning models is much smaller
than the difference between the models and equilibrium.9

3 The usefulness of the approximations

Until now our analysis has focused on the raw distances (MSEs) of the predictions
from the data, and the comparison of models this allows.10 But since all of these
models can be rejected (a la Brown and Rosenthal), this still leaves us pretty much
where their debate with O’Neill left off: some models are closer to the data than
equilibrium, but perhaps equilibrium is “close enough.” In what follows we offer
a way to more clearly interpret the magnitudes involved.

Specifically, we highlight two related interpretations of a transformation of
MSE scores. The first interpretation is the “equivalent number observations” (ENO)
of the relevant model. To define this concept formally, we assume that our goal is
to predict the behavior of a particular person in a particular experimental condition
(e.g., the proportion of A choices by Player I in a game drawn from the population
of games considered above). Assume further that we have available two forecasts:
(1) the prediction of a particular model (one of the models considered above), and
(2) the mean behavior of m other individuals in the same condition (m other player
I’s in the same game). The ENO of the model is the value of m (the size of the
experiment) that is expected to lead to a prediction that is as accurate as the model’s
prediction.

The second interpretation involves the task of combining the two forecasts
considered above. We show that under reasonable assumptions the ENO statistic
provides an approximation of the optimal weighting of the two forecasts.

8 To simplify the presentation and analysis we estimated the parameters over all 500 periods.
Thus, the most interesting analysis involves this statistic.

9 This observation is not a result of careful selection of the learning models. Similar findings
were obtained with many other learning models including the reinforcement learning models
studied in Erev and Roth (1998) and Erev et al. (1999), the payoff assessment model (Sarin and
Vahid 2001) and a more complex model that assumes reinforcement learning among cognitive
strategies (RELACS, Erev and Barron 2005). The similarity of the learning models is consistent
with the observations made in Hopkins (2002) and Salmon (2001). Erev and Barron (2005) note
that the differences among the learning models becomes much more apparent when the data sets
include tasks with limited feedback and significant low probability outcomes.

10 Erev and Haruvy (2005) discuss the differences between MSE’s and maximum likelihood
estimators for comparing approximations.
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3.1 A simplified problem and derivation

To clarify the derivation of the ENO statistic it is convenient to start with an analysis
of a simplified problem. Consider a situation in which an observer (a potential user
of the model) can observe the mean behavior of m individuals and is then asked
to predict the behavior of individual m + 1. The model is assumed to be general;
it is used to address a wide class of possible experimental conditions. Each exper-
imental condition in this setting is associated with a true mean µi , and a normal
distribution (with variance σ 2

ε ) around this mean. That is, the results of running
condition i can be described as sampling from the normal distribution N (µi , σ

2
ε ).

The model is assumed to provide approximations that may nevertheless be rejected
as the data generating process given sufficiently many observations. Accuracy can
thus be enhanced by a careful estimation of the parameters of the model. Using
these estimates, the prediction of the mean of experimental condition i by the gen-
eral model is Gi = µi + αi where αi is an error term (the bias of the model in
experimental condition i).

As noted by Granger and Ramanathan (1984) the leading methods of com-
bining forecasts of normally distributed variables can be described as variants of
regression analyses. To place our discussion of a model’s ENO in context, we first
discuss three variants of regression that differ with regard to the assumptions made
during the estimations of the relevant weights.

3.1.1 Regression, recycling and restrictions

Under traditional regression analysis, the best (least squared difference) predic-
tion of observation m + 1 in experimental condition i (xi,m+1) based on the two
forecasts (Gi and X̄i_ f irst_m) is provided by estimating the three free parameters
(β0, β1, and β2) in the following equation:

xi,m+1 = β0 + β1(Gi ) + β2(X̄i_ f irst_m) + εi,m+1. (1)

To estimate these parameters we simply need to run multiple experiments in
which we can observe the relationship between the criterion variable xi,m+1 and the
two forecasts. To facilitate robust estimation, these experiments should involve ran-
domly selected experimental conditions from the relevant population of conditions.
Under the common assumptions made in regression analysis, Eq. (1) is expected
to provide the weighting of the two estimates that minimizes mean squared error.

In the current context, the regression analysis described above has two short-
comings. The first involves the fact that it uses each experimental condition once.
One of the n = m+1 observations is used as the dependent variable, and all the other
observations are used to compute one of the independent variables, X̄i_ f irst_m .
Thus, it ignores the symmetry among the n observation. This shortcoming can
be addressed with a “regression with recycling” procedure. Under this procedure
each of the n observations in each of the N experimental conditions is used as
the dependent variable once, and is then “recycled” m times as one of the m other
observations used to compute the value of the mean of the other observations. This
analysis can use (n)(N ) distinct data lines, and the following equation:

xi j = β0 + β1(Gi ) + β2(X̄oi j ) + εi j , (2)



40 I. Erev et al.

where xi j is observation j in experimental condition i , and X̄oi j is the mean
of the other m observations (all observations but j) in experimental condition i .
Table 4 presents a small data set (N = 10, m = 3) of this type, to illustrate the
computations.11

A second shortcoming of the traditional regression analysis involves the number
of free parameters. It requires the estimation of three different weighting parame-
ters for each value of m. This requirement is likely to be counterproductive when
the general model is relatively accurate (i.e., when αi is small). That is, the esti-
mation of three parameters might lead to over-fitting the data. This risk can be
reduced with a variant of “regression with recycling” that uses the restrictions
β0 = 0, and β1 + β2 = 1. We refer to this procedure as “restricted regression with
recycling.”

3.1.2 The minimum variance rule and ENO based weighting

As implied by Granger and Ramanathan (1984; and see Gupta and Wilton 1987)
the predictions of the restricted regression procedure are identical to the predictions
of the minimum variance rule. Under the minimum variance rule (and restricted
regression analysis) the optimal weight for the point prediction rule is

∧
W = ∧

β1 = MSE(X̄o) − C D(X̄o, G)

MSE(X̄o) + MSE(G) − 2C D(X̄o, G)
, (3)

where MSE(G) is an unbiased estimator of the mean squared error (MSE) of the
general model, MSE(X̄o) is an unbiased estimator of the MSE of the second pre-
dictor (the mean of the other m observations), and C D(X̄o, G) = r(X̄o − xi j ,

G − xi j )
√

MSE(X̄o)MSE(G) is the common deviation where r(X̄o − xi j , G − xi j )
is the correlation between the deviations. To clarify the meaning of the relevant
terms in this setting, Table 4 shows how they are computed in this 30-observation
example.

Under the minimum variance rule the two estimates receive equal weight when
MSE(X̄o)= MSE(G). The number of observations used to derive the experiment-
based predictions (m = n − 1) decreases the error of this prediction (MSE(X̄o)),
but does not have a systematic effect on the error of the model-based predic-
tion (MSE(G)). Thus, it is possible to compute the ENO of the model as the
estimate of the size of the experiment for which the two predictors are equally
useful and the optimal weight is 0.5. Appendix 2a shows that the exact value is
given by

ENO = S2

(M − S2)
, (4)

where S2 is the pooled variance (over tasks in the experiment), and M = MSE(G).

11 The data in Table 4 are generated as follows. Each of the ten condition means (µi values) were
drawn independently from N (100, 202). Each of the three observations in each condition (xi j

values) were drawn independently from N (µi , 102). The prediction of the model for condition
i(Gi ) was drawn from N (µi , 52).
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Note that the ENO is a property not only of the model alone but of both the
model and the data. On a universe of tasks over which subjects exhibit little vari-
ance in behavior, every observation is very informative, so even a very good model
(in the sense of being absolutely close to predicting subject’s mean behavior) will
have a low ENO. In other words, ENO will be larger the more accurately the model
predicts subjects’ mean behavior, and will also be larger the greater the variation
in subjects’ behavior.

Under the reasonable assumption that C D(X̄o, G)= S2 (i.e., that the errors
of the two predictors are not correlated), the ENO statistic can be used to pro-
vide a simplified approximation of the optimal weighting.12 The implication of the
minimum variance rule in the current setting (after observing m subjects) is (see
Appendix 2b):

∧
W = ∧

β1 = ENO

ENO + m
. (5)

Equation (5) makes clear why we refer to the “equivalent number of observations”
of a theoretical prediction, since, if ENO = k, we give the theoretical prediction
the same weight as we would a data set of k observations, when combining it
with a data set with m observations.13 We refer to the procedure that relies on this
observation as “ENO based weighting.”

Although the main goal of the procedures proposed here is to consider general
models that predict behavior in a universe of conditions, it is easy to see that the
ENO statistic can be written as a transformation of conventional statistics used in
the study of a single condition. Most importantly, the ENO statistic based on one
condition (N = 1) and a sample of n observations is closely tied to the t test for the
hypothesis that the condition’s mean equals 0 (the model G = 0) and to Cohen’s
(1994) effect size (d). These relationships are presented in Appendix 2c.

In Erev et al. (2005) we present an extensive comparison of the four combina-
tion rules presented above. The analysis shows that when the size of the experiment
is small (like the current experiment), the ENO based weighting provides the best
prediction.

3.2 The ENO of equilibrium, of impulse balance equilibrium,
and of the learning models

In the second row of the three right hand columns of Table 2 we show, for the ten
game sample, the average sample variance S2. The ENO’s of each of the models on

12 To see why C D(X̄o, G) = S2 implies independent error note that C D(X̄o, G) can be written
as the sum of the mean squared error of xi j from the relevant population’s mean (this error equals
S2), and the common error of the two predictors in predicting the population’s mean. Notice that
in Table 1’s small data set example the estimated value of C D(X̄o, G) is larger than S2 (112.5 vs.
98.9). In the data sets we considered the deviation between the estimates decreases when more
observations are used in the estimation.

13 When the samples are small it is possible to obtain estimates such that M − S2 ≤ 0. In
restricted regression analysis, these cases lead to the estimation of β1 > 1 that implies negative
weight to the mean of the first m observations. Since negative correlation between observation
m + 1 and the first m is impossible in the current setting, we treat these cases as situations
in which the ENO of the model is too high to be estimated based on the current sample and

set
∧

W =1.
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the ten game sample can then be computed from this figure and the model’s MSE,
as discussed above, ENO = S2/(M − S2). For example, the ENO of the RL model
for the first 100 periods of play on the ten game sample is 0.03204/(0.03290 −
0.03204) = 37. A SAS program that demonstrates the computation of the ENO of
the NFP can be found in Erev (2006).

The fact that the ENOs of the models are finite implies that these models only
give approximations to the true population means. But the size of the estimated
ENOs clearly demonstrates that these models can be useful. For example, the rein-
forcement and fictitious play models are more useful than our experiment (which
observes nine pairs in each game) for predicting the proportion of time additional
pairs of players in each game will play each action.

Using ENO as our comparative metric lets us look more closely at the relative
performance of equilibrium and the learning models as predictors of the observed
behavior. Equilibrium becomes a better predictor as players gain experience with
the game. For the first 100 periods, the equilibrium prediction has an ENO less
than 1. So, for the first 100 periods, the equilibrium prediction is less informative
than observing one pair of players. However by the last 100 periods, equilibrium
has an ENO greater than 1. That is, the equilibrium prediction is more informative
than observing a single pair of players actually playing the game, if one wishes
to predict the behavior of other pairs of players in periods 401 through 500. The
trend suggests that the predictive value of equilibrium may increase as players get
yet more experience. This may not be too bad for a model with no parameters, but
it is sobering to note how much experience is required before equilibrium predicts
better than a single observation.

All the learning models and impulse balance equilibrium predict better than
observation of multiple pairs of players, over each of the time periods observed
here. Since the ENO of some of the models increases over time (like equilibrium)
while the other models predict somewhat less well over time, the simplest com-
parison with which to illustrate the method is to consider how well each model
predicts over all 500 periods. For this purpose, observation of one pair of players
provides a better prediction than equilibrium, but all of the other models are more
informative than observing five pairs of players, and the reinforcement learning
models and normalized fictitious play provide better predictions than observing
more than ten pairs of players.

Evaluation of the effect of experience on the estimated ENO of the different
models reminds us that the models are only approximations. For example, impulse
balance equilibrium is much more useful in capturing the last 100 trials (ENO of
31.1) than the first 100 trials (ENO of 4.74). The low initial ENO suggests that (in
violation of the implicit simplification assumption) behavior does not approach the
impulse balance equilibrium immediately. Similarly, the large increase in the ENO
of NFP (ENO of 7.1 and 107.1 in the first and last 100 trials, respectively) can be
explained as a product of the simplification assumption. Specifically, to reduce the
number of free parameters, this model assumes that the same weighting parame-
ter (w) determines the adjustment of the propensities and the normalization factor
S(t). Relaxation of this assumption implies slower adjustment of the normalization
factor and high ENO in the first as well as the last 100 trials.

The ENO values estimated above capture the generality of the current models
in the context of the present experimental environment of repeated play of ran-
domly selected binary constant sum games. To get some idea of the generality of
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the results beyond this class of games we rely on the fact that the parameters of two
models examined here, NFP and impulse balance equilibrium, were estimated in
previous research that examined behavior in different settings. NFP, for example,
was estimated in Ert and Erev (2007) to fit individual choice behavior in a setting
with multiple alternatives with minimal prior information. Using the parameters
estimated in this previous research, Table 2 shows the MSE scores and ENO of
these models on the current data. The results show that in both cases the predictions
of the models with these previously estimated parameters are less accurate (have
higher MSE scores) than the predictions with the parameters estimated to fit the
30 game sample.

Nonetheless, both models have relatively high ENO using the parameter esti-
mates from these different environments. For instance, over 500 trials the ENO of
NFP with the parameters estimated to fit Ert and Erev’s individual decisions data
is 9.92.

4 Concluding remarks

There is widespread acceptance among economists [going back at least to
Friedman’s (1953) “as if” argument] that many economic theories of human behav-
ior are best understood as approximations rather than as literal descriptions of
human decision making. However, the experimental designs and statistical tests
conducted to distinguish among models remain overwhelmingly oriented towards
hypothesis testing. This may not be unreasonable when the only available data are
noisy and sparse, but the increased use of laboratory experiments to test economic
theories means that it will now be possible to gather sufficient data to reject the-
ories of behavior that are not exactly correct. But the observation that sufficiently
large data sets may allow any theory to be rejected cannot be allowed to immunize
theories from empirical examination.

The present paper takes a step towards formalizing the discussion of the use-
fulness of approximation. By looking at a random sample of games, rather than a
single game or sample of games selected by the experimenter, we are able to open a
window on how well different theories predict on average. By defining the ENO of
a theory as the number of observations that are needed to derive a better prediction,
we are able to revisit the venerable debate among and between psychologists and
economists on the merits of equilibrium and learning models of behavior in two
person zero sum games. All of these theories can be, and have been, rejected; all of
them can be distinguished from the process that actually generates the data. What
the ENO tells us is how much data we would need before we could generate a
better prediction than each theory.

Viewed in this way, we see that, after the players have gained sufficient expe-
rience, the mixed strategy equilibrium prediction for a game is “close enough” to
be superior to the opportunity to observe a pair of players playing the game. But in
the range of our experiment (500 periods) equilibrium did not (yet) yield a predic-
tion superior to the observation of two pairs of players. Depending on the cost of
experimentation on a previously unexamined game, and on the cost of error, this
kind of result can guide the decision of whether to experiment.

Table 2 shows that variants of stochastic fictitious play predicted substantially
better than equilibrium over the 500 periods studied, which is encouraging given
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that the games studied here, two person zero sum games played under full infor-
mation, are precisely the environment that motivated the study of fictitious play
as a model of equilibration. (The fact that the most successful of the models of
fictitious play we examine has an ENO of over 100 for the last 100 periods of play
suggests that it may capture long term equilibration reasonably well.) Reinforce-
ment learning did as well over all periods of play, which is not too surprising given
the robust performance of related reinforcement learning models in a wide variety
of settings.14 This success occurs even though reinforcement learning does not
make use of all the information (about the other player’s behavior) that is available
in the experiment reported here. And, for the first 100 periods of play, reinforce-
ment learning models outperformed the other models we considered, with an ENO
of 37, suggesting that the early periods of learning also can be predicted with some
success. And while more highly parameterized models can be used to fit the data
more closely ex post, the ones studied here did not predict better than the simple
models.

As economists are increasingly called on to evaluate and even to design new
economic environments (cf. e.g., Roth 2002), the need for predictively powerful
theories will grow in microeconomics generally, and in game theory in particular.
The effective design of novel environments requires the ability to predict behav-
ior without benefit of previous data from the same strategic environment. Useful
approximations, if they can be identified, will be of enormous importance, even in
the absence of theories that are exactly true. This paper is meant as a step towards
evaluating the predictive value of approximations. The results reported here, partic-
ularly the results concerning reinforcement learning, leave us optimistic that quite
general models, that may be applied in a wide variety of environments (in which
agents may sometimes have only little information about the environment) have
the potential to be useful approximations.

Appendix 1

a. EWA
EWA uses the same choice rule as SFP, and the following propensity adjustment

rule:

qk(t + 1) = {φ · N (t − 1) · qk(t) + [δ + (1 − δ) · I (t, k)] · vk(t)}/[N (t)].
where φ is a forgetting parameter, N (1) is a free parameter, N (t) = ρ N (t −1)+1
(for t > 1) is a function of the number of trials, ρ is a depreciation rate parameter, δ
is a parameter that determines the relative weight for obtained and forgone payoffs,
I (t, k) is an index function that returns the value 1 if strategy k was selected in
trial t and 0 otherwise, and vk(t) is the payoff that the player would receive for a
choice of strategy k at trial t .
b. Impulse balance equilibrium (IBE)

IBE is defined on a transformed game. The computation of the transformed
game includes three steps:

14 These settings include but are not limited to examples of bargaining and market games
(Roth and Erev 1995), coordination (Erev and Rapoport 1998) team and public goods games
(Bornstein et al. 1996; Nagel and Tang 1998), the repeated games of incomplete information
(Feltovich 2000), signaling games (Cooper et al. 1997) and signal detection games (Erev 1998).
See also Bereby-Meyer and Roth (2006).
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(1) Organization of the strategies to insure a clockwise best reply cycle. For exam-
ple, Game 1 is replaced with Game 1′.

Game 1 Player 2 Game 1′ Player 2 Game 1′′ Player 2
Player 1 A B Player 1 A B Player 1 A B
A 58,42 94,6 A 98,2 51,49 A 78,2 51,27.5
B 98,2 51,49 B 58,42 94,6 B 58,24 76,6

(2) Computation of the maximal payoff that each player can obtain with certainty.
In Game 1 this value, referred to as the aspiration level (AL), is 58 for Player
1, and 6 for Player 2.

(3) Transformation of the payoffs to reflect under-sensitivity to gain relative to
the reference point. Value X above the reference point is replaced with X ′ =
(X − AL)/φ where φ captures the sensitivity to gain. The original model
sets φ = 2. The current analysis treats φ as a free parameter. Game 1′′ is the
transformed variant of Game 1 with φ = 2.

Let u(i, j, k) denote the payoff (in Game 1′′) of player i when Player 1 selects j
and player 2 selects k. Choice probabilities are determined as follows:

c = [u(1, A,A) − u(1, B,A)]/[u(1, B,B) − u(1, A,B)]
d = [u(2, A,B) − u(2, A,A)]/[u(2, B,A) − u(2, B,B)]
U = (c/d)0.5

V = 1/[(c ∗ d)0.5]
P(Player 1 selects A) = U/(1 + U )

P(Player 2 selects A) = V/(1 + V )

Appendix 2

a. The derivation of ENO
Equal weight is implied when MSE(X̄o) = MSE(G).
When there are n observations in each of N conditions,

∧
MSE(X̄o) = 1

N

N∑

i=1

1

n

n∑

j=1

(xi j − X̄oi j )
2,

where xi j is the choice of subject j in task i , and X̄oi j is the mean of the “other
n − 1 subjects” in this task. Notice that

X̄oi j = n X̄i − xi j

n − 1
,

where X̄i is the mean of all n subjects in task i . These equations imply

MSE(X̄o) = 1

N

N∑

i=1

1

n

n∑

j=1

(

xi j − n X̄i − xi j

n − 1

)2
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= 1

N

N∑

i=1

1

n

n∑

j=1

n2

(n − 1)

(X̄i − xi j )
2

(n − 1)

= n

(n − 1)

1

N

N∑

i=1

n∑

j=1

(X̄i − xi j )
2

(n − 1)
= n

(n − 1)
S2,

where S2 is the pooled error variance.
M = MSE(G) is the estimate of the mean squared distance between the general

model’s prediction and each observation:

M = 1

N

N∑

i=1

1

n

n∑

j=1

(xi j − Gi )
2.

Thus, equal weight for predicting the next observation based on n −1 observations
is therefore expected when

n

(n − 1)
S2 = M

and, the implied value of n − 1 (the size of the experiment expected to yield pre-
diction as accurate as the model) is S2/(M − S2) = ENO.
b. The optimal weighting as a function of ENO

When C D(X̄o, G) = S2:

∧
W = ∧

β1 = MSE(X̄o) − S2

MSE(X̄o) + M − 2S2
.

Replacing MSE(X̄o) with n
(n−1)

S2 we get

∧
W = ∧

β1 =
n

(n−1)
S2 − S2

n
(n−1)

S2 + M − 2S2 =
S2/

n − 1
S2/

n − 1 + M − S2

= S2

S2 + (n − 1)(M − S2)
,

1
∧

W
= S2 + (n − 1)(M − S2)

S2 = 1 + (n − 1)
M − S2

S2 = 1 + (n − 1)

ENO

= (n − 1) + ENO

ENO
.

Thus,

∧
W = ∧

β1 = ENO

(n − 1) + ENO
.
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c. The relationship of ENO to the t statistic
The definition of the t statistic implies

t2 = (µ − X)2

S2/
n

.

Under the null hypothesis µ = 0 (the model G = 0):

t2 = X
2

S2/
n

.

The definition of S2 implies

S2 =
∑n

j=1 (X̄ − x j )
2

(n − 1)
=

∑n
j=1 (X̄2 − 2X̄ x j + x2

j )

(n − 1)
=

∑n
j=1 (x2

j ) − n X̄2

(n − 1)
.

When the model states G = 0, and we consider only one task (N = 1)
nM = ∑n

j=1 (x2
j ). Thus,

S2 = nM − n X̄2

(n − 1)
,

X
2 = M − n − 1

n
S2 = M − S2 + S2/

n.

Replacing for X̄2 in the definition of t2 we get

t2 = M − S2 + S2/
n

S2/
n

= M − S2

S2/
n

+ 1 = n

ENO
+ 1.
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