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Abstract
In many classification tasks, the training samples
are highly intertwined in the original input space.
In image datasets, for example, a large fraction
of training samples near each training point be-
long to different classes. The neural network
seeks to learn a new representation of data—the
last layer of the network—in which the training
samples are linearly separable. Going from in-
tertwined training data to such separable repre-
sentation necessarily introduces severe deforma-
tion to the representation space, whereby points
close to each other in the input space are mapped
to be far apart in the new representation. In this
work, we develop metrics to rigorously quantify
how intertwined the input data is and how much
space deformation the neural network produces
during its training. Such deformation is a fun-
damental reason why these neural networks are
fragile to adversarial perturbations. Our experi-
ments quantify how fitting an intertwined dataset
requires the model to deform the original space
of the datasets in a way that small perturbations
can result in big changes in the model’s output.

1. Introduction
Suppose we have a machine learning classifier f and and
let x be a correctly classified sample(f(x) = ytrue). An
adversarial example x′ is a point which is proximate to x
in the original input space but is misclassified by f to be of
another class. Recent works have demonstrated that adver-
sarial perturbations is pervasive in deep learning (Szegedy
et al., 2013; Biggio et al., 2013; Goodfellow et al., 2014;
Tramr et al., 2017). This raises the troubling perspective
that neural networks could be fundamentally fragile to cer-
tain small perturbations.
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In this work, we show that for a natural dataset, in order to
achieve high classification accuracy, the neural network f
maps the original input space of data to a new representa-
tion in a way that relative distances get highly deformed.
Moreover how much deformation is created is related to
how intertwined the original training samples are. We de-
velop efficient methods to quantify intertwinedness and de-
formation. Our experiments suggest that large deformation
is a fundamental reason why the classifier is vulnerable to
adversarial perturbations. In Section 2, we discuss how
training samples of different classes in a dataset are insep-
arably intertwined. In Section 3, we empirically quantify
the space deformation due to convolutional neural networks
and and discuss the connections between deformation and
adversarial perturbations.

2. Data is intertwined in the input space
What is intertwinedness A learned machine learning
classifier f consists of two stages: feature extraction and
classification. We can view f as a composition, f = c ◦ g
where g transforms samples from the original input space
X into the feature space S where a simple classifier c (e.g.
linear classifier, nearest neighbour, etc) is able to classify
samples of different classes.

Figure 1. Intertwinedness of data results in space deformation.

Taking the recent state-of-the-art image classifiers as an ex-
ample: X here is the pixel space, g is a deep neural net-
work, S is the last hidden layer of the network, and c is a
simple linear classifier (Krizhevsky et al., 2012; He et al.,
2016; Simonyan & Zisserman, 2014). The fact that func-
tion c is a linear classifier means that g has mapped data
samples in a manner that different classes are linearly sep-
arable in S. In the original space X , however, training data
points from different classes could be closer to each other
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than data points that share the same class by l2 metric (Fig-
ure 1). We refer to this phenomenon as intertwinedness of
the input data.

Quantifying intertwinedness There are several ap-
proaches to measure intertwinedness of a dataset in the
original and feature space. In our first measure, ITWn(x),
we take a test sample x and find the ratio of its n-nearest-
neighbors in the training set that are of the same class as
x. Dataset is more intertwined if the ratio is small. In
Figure 2(a), the average ITWn(x) of 1000 test images in
the CIFAR10 dataset (Krizhevsky, 2009) is depicted for
n=1, . . . , 1000 in the original and feature space of a 3 layer
CNN1.

We also use a complementary method to quantify inter-
twinedness. For a test sample x, ITWr(x) is the percent-
age of training samples that belong to the same class as x
among all training samples which distance to x is smaller
than r if there are any. In Figure 2(b) the average ITWr

for 2000 CIFAR10 test images in the original space X and
feature space S of the three layer CNN are displayed for
different values of r. The results of both measures demon-
strate that samples of different classes are much less inter-
twined in the feature space compared to the original space.

How intertwinedness is connected to deformation of
space As described in above, in a trained classifier, the
feature extracting function g transforms a highly inter-
twined space of data points to a less intertwined space to
enable linear separation. Therefore, g maps samples from
different classes that are proximate in the original space to
be far away in the feature space. This suggests that g must
deform the input space in a way that small variations could
result in big changes in the feature space. Similarly points
far apart in the input space could be mapped close together
in the feature space.

3. Deformation in deep networks
Deformation Metrics Intuitively, deformation corre-
sponds to stretching and compression of space in different
directions. We develop two complementary simple metrics
to quantify the deformation caused by a neural network.

In the first approach, we examine the perturbation of the
space surrounding a test sample through the presentation
mapping g by generating a set of synthetic data points lo-
cated on radius r small sphere around an actual sample x.
We map x and each of these synthetic points through the
neural network and measure the l2 distances from x in the
feature space. The sphere deformation could be interpreted

1The details of all convolutional neural networks utilized in
this work are described in Appendix A

Algorithm 1 Sphere Deformation

Input: sample test data x ∈ RD, radius r
sample n random points uniformly with distance r from
x: p1, . . . , pn
map the test sample through g: g(x)
for i = 1 to n do

map pi through g: g(pi)
calculate the distance in feature space:
di = ||g(x)− g(pi)||2

end for
calculate the maximum ratio of the distances:
k =

maxi=1,...,n di

mini=1,...,n di

as a condition number that quantifies the maximum stretch-
ing of the sphere divided by the minimum stretching. The
specifics are described in Algorithm 1 and Figure 3(a) de-
picts the histogram of k for 1000 runs of the algorithm for
the 3 layer CNN where r = 1, n = 1000. It shows that
many points have deformation condition number greater
than 10 suggesting a substantial heterogeneity in how dif-
ferent directions of the original sphere is stretched by the
network. (More results are displayed in Appendix B.)

The second approach randomly generate N line segments
of various length in the input space and tracks how the
rankings of the N lengths changes after mapping to the
last layer of the neural network. We quantify the mapping
changes using Spearman’s rank order correlation. This ap-
proach is described in Algorithm 2. Figure 3(b) depicts
the histogram of Spearman’s rank order correlation values
for running the algorithm 10000 times for the 3 layer CNN
where n = 100. This experiments show that there is low
correlation between the input lengths orders and the lengths
orders in the new representation. This also suggests that
there has been a substantial amount of space deformation.

How deformation is related to the complexity of the
network Training deeper networks results in higher ac-
curacy in general. For that reason, for the same original
space X and same intertwindness, the network gets better
at separating samples of each class from samples of other
classes in the feature space S. This suggests that the defor-
mation increases as the networks become deeper. Indeed,
Figure 4 shows that the the sphere deformation increases
and the rank-order correlation decreases as the number of
layers in the network increases.

Deformation evolution during training After training,
the network’s performance at separating samples of differ-
ent classes in the original space improves. Accordingly, we
expect the deformation to increase with training. In Fig-
ure 4(c) shows the increase in space deformation of three
different networks structures during training epochs using
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(a) (b)

Figure 2. Average percentage of (a) n nearest training samples (b) neighbors in training set within radius r, in CIFAR10 dataset that
share the same class with a test data point of CIFAR10 dataset in the input space versus the feature space of the 3 layer CNN (for 1000
test data points).

(a) (b)

Figure 3. Using CIFAR10 dataset for the 3 layer CNN, (a) depicts histogram of sphere deformation using Algorithm 1 and (b) displays
the histogram of rank order deformation using Algorithm 2

(a) (b) (c)

Figure 4. For the CIFAR10 dataset: (a) Average sphere deformation for 1000 test data points via three networks with different number of
layers where n = 1000 and r = 1. (error bars stand for standard deviation) (b) Average rank order deformation for 1000 test data points
via three networks with different number of layers where n = 100.(error bars stand for standard deviation) (c) Evolution of deformation
using rank order deformation algorithm 1000 times with n = 100 after each training epoch.(error bars stand for standard deviation)
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Algorithm 2 Rank Order Deformation

Input: n
Sample n pairs of test samples
(x1a, x1b), . . . , (xna, xnb)
for i = 1 to n do
di = ||xia − xib||2
map the pair through g and calculate the distances in
the feature space:
Di = ||g(xia)− g(xib)||2

end for
Form the order set of distances in
sample n random points uniformly with distance r from
x: p1, . . . , pn
map the test sample through g: g(x)
for i = 1 to n do

map pi through g: g(pi)
calculate the distance in feature space:
di = ||g(x)− g(pi)||2

end for
rS = Spearman’s rank order correlation between dis and
Dis

Algorithm 2. Additionally, for all structures the deforma-
tion is small for the randomly initialized network before
training, suggesting that strong deformation is a result of
confronting the intertwinedness of the data points rather
than being an inherent feature of neural networks (Results
for using Algorithm 1 are discussed in Appendix D.)

Deformation increases as training data becomes more
intertwined. To quantify the relationship between data
intertwinedness and network deformation, we create syn-
thetic datasets where we can directly control intertwined-
ness. The synthetic data is basically a mixture of Gaus-
sians where the different Gaussians are given different la-
bels(more details in Algorithm 3 described in Appendix E).
We control intertwindness by increasing the `2 distance be-
tween expected values. We train the same 3 layer CNN
structure for each dataset. The results of 1000 runs of Al-
gorithm 2 with n = 100 for each trained classifier are de-
picted in Figure 5 and confirms the relationship between
intertwinedness and space deformation.

4. Network deformation and fragility
As described in Section 2, in the original space, the data is
highly intertwined. Training and accurate classifier would
cause the proximate data points to be distant and separable
in feature space and the opposite happens for samples of
each class that are not necessarily proximate. Consider a
new test data point, as it is in the same intertwined space
and as the classifier’s mapping has high deformation, there
would be directions moving toward which will cause big

Figure 5. Rank order deformation versus the intertwindness of the
dataset. (Error bars stand for standard deviation)

jumps in the feature space which result would be misclas-
sification. Figure 6 shows the decrease in robustness as
dataset becomes more intertwined(Details in Appendix G).

Figure 6. Using fast gradient sign method(FGSM) (Goodfellow
et al., 2014) with parameter ε = 2, we perturb 1000 randomly
chosen unseen data points and measure the average `1 norm
change in the output probability vector over class labels of the
3 layer CNN

Discussion We developed intuitive metrics to quantify in-
tertwinedness and deformation of representation learning.
Our experiments demonstrate how deformation increases
during network training and also increases as the network
becomes deeper. Our initial results suggest how deforma-
tion could cause adversarial examples, though additional
experiments are also needed to flush out this relation.
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Appendix A
In what follows we talk about the convolutional neural networks utilized in this work. In all of the following networks
batch normalization (Ioffe & Szegedy, 2015) is used after each convolutional layer, the activation function in all layers is
rectified linear unit (ReLU), and `2 weight decay regularization is used. We user ADAM optimizer (Kingma & Ba, 2014)
with default parameters except for the learning rates which are 0.0001,0.0005, 0.001 for the three following structures
respectively.

1 layer CNN

The network structure is:

• one 5× 5 stride 2 convolutional layer with 64 channels

• 8× 8 stride 8 maxpooling layer

• feedforward network with one hidden layer with 1024 hidden units

The test accuracy of the network is 71.1 %.

2 layer CNN

The network structure is:

• one 5× 5 stride 2 convolutional layer with 64 channels

• 2× 2 stride 2 maxpooling layer

• one 5× 5 stride 2 convolutional layer with 128 channels

• 2× 2 stride 2 maxpooling layer

• feedforward network with one hidden layer with 1024 hidden units

The test accuracy of the network is 72.7 %.

3 layer CNN

The network structure is:

• one 5× 5 stride 2 convolutional layer with 64 channels

• 2× 2 stride 2 maxpooling layer

• one 5× 5 stride 2 convolutional layer with 128 channels

• 2× 2 stride 2 maxpooling layer

• one 5× 5 stride 2 convolutional layer with 256 channels

• 2× 2 stride 2 maxpooling layer

• feedforward network with one hidden layer with 1024 hidden units

The test accuracy of the network is 79.3 %.
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Appendix B
In this appendix, for the three CNNs we had, we have displayed the result of sphere deformation algorithm for spheres with
different radius sizes. As the figures suggest, although the network deforms distance in different directions in a different
manner, the ratio of deformation between different directions is not affected with regards to the size of perturbations.

3 layer CNN

For the 3 layer CNN, Figure 7 displays the histogram of 1000 sphere deformation k values where r parameter is equal to
0.01,0.1,1,10,and 100 respectively. As it is observed, the distribution of k values is not highly dependent on r.

(a) (b) (c)

(d) (e)

Figure 7. Histogram of sphere deformation k values for the 3 layer CNN where (a)r=0.01, (b)r=0.1 (c)r=1 (d)r=10 (e)r=100
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2 layer CNN

For the 2 layer CNN, Figure 8 displays the histogram of 1000 sphere deformation k values where r parameter is equal to
0.01,0.1,1,10,and 100 respectively. As it is observed, the distribution of k values is not highly dependent on r.

(a) (b) (c)

(d) (e)

Figure 8. Histogram of sphere deformation k values for the 2 layer CNN where (a)r=0.01, (b)r=0.1 (c)r=1 (d)r=10 (e)r=100
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1 layer CNN

For the 1 layer CNN, Figure 9 displays the histogram of 1000 sphere deformation k values where r parameter is equal to
0.01,0.1,1,10,and 100 respectively. As it is observed, the distribution of k values is not highly dependent on r.

(a) (b) (c)

(d) (e)

Figure 9. Histogram of sphere deformation k values for the 1 layer CNN where (a)r=0.01, (b)r=0.1 (c)r=1 (d)r=10 (e)r=100
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Appendix C
The histogram of rs values for 10000 runs of Algorithm 2 where n = 100 for 1 layer and 2 layer CNNs are shown in
Figure 10(a) and Figure 10(b) respectively.

(a) (b)

Figure 10. Histogram of 10000 rank order deformation rs values for n=100 and (a) 1 layer CNN and (b) 2 layer CNN
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Appendix D
The evolution of sphere deformation metric for 1000 runs of Algorithm 1 for the three networks we have is depicted in
Figure 11. The same as rank order deformation results, it could be seen that the deformation increases as networks’ are
trained and before training all networks have nearly the same sphere deformation.

(a) (b) (c)

Figure 11. Average sphere deformation for 1000 test data points for (a) 1 layer CNN (b) 2 layer CNN (c) 3 layer CNN. Error bars stand
for standard deviation.
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Appendix E
The following algorithm was used to generate synthetic datasets.

Algorithm 3 Synthetic Dataset Generation

Input: C, n, σ, Dateset Dimensions d, label set = {1, . . . , L}:
for i = 1 to C do

Randomly choose class label l from {1, . . . , L}
Sample µ ∼ U ([0, 256]d)
Sample n data points from N (µ, σI)
Clip data points inside [0, 256]d

To all n data points assign class label l
end for
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Appendix F
Using the same synthetic datasets described in Section 3, the evolution of ran order deformation metric for 1000 runs of
Algorithm 2 for the one and two layer CNNs is depicted as we the datasets’ intertwindness increases in Figure 12. As in
the 3 layer CNN, increasing intertwindness increases the space deformation.

(a) (b)

Figure 12. Rank order deformation for (a) 1 layer CNN (b) 2 layer CNN as dataset intertwindness is increased (error bars stand for
standard deviation).
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Appendix G
Using the synthetics datasets discussed in Appendix E, in order to measure the robustness of a trained network with loss
function L(x, y), we track the change in `1 norm of last layer’s output probability vector: For an unseen data point x with
class label y, we perturb it using the Fast Gradient Sign Method(FGSM) discussed in (Goodfellow et al., 2014) which is
as follows to get x?:

x? = x+ εsign(∇xL(x, y))

Given that network’s output probability vector for x and x? to be P and P?, we call the network is robust if |P−P?|1 is
small. Figure 13 displays the results for robustness versus intertwindness in synthetic datasets for one layer CNN and two
layer CNN. The results confirm the assumption that increasing intertwindness results in robustness decrease.

(a) (b)

Figure 13. Average robustness versus the dataset intertwindness using 200 unseen data points for networks trained on synthetic datasets
in (a) one layer CNN (b) two layer CNN


