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Intro

Goal: description of the asymptotics of solutions of the wave
equation on de Sitter-Schwarzschild space, with exponential decay
rate.

Features:

@ Requires high energy estimates on the analytic continuation of
the resolvent of an operator asymptotic to the hyperbolic
Laplacian acting on slightly weighted spaces,

@ and a good understanding of the geometry.

The latter ensures, for instance, that one needs to apply the
resolvent to functions in these slightly weighted spaces (which is
not a priori the case).



Intro

A simpler case, that already has almost all of the geometric
features is de Sitter space, given by the hyperboloid

4. +z22=2+1inR"!

equipped with the pull-back of the Minkowski metric

dz2,, — dz} — ... — dz?2. Introduce polar coordinates (R, 6) in
(z1,...,2n), write 7 = zp41, so the hyperboloid can be identified
with R, x Sg_l with the Lorentzian metric
dr? 5
- 1) d6?.
241 (" +1)

1 so the metric becomes

Form>1, let x=7"
(1+x?)"tdx? — (14 x?) db?

x2

An analogous formula holds for 7 < —1, so if we compactify the
real line as an interval [0,1]7 (with T = x for x < 3, say), we
obtain a compactification of de Sitter space on which the metric is
conformal to a non-degenerate Lorentz metric,



Intro

~

A natural generalization is asymptotically de Sitter-like spaces, M,
which are diffeomorphic to [0,1]7 x Y for a compact manifold
without boundary Y with a Lorentz metric g on the interior
conformal to a Lorentz metric g smooth up to the boundary,
ldx|g x—o=1(x=T, 1—T), one has the following result:

Theorem

Let sy (M) =251 + (% — A\)Y2. The solution u of the Cauchy
problem for Og — A with C* initial data at T = 1/2 has the form

u=xMNy, 4 x=Ay_ vy e COO(I\A/I),
if sy (A) —s—(\) € N. If s () — s_(A) is an integer, the same

conclusion holds if we replace v— € C*°(M) by
vo = C®(M) + x>+N=5-(N) Jog x C>®(M).

In fact, one also knows that the scattering matrix is an FIO, and
one understands the strucrture of the forward fundamental solution
(the latter is the work of Dean Baskin).
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4+ ff,

€y T =0,
T:% t=20
T=1

q—

On the left, the compactification of de Sitter space with the
backward light cone from g and forward light cone from g_ are
shown. €., resp. 2_, denotes the intersection of these light cones
with T > 0, resp. T < 0. On the right, the blow up of de Sitter
space M’, together with the spatial and temporal coordinate lines
of the static model in Q. The interior of the light cone inside the
front face ff;, can be identified with the spatial part of the static
model of de Sitter space.



Intro

The static model of de Sitter space arises by singling out a point
on Sg_l, e.g. qo=(1,0,...,0) €St CR™
@ it is the intersection of the backward lightcone from qg
considered as a point g at T =0, and the forward light cone
from qp considered as a point g_ at T = 1.
@ These intersect the equator T = 1/2 (here 7 = 0) in the same
set, and altogether form a ‘diamond’.
o Explicitly this region is given by 222 + ...+ z2 <1 inside the
hyperboloid.

@ Blow up the corner where the light cones intersect 7 =0, as
well as g4 and g_; call the resulting space M'.



Intro

M can also be obtained as follows.
o Consider [0,1]7 x B3, with T = e~ for t > 4, say.
@ In polar coordinates (r,w) on B3, consider the Lorentz metric

(1—r?)dt? — (1 —r*)tdr? — r* du?.

@ Blow up the corners to obtain M.

o It is straightforward to see that M and M’ are (almost)
diffeomorphic and isometric.
@ ‘Almost’ refers to this approach gives that the defining

function of ff,, in M is x? — this corresponds to an evenness
statement for the Lorentz metric in the sense of Guillarmou.



Intro

While one can analyze the solutions of the wave equations on de
Sitter space at points inside the ‘diamond’ by considering the
diamond only (in view of the finite propagation speed for the wave
equation), the resulting picture does include rather artificial
limitations.

For instance, the local static asymptotics, corresponding to the tip
of the diamond at Y/, describes only a small part of the
asymptotics of solutions of the Cauchy problem on de Sitter space.



We now turn to de Sitter-Schwarzschild space.
Static model: let

M =R; x X, X = (ron, rag)r X S

w

with the Lorentzian metric
g =a’dt®> —a 2dr?* — r? duw?,

where

with A and m suitable positive constants, 0 < Im3A < 1,
@ Iy, fqs the two positive roots of «,
@ dw? the standard metric on S2.

@ the static model of De Sitter space is given by m =0, A = 3.



We also consider the compactification of X:

X = [on, ras]r x S3.

o 1 =0a?isa C* defining function for the two boundary
hypersurfaces of X,

@ can also consider o as a boundary defining function of X,
amounting to a change in the C* structure of X. Denote the
new manifold by X;.

2

The d’'Alembertian with respect to this metric is
O=a?(Df — a®r?D,(r’a®D;) — a’r?A,),

where A, is the Laplacian on S2.



For the wave equation, we also compactify time to an interval
I =1[0,1]7:

o let

2Xt

T+:T,\,+:e_ in t>C,

with \ to be decided,

o let
T=T,int>C,

o similarly, T_ =e?* let T=1—-T_int< —C.

It turns out that
Rt X )_< = [0, ]-]T X [I’bh, rdS]r X SE)

is not the best space to consider the asymptotics.



Rx X M

tf_

The space-time product compactification of de
Sitter-Schwarzschild space and its blow up M are shown, with the
time and space coordinate lines indicated by thin lines. These are

no longer valid coordinates on M. Valid coordinates near the top
left corner are p and p.



Blow up the corners
{0} x {rpn} x S?, {0} x {rgg} x S?

(and analogously at T =1, i.e. T_ = 0), denoting this space by M.

Thus, a neighborhood U = U, . of the ‘future temporal face' tf_,
given by T =0, is diffeomorphic to

[0,€) X [Fon, ras] x S2, p = Ta4/p.

In the interior of tf, this is in turn diffeomorphic to an open
subset of
[O, 6)7‘ X (I’bh, I’ds) X Si

If we replace u by a as the defining function, we obtain I\_ﬂl/2. Note
that tf, is naturally diffeomorphic to X in M, and to )_<1/2 in I\_/ll/z.



Let B
Agt, (M)

denote the space of functions v which are C* on M away from
tf1, and are conormal at tf,, including smoothness up to the
boundary of tf,. That is, for any k and smooth vector fields
Vi,..., Vg on M which are tangent to tf,

Vi Viv € L3 (M),

where L% tf+(I\_ﬂ) is the L2-space with respect to p~! times smooth
non-degenerate densities on M.

Thus,
e p"C=(M) C .Aff'f(/\_/l) for all € > 0,
° .Agf7+(/\/l) C pmL®(M).



The first (and technically main) result on wave propagation is the
following.

Suppose Ou =0, u is C* in M {p € (0,1)}. Then there exists a
constant ¢ and € > 0 such that u — c is in Af; (M) = pAd (M)
near tf .

Thus,
o there is an asymptotic limit of u, uniformly on X,
@ the convergence is exponentially fast in terms of ‘time’,

@ the constant corresponds to the zero resonance of the ‘spatial
Laplacian’, described below.



We would like to phrase the assumption on u in terms of initial
conditions. To do so, we note that one can blow down the spatial
faces, i.e. there is a manifold M anda C*® map 3, 6: M — M
such that
@ ([ is a diffeomorphism away from spatial infinity,
@ the metric g lifts to a C*° Lorentz b-metric on M, b at the
temporal face, smooth at the other faces, with respect to
which the non-temporal faces are characteristic.



One valid coordinate system in a neighborhood of the black hole
end of spatial infinity, disjoint from temporal infinity, is given by:

_ 12 —1/2
Sbh,+ = Oé/ T)\bhy"‘ - pbh,—i—’
1/2 1/2 1/2
Sbh,— = a/T)\bh,— - aT)\bhH‘ = HPph, 4> @s

where as usual w denotes coordinates on S2.

°
Foh,+ = {bn,— =0}
is the characteristic surface given by p=0in T > 0 (i.e. the
front face of the blow up of the corner),
°
Foh,— = {Sbn,+ = 0}
is its negative time analogue,

@ the change of coordinates (pph ;1) — (Sbh,+, Sbh,—) is a
diffeomorphism from (0,00) x (0,4) onto its image, i.e. these
coordinates are indeed compatible.



M M
7
D
te=0 t=0
i Y Fas,—
tf_ tf_

On the left, the M is shown, while on the right its blow-down M.
The time and space coordinate lines corresponding to the R x X
decomposition are indicated by thin lines in the interior. Certain
boundary hypersurfaces of M are continued by thin lines to show
that the Lorentz metric extends smoothly along these (but not
across tf, and tf_!). The extended spaces are denoted by M and
M.



The main theorem then is:

Theorem

Suppose u solves Ulu = 0 with C>° Cauchy data on a space-like
Cauchy surface ¥ in M N {t > 0}, say ¥ = {t =0} (i.e.

Sbh,+ = Sbh,—)-

Then there exists a constant ¢ and € > 0 such that u — c is in
i, (M) = p€A8f+(M) near the future temporal face, tf .

Dafermos and Rodnianski proved a version of this tﬂeorem, with a
logarithmic decay rate, i.e. u — ¢ € (log p)_N.ASf+(I\/I) for every N,
instead of p¢, by rather different methods.

In terms of our methods, the logarithmic convergence follows by
obtaining polynomial bounds on the resolvent of the ‘spatial
Laplacian’ and its derivatives at the real axis, rather than in a strip
for the analytic continuation.



Writing T = T, = T, 4 in t > C, the dual metric has the form
G =4a72)\2T20% — a?9? — r 202
in the original product compactification, with

du
8,« - Eﬁu - 268M

The change of variables from r to p is smooth and non-degenerate,
i.e. 23 = du/dr # 0 for u close to 0, i.e. r close to ryy, or rgs.

Upon the blow-up, in M, near tf,, in the coordinates (p, i, w), we
have

G =4t Np*05 — 4up?(9y — = pd,)* — r 203,



Thus,
G=npt (4)\2/)285 — 46%(u0,, — pﬁp)2) —r 2092,

If we let A = 3(ron) > 0 or A = —f(rqs) > 0 then the pzﬁg terms
cancel, so locally near ryy,

G = 470 +80°p0,0, — 407 nd5 —r 202, v = (B(ron)* — 5°),
~ C*°, with a similar expansion at rgg.

We remark that in fact the choice of \ determines the
compactification M, i.e. it is only at this point that the
compactification has been specified!



The metric is a C*° Lorentzian b-metric on
2
[0,€), % (roh — €, ron + €)r X S,

i.e. is non-degenerate as a quadratic form on the b-cotangent
bundle, in particular it is C* across p = 0.

Write F for the set given by u =0, i.e. the boundary hypersurface
of M that is no longer a boundary hypersurface of M.

For this metric F is characteristic, and one has the standard
propagation of singularities in p > 0. In particular, for C* initial
data specified at a Cauchy surface such as p = pg constant, the
solution is smooth in p > 0 up to 4 = 0.



To see this:
@ write covectors as

d
57"+<du+2mdw,

e ie. (p,p,w,& (,n) are coordinates on b1,
@ the dual metric (which is the principal symbol of OJ),
considered as a function on ®T*M, is

G = 4y& +86%¢C — 48°u¢® — r 2P,
@ the Hamilton vector field of G is

He =8(v §+52C)p8 —843%(u¢ — €)0,
- (a3 £2+8ﬁ o5 (2§C—u<’2)

)84 —r 2H(w n)>

—452¢% ~
with H(,, ) denoting the Hamllton vector field of the standard
metric on the sphere.



The conormal bundle of t=01is u =10, (=0, n =0, so the
vector field is

86%Cpd, + 46°C%0;

which is indeed tangent to the conormal bundle, and is non-radial
off the zero section (where { # 0) as long as p # 0.

At OF, i.e. at p = 0, however we have radial points over the
conormal bundle of F. Rather than dealing with them directly, we
reduce the problem to the study of the resolvent of the spatial
Laplacian.

The study of this operator has a relatively long history, with poles
of the analytic continuation of the resolvent studied by Sa Barreto
and Zworski, and the cutoff resolvent studied by Bony and Hafner.



Resolvent estimates

We now study the asymptotics at tf.. Set T = e~ *. Then
O=a"2 ((TDT)2 — a?r?D,a’r*D, — a2r_2Aw)
=a ((TD7)* — Ax),
where we introduced the spatial ‘Laplacian’
Ax = oz2r_2D,042r2 D, + a2r_2Aw
= Br=2aD,Br’aD, + o®’r 2, near a = 0.

We also recall that not T, but rather T*vh and TA4s were used
above to construct the compactification.

Thus, _
Ax € Diff5(X12),

where, as usual, Diffg(/N) on a manifold with boundary N is the
algebra of differential operators generated by vector fields
vanishing at the boundary over C>°(N) (i.e. x0x, xd,, in local
coordinates in which x is a boundary defining function).



Resolvent estimates

Although this is not the Laplacian of a Riemannian metric on X, it
is not far from it: it is d*d with respect to

@ the inner product on one-forms given by the fiber inner
product with respect to the ‘spatial part' H = o202 + r=292
of G

@ and density on X given by dh = o ?r? dr dw.

Thus, Ax is self-adjoint on
L2(X,[dh]), dh| = a=2r?[dr||dw| = o~ }|B]71r? |dal|dw],

and we will use the techniques of Mazzeo and Melrose to study its
resolvent.



Resolvent estimates

S3a Barreto and Zworski showed that its resolvent
R(0) = (Ax — o)™}, Imo <0,

admits an analytic continuation from the ‘physical half plane’,
Imo < 0, with only one pole in a half plane Imo < ¢, € sufficiently
small, which is the pole 0.

Bony and Hafner obtained polynomial bounds on the cutoff
resolvent, xXR(o)x, x € C(X), as |o| — oo in the strip
[Imo| <e.

This implies that the local energy (essentially the behavior of the
solution in a compact subset of the interior of tf. ) for C2°(X)
initial data decays to the energy corresponding to the O-resonance.

Our extension of their result is both to allow more general initial
data (not compactly supported ones) and to study the asymptotics
uniformly up to Otf,.



Resolvent estimates

It is also useful to introduce the operator
L =alxa " € Diffg(X ),
which is self-adjoint on
[2(X, a2 |dh]) = al®(X,dh), o 2|dh| = a73|3|71r? |da| |dw|.

Thus, this space is L%(X) as a Banach space, up to equivalence of
norms.

The normal operators No pn(L), Noas(L) of L in Diff(z)()_(l/2) at
r = rpp, resp. r = rqs, are

Nobh(L) = A2 Nobh (Ams), Noas(L) = MsNo.as(Aws),

where Apps is the hyperbolic Laplacian, explaining the usefulness of
this conjugation.



Resolvent estimates

Let
a e C®(X), a>o,
& = oo for r nearny,
5 1/Ads

a=a«a for r nearryg.

From the work of Mazzeo-Melrose (with improvements by
Guillarmou) the resolvent

R(o) = (L—0%)"", on L§(Xi)2), Imo <0,

continues meromorphically to a strip |Imo| < € as an operator
between weighted L2-spaces (as well as other spaces):

R(O') . 6&5L(2)()_<1/2) — 64_5Lg()_<1/2), 6> €,

we keep denoting the analytic continuation by R(o).



Resolvent estimates

Thus,
R(c) = (Ax — )" =a 'R(0)a on L*(X,|dh|), Imo <0,

continues meromorphically to a strip | Imo| < € (again, we keep
denoting the analytic continuation by R(0)):

R(o) : &°L2(X, |dh|) — @& °L2(X,|dh]), § > .



Resolvent estimates

The main result we need about this resolvent is the following
bounds on its behavior as | Re | — oo in the strip (with the
analogous bounds outside the strip in the lower half plane being
much easier):

Theorem

There exists € > 0 with the following properties.

The only pole of the analytic continuation of the resolvent R(c) in
Imo < € is o =0, which is a simple pole, with residue given by a
constant .

Moreover, for each k and § > € there exist m > 0 and C > 0 such
that

167" R(0)l| cga-ra0 (% 0), (%)) < Clol,

for|o| > 1, Imo <e.



Resolvent estimates

This theorem in fact follows from just the corresponding weighted
L?-estimates and the fact that in the Mazzeo-Melrose parametrix

construction in the non-semiclassical (i.e. non-high-energy) setting
the pseudo-differential seminorms blow up like o, ¢ dependent on
the seminorm.

(3e > 0)(Vo > ¢€)(3C > 0)
o] > 1, Imo < €= [|6°R(0)&° || c(12(xq ./ahly) < Clo| €

The proof has two ingredients:
@ a semiclassical parametrix construction for the analytic
continuation of the resolvent near infinity, i.e. 9X; 5

@ propagation estimates in compact sets, which are conveniently
available from the work of Bony and Hafner in terms of
estimates on the cutoff resolvent.



Resolvent estimates

If one wanted weighted L? estimates only at the real axis, one
could do it quite a bit more easily:

@ take the estimates for the cutoff resolvent, due to Bony and
Hafner, or analogous semiclassical propagation estimates at
the trapped set,

@ paste this with well-known high energy resolvent estimates
localized near infinity, studied particularly by Cardoso and
Vodev, but with origins in the work of Burq,

@ e.g. using the method of Bruneau and Petkov.
This gives the Dafermos-Rodnianski result without having to

construct a high energy parametrix for the analytic continuation of
the resolvent.



High energy parametrix construction

We now sketch the high energy parametrix construction for the
analytic continuation of the resolvent.

Here X = B" the closed ball, with an operator L which
@ has principal symbol given by a 0-metric,
@ is asymptotic to Agn.
An example is obtained by taking a neighborhood of either end of

)_<1/2 with the operator A~2aAxa ™!, and transferring it to a ball,
via a smooth cutoff.

Let X2 = [X x X; Odiag] be the zero double space. First, we
construct the distance function on X° x X°, uniformly to infinity,
using this compactification. We write

PL, PR, Pff

for the defining functions of the lifts of 9X x X, X x 9X, Odiag.
Thus, 7] x is a smooth non-vanishing multiple of p; pg, if x is a
defining function for 0.X.



High energy parametrix construction

Local coordinates on °T*X, the dual bundle of ° TX, induced by

local coordinates (x, yi,...,Yn—1) on X arise by writing one-forms
as J J
X Vi
A— i —,

as opposed to the induced local coordinates on T*X:

Edx + Z n; dy;j.
J
Thus, over X° we have the canonical identification of T*X° with
OT*XO
T*X° 3 (x,y,&,m) — (x,y,x€ xn) € °T*X,

which is C*® asa map T*X — °T*X, but is not a diffeomorphism
at 0X.



High energy parametrix construction

If g is a O-metric, i.e. has the form x~2g, g is C> Riemannian,
|dx|z =1 (so g = dx? + h, where h|,—o a metric on 9X), A, its
Laplacian, then the principal symbol of A, is the dual metric

pE COO(O T*X)> and p|X:0 = )‘2 + H(y,,u),
H the dual metric of h|x—p. The lift of the Hamilton vector field of

p from T*X° is
op op 8p 8p 8p op
H — _ — — .
p = 8)\8 +X8u 0y ( o + x Ix O X —l—x&y O,
which equals
op op op
8)\( x0x) — 8M5A+ ot Ou

modulo vector fields tangent to OTng. In particular, for our p,
this is equal to

2X(x0x + p0y) — 2HOy,
which at p = 1 vanishes exactly at the radial set x =0, u =0,
which is a source/sink.



High energy parametrix construction

o If we blow up the radial set (inside p = 1), H,, lifts to a vector
field of the form pgV/, V transversal to the front face.

@ Thus, the renormalized flow of H, i.e. the flow of
pf_lep = V/, reaches the front face in finite time.

To construct the distance function, we lift the argument to X02, or
more precisely to the pull-back of °T*X ® °T*X to XZ.

@ The 0-Hamilton vector field of the metric lifted from the left
factor, Hy, has radial points at the left face, and similarly with
the right Hamilton vector field, Hg.

@ Upon blowing up the set of radial points, and factoring out
the defining function of the front face, the rescaled Hamilton
vector fields are transversal to the front face.

@ [f the metrics are close, the flowout of N*diag under the joint
flow of H; and Hg is close to the flowout of N*diag for the
hyperbolic metric.

@ Thus, the flowout is the graph of the differential of the
distance function.



High energy parametrix construction

One concludes that, as on hyperbolic space,
d(z,2) = —log(pupr) + F. F € C(X3 \ diagy).

The required semiclassical parametrix, if the metric is close to the
hyperbolic metric, can now be constructed on

[X§ x [0, 1)n; diago x {0}], h=|Reo|™,
by considering the ansatz (for n = 3)

e—io’d(z,z’)

N
G(o,z,7) = 4msinhd(z, 2)

U(o,z,72').

motivated by the hyperbolic resolvent, which has the same form,
with d replaced by ds, and U = Uys = 1.



High energy parametrix construction

We want U to be smooth on
[XZ % [0,1)h X (—€,€)imo; diagy x {0} X (=€, €)imo]-

Thus, Im o is regarded as a bounded parameter; the semiclassical
rescaling is in Reo.

We also want U = 1 on the semiclassical front face, and on the
0-front face, where the ‘error’ (L — 02)R(c) — Id already vanishes
to leading order, with G the Schwartz kernel of R(0).

Notice that (for Reo > 1)
L—o0%=h2(hL—(1+ihlmo)?),

so Im o contributes a subprincipal term only in the semiclassical
sense. However, at infinity, it has a rather important impact.



High energy parametrix construction

We only need analytic continuation to a small strip: there are
resonances farther away anyway. In the non-high energy
framework, this would merely necessitate arranging

@ the correct principal symbol and
@ the correct normal operator,

which our choice of U would imply (i.e. there is no need for
iteration).
In the semiclassical setting:

@ One can solve away the error at the semiclassical front face as
usual.

@ The transport equations can be solved to give U at h = 0.

@ The ansatz, with U =1 at the zero front face, assures that
there is no error there to leading order.

@ At the left face, the error term as a right parametrix is better
than a priori expected as usual.



High energy parametrix construction

Returning to de Sitter-Schwarzschild space, one can combine

@ the resolvents on the de Sitter and black hole ends, for which
we had obtained a parametrix, and

@ high energy cutoff resolvent estimates (or instead semiclassical

propagation estimates at the trapped set), as obtained by
Bony and Hafner,

@ using for instance the method of Bruneau and Petkov,

to prove polynomial bounds on the resolvent acting on weighted
spaces.



Wave asymptotics

Suppose u solves the wave equation, (u = 0, and v is smooth on
M in p > 0. Energy estimates show that u is necessarily tempered,
e.g. in the sense that u € p~5L%(M) for some s > 0, but in fact
this can be shown more directly, as done below.

Let ¢ € C°(M) be a cutoff function, ¢ supported near tf,
identically 1 in a neighborhood of tf: we can (and do) take

¢ = ¢o(p) with p € C°([0, 1)), identically 1 near 0.

If u solves Ou = 0 and u is smooth in y (i.e. across the side faces),
then ¢u is smooth in u, and

O(pu) = [0, ¢Ju = f

where f is also smooth in 1, and vanishes in a neighborhood of the
temporal face in view of [, ¢] € Diff;(M), supported away from
tf. Moreover, v = ¢u is the unique solution of v = f in M°
with v = 0 for p sufficiently large.



Wave asymptotics

Consider the Mellin transform in T = e~t, for functions supported
in a neighborhood of tf, namely in U = {p < 1}:

e U is equipped with a fibration U — X, extending the fibration
U° — X in the interior,

IdT\

@ there is a natural density |dt| = on the fibers,

@ which in coordinates (g, o, w) = (T)‘bh/oz a,w) valid near the

boundary of tf; at r = n,, takes the form % b= pt/2.

The Mellin transform with respect to this fibration and density is
the map v — ¥ from functions supported in U (i.e. near tf) to
functions on Q2 x X, Q C C,

\A/(a,z):/T"r (T, )|dT|

If v is polynomially bounded in T, supported in T > 0, with values
in a function space H in z, this transform gives an analytic
function in a lower half plane (depending on the order of growth of
v) with values in H.



Wave asymptotics

Rewrite the integral near Otf,, j = T /a:

. . ds
00,0 w) = a? ] / 575, a0 122
P

and the integral is merely the Mellin transform of v with respect to
p evaluated at o/ Apy.

Thus, if v is smooth on M°, supported in {0 < g <1} then Visin
fact analytic in C with values in functions of the form &' C*, with
C* seminorms all bounded by Cy{c)~*, k arbitrary.

If v is supported in U with polynomial bounds at tf, then ¥ is
analytic in a lower half plane.



Wave asymptotics

If ¢u is polynomially bounded in T, O(¢u) = f becomes

P A

(0% — Ax) pu = o®f.

If ¢u is polynomially growing in T, then both f and gg?/ are analytic
inImo < —C, and as f is compactly supported in p, f is in fact
analytic in all of C, with values in functions of the form &7 C>,
with C* seminorms all bounded by Ck<a>_k, k arbitrary. Thus,

ou = R(0)(a?f), Imo < —C,

and we recover ¢u by taking the inverse Mellin transform.



Wave asymptotics

Now we drop the a priori polynomial bound assumption on u, and
let f =O(¢u), as above. Then
o fis analytic in all of C, with values in functions of the form
&'7C>, with C* seminorms all bounded by Cy (o), k
arbitrary,

@ observe that the inclusion
o' LX) = L§( X))

is continuous for every s > 0,

@ use this to conclude

) < Ck<0>_k

24
||Oé f‘|a71&6H6n()_<1/2 -

for all k in Imo < e < § (with new constants), 0 < e < ¢
sufficiently small.



Wave asymptotics

@ Our resolvent estimates show that, for € > 0 sufficiently small
and for all N and k,

1677 R() (0Dl engiy < Culo ¥ Imor < e
@ The inverse Mellin transform of w = R(c)(a?f) is
W(T,2) = (27) / T w(o, 7) do.
@ Thus,
W(p, a,w) = (2r) /ﬁ_ig/)‘bha_i"/)‘bhw(a,a,w) do.

@ In view of the analyticity of W in the lower half plane with the
stated estimates, w = 0 for T < 0.

@ Since the unique solution of (v = f, v supported in T > 0, is
¢u, we deduce that W = ¢u.



Wave asymptotics

Shifting the contour for the inverse Mellin transform for w to
Im o = € gives a residue term at 0, and shows that for ¢’ <,

p~(pu — ) € 12([0,0),; C=(X)),
where ¢ arises from the residue at 0, hence is a constant.

The D; derivatives also satisfy similar estimates, i.e. the same
estimates hold for the conormal derivatives with respect to p. We
thus deduce the leading part of the asymptotics of u at tf,.

Suppose Ou =0, u is C* in M in p > 0. Then there exists a
constant ¢ and € > 0 such that u — c is in A (M) = p* A (M)
near tf .



Wave asymptotics

The main result, which we now recall, immediately follows:

If u solves Ulu = 0 with C*° Cauchy data on a space-like Cauchy
surface ¥ in MN {t > 0}, say ¥ = {t = 0} (i.e. Sph,+ = Sph,—),
then there exists a constant ¢ and € > 0 such that u — c is in

i, (M) = pe.ASf+(M) near the future temporal face, tf .
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