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Lecture 6: More Uncertainty

In this lecture we will see more on analyzing a decision under uncertainty. We will use the multi-armed
bandit problem and the Gittins index from last lecture.

Uncertainty and Markets

Uncertainty and markets are two sides of the same coin. It is important to understand both the uncertainty
and the market. Consider two types of treasury bills: Type 1 has a reward of $2 in the second year, Type
2 has a reward of $1.5 in the second year. Clearly, you would choose Type 1. But what if there is some
uncertainty in the market? That is when the problem becomes non-trivial.

Uncertainty is especially important in online markets because there is large scale data available to make
individual decisions and often there is little statistical information available due to the long tail. We will
learn more about long tailed distributions later.

Gittins Index

Imagine that we are picking a basketball team from the students in our class. We would like to choose the
tallest students. In such a situation it is obvious what to do. We simply measure everyone and compare the
measured heights. But in a mutli-armed bandit situation, it is not as obvious. How do we compare different
arms with different histories? The problem is that we have no “height” as we did for measuring students.

Example

We have two possible arms, A and B, with current success probabilities of 0.4 and 0.6 respectively. We want
to compare the arms as we compared the heights of the students, so that we can determine the optimal arm
to pull. The arms have success trees:

A: 0.4

0.15 0.65

B: 0.6

0.5 0.7

The first tree tells us that the current success probability associated with A is 0.4. If A is pulled and
experiences a success, then its probability increases to 0.65, but if it experiences a failure, it drops to 0.15.
Let us assume that for the first pull, the success probability for each arm is 50%. If we are only given one
opportunity to pull an arm, and then, given that experiment, must decide which arm to pull thereafter, our
decision will be arrived at like this:

Case 1: If we choose A, and it is a failure, then 0.15 < 0.6 so choose B.
Case 2: If we choose A and it is a success, then 0.65 > 0.6 so choose A.
Case 3: If we choose B, and it is a failure, then 0.5 < 0.4 so choose B.
Case 4: If we choose B and it is a success, then 0.7 > 0.4 so choose B.

If we choose A, then with probability 0.5, we will be in the Case 1, and with the same probability we will
be in Case 2. So the expected profit will be: E[Profit|A] = 0.5× 0.6 + 0.5× 0.65 = 0.625. In other words, if
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we choose to experiment with A, our expected reward is 0.625.
Similarly, E[Profit|B] = 0.5× 0.5 + 0.5× 0.7 = 0.6

⇒ E[Profit|A] > E[Profit|B]⇒ Play arm A.

In our basketball game, this might correspond to two students, A and B, where student A is taller than
student B. In this example, we were able to get around the fact that we have no notion of “height” in the
two-armed bandit problem by computing the expected values of the probabilities. But now suppose we have
another student, C, who is the same height as B. We would still choose student A because clearly, if A is
taller than B, and C is the same height as B, then A is also taller than C. But we will see that this is not
the case with the multi-armed bandit problem.

With C added to our list of options, playing A will result in the same expected profit. But playing B will
result in a different expected profit, because if B turns out to be 0.5, then we can choose C. E[Profit|B] =
0.5 × 0.6 + 0.5 × 0.7 = 0.65 ⇒ E[Profit|B] > E[Profit|A] ⇒ Play arm B (or C). Our answer changed by
introducing a new arm, C.

This example illustrates that with uncertainty, unlike height, the optimal choice depends on what other
options are available. In other words, an individual attribute, such as height, cannot necessarily be used to
compare different options. Just because one arm may have a higher expected profit, does not mean it is the
optimal choice. This is where the Gittins index comes in.

The Gittins Index Theorem tells us that, if our goal is to maximize total discounted reward, then there
exists a function, g(α, β, θ), such that it is always an optimal strategy to play the machine i with the highest
g(αi, βi, θ). That is why the Gittins Index Theorem is so powerful in this setting.

So the Gittins Index is a notion similar to “height.” Rp gives us our scale. And finally, V gives us a method
for testing whether a point is higher or lower than our height, thus allowing us to hone in on a value.

As we saw in the last lecture, we will have a value function, V , given by:

V (p;α, β, θ) = max

{
p

1− θ
,

α

α+ β
+ θ

(
α

α+ β
V (p;α+ 1, β, θ) +

β

α+ β
V (p;α, β + 1, θ

)}
Where p is the success probability of a reference machine, α and β are the historical number of successes and
failures of the machine being considered, and θ is the discount factor. We change our reference machine to
find the point where we are indifferent between playing the reference machine and playing the machine we
are considering. We do this by finding the lowest p such that V (p;α, β, θ) = p

1−θ . This gives us our Gittins
index.

Figure 1: Gittins Index

If we have a machine, (α, β), we try to find a Gittins index pg. In the graph above, V is on the y-axis, and
p is on the x-axis. At a certain point, pg, we will have the Rp machine and the (α, β) machine equally as
desirable, with the value, V = pg

1−θ . Anywhere to the right of pg, playing the Rp machine will yield a higher
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expected reward (V = p
1−θ ), and anywhere to the left of pg, playing the (α, β) machine will yield a higher

expected reward (V > p
1−θ ).

In order to actually calculate the Gittins index, we can use a spreadsheet with formulas. The cells will
contain the values of V , the rows will be β values, and the columns α values. This is provided in an excel
file.
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