1. Is eBay’s bidding mechanism closer to a second price auction or a first price auction? Explain very briefly.

It is closer to a second price auction.

2. Suppose there are \(m \) web pages of type 1 and \(n \) web pages of type 2. Let the type 1 web pages be \(A_1, A_2, \ldots, A_m \) and let the type 2 web pages be \(B_1, B_2, \ldots, B_n \). Each web page of type 1 has a link to a web page of type 2. Also, each web page of type 2 has a link to a web page of type 1. What is the naive PageRank of each page in terms of \(m \) and \(n \)?

By symmetry, all type 1 pages will have the same PageRank, say \(\pi(A) \), and all type 2 page will have the same PageRank, say \(\pi(B) \).

\[
\pi(A) = \frac{n}{m} \pi(B)
\]

\[
m\pi(A) + n\pi(B) = 1
\]

Thus, \(\pi(A) = 1/(2m) \) and \(\pi(B) = 1/(2n) \).

3. Which of the following Bernoulli random networks are connected with high probability as \(N \) goes to infinity?

 (a) The probability \(p \) is 0.1
 (b) The average degree is 10
 (c) The average degree varies as \(\sqrt{N} \).

We use the fact that the graph is connected with high probability if \(p > \log N/N \) or equivalently \(p \cdot N > \log N \), where \(p \cdot N \) is the average degree. Thus, (a) and (c) will be connected with high probability, while (b) will not.

4. Consider a line network with \(N \) nodes in which each node knows its two neighbors. Further, there is an edge between the \(i \)-th and \(j \)-th nodes with probability \(1/|j - i| \). Describe a simple message forwarding protocol on this network such that the expected time for a message to get delivered from node \(a \) to node \(b \) is proportional to \(\log N \) (again, rough order of growth is all that is required). Explain your reasoning.

Each node \(k \) that gets the message forwards it to closest node on the left of \(b \) that \(k \) is directly connected to. It was shown in class that the average path length is \(\log N \).

5. Which of the following are likely to benefit from network neutrality? Which are not? Explain very briefly.

 (a) AT&T
 (b) Comcast
 (c) Amazon
 (d) Netflix
 (e) Skype
 (f) BitTorrent

AT&T and Comcast would not benefit (as Internet Service Providers). Amazon, Netflix, Skype, and BitTorrent would benefit.