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Abstract

We model the economics of producing content in online social networks such as Facebook
and Twitter. We propose a game-theoretic model within which we quantify ine�ciencies from
contributions by strategic users in online environments. Attention and information are assumed
to be the main motivation for user contributions. We treat attention as a mechanism for
sharing the profit from consuming information and introduce a general framework for analyzing
dynamics of contributions in online environments. We analyze the proposed model and identify
conditions for existence and e�cient computation of pure-strategy Nash equilibrium.

We prove a bicriteria bound on the price of anarchy; in particular we show that the social
welfare from central control over level of contribution by users is no larger than the social welfare
from strategic agents with twice as large consumption utilities. We then construct and analyze
a family of production games that have an arbitrarily large price of anarchy. We also prove non-
robustness of the price of anarchy for a particular instance of the introduced family, establishing
a distinction between the games studied here and network congestion games.

1 Introduction

Social networking websites allow users to sign up and keep in touch with others by friending
them. Users are allowed to post short status updates, photos, videos and links depending on the
social network. Despite the di↵erences between these networks, one feature is common to many of
them: Users see a linear news feed reflecting a chronologically sorted ordering of posts from friends
whenever she logs into each of these sites [BCK+10]. Given that the main advantage of these sites
is the convenience of getting a quick update, the balance of information from friends in the feed
becomes important in determining the value the user will gain from the update [BCK+10].

A user’s news feed can easily get flooded by contributions from an active friend who attracts
most of the attention in a social cluster. It has been observed that there is a strong correlation be-
tween lack of attention and a user’s decision to stop contributing; also, the more a user contributes
the more attention she tends to receive. Getting attention paid to one’s contributions is a form
of value [Fra99] and users are willing to forsake financial gain for it [HLO04]. Attention was also
shown to spur further contributions in video sharing [HRW09] and blogging [MY07]; moreover it
was introduced as the main ingredient in successful peer production websites [WWH09]. Taking
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attention and information as the foremost motivation for user activity in social networks, high
participation from a subset of friends of user u makes u’s attention a scarce resource for other
friends of u, which in turn can make these other friends less likely to contribute and hence get
even less attention. We model this dynamics of user contributions in online social networks in a
game-theoretic setting and quantify the ine�ciencies from strategic user participation.

Our Contributions. Our main contribution is proposing and analyzing a game-theoretic model
of user participation in online social networks. We refer to the proposed model by ”the general
production game“ throughout the paper. The main elements of our model are users that choose
the level/quality of their contributions. Updates from a user are viewed as a bundle in her friends’
news feed, ignoring the order in which information arrives. We assume that the network struc-
ture is fixed. Users are strategic in selecting their level of contribution but they are not strategic
in selecting what information or how much information they consume. They are assumed to be
utility-maximizing agents who derive utility from attention and information simultaneously. More-
over they incur a non-negative cost for producing content. Producing more information needs more
e↵ort and there is no cost for inaction. Users prefer more information to less but they have limited
attention capacity so their utility from consumption has diminishing returns. We formalize these
assumptions in section 2 and refer to them as ”general assumptions“ throughout the paper.

While users consume content, they pay attention to those who generated it. In other words,
users share the profit from consuming information with those who produced it in the first place. We
introduce a general utility scheme and analyze three instances of it: Proportional, Incremental, and
Shapley utility models. The proportional utility model splits user utility from consumption among
friends proportional to their contribution. The incremental utility model regards the marginal
consumption utility from a user’s contribution as the attention she receives. The Shapley utility
is similar to the incremental utility; however the incremental utility from a user’s information
is computed with respect to only the information from “earlier” users in a random permutation
[Sha53].

We observe that under general assumptions, a unique pure-strategy Nash equilibrium exists
for our proposed game and is characterized via the Karush Kuhn Tucker(KKT) conditions. Our
main result states necessary conditions such that the social welfare from central control over user
production, obligating users to act according to social interest, is no greater than the social welfare
from strategic production when users have twice as large consumption utilities. We have proved
that under general assumption both Shapley and incremental utility models satisfy this necessary
conditions. Our results suggest that improvements in user experience, such as ease of information
discovery and spam detection, can compensate for ine�ciencies from strategic behavior in online
environments. We also analyze the proposed game for simple interesting cases in section 4.2 and
show that the price of anarchy can be arbitrarily large regardless of the number of agents and
network structure.

Our main result is similar to the bicriteria bound for network congestion games presented in
[RT00], and superficially, it might seem that earlier proof techniques should directly imply our
results. However, both atomic and non-atomic network congestion games are proved to have a
“robust pure Nash price of anarchy” in the sense of [Rou09]. We show (in section 5) that one
particular instance of our proposed production game does not admit a ”robust price of anarchy“,
establishing a distinction between the proposed game and network congestion games.
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Related Work. Attention a↵ects the propagation of information in social networks, determining
the e↵ectiveness of advertising and viral marketing. Many di↵erent approaches have been taken to
study attention, including empirical studies of dynamics of attention [WWH09, WH07], empirical
and game-theoretic analysis of the impact of attention in marketing [BCK+10, LAH05], and studies
on the impact of attention(exposure) in high-quality user-generated content [GM11, JCP09].

Wu et al. [WH07] study dynamics of collective attention for a piece of story on digg.com, and
they propose a stochastic model that predicts the amount of attention a story gets by incorporating
novelty of the story as a decaying factor. In a follow-up paper [WWH09], the authors study feedback
loops of attention in peer production websites such as youtube and digg.com. They empirically
show a strong correlation between lack of attention and users’ decision to stop contributing.

Borgs et al. [BCK+10] address the asymmetry of online relationships in social networks such as
Facebook and Twitter. They model the social network as a complete bi-partite graph where users
are either producers or consumers of information, and edges of the graph have non-negative weights
that represent the quality of updates from a particular producer (in their setting, an advertiser)
to a particular consumer. Users receive update at a rate chosen by advertisers and can adopt two
types of behavior in response to an excessively high rate: unfollowing and disengagement. They
study the set of ties that are realized and stabilized over time in the followership and engagement
models.

Ghosh et al. [GM11] study the problem of high-quality user generated content in online crowd-
sourcing websites. They propose a game-theoretic model that incorporates the quality of content
and study mechanisms of splitting attention (exposure time) to incentivize high-quality content
and maximize user participation. They independently propose a proportional model for splitting
the exposure time among contributions, and show that the proportional mechanism elicits both
high quality and high participation in equilibrium.

Unlike previous work, we directly model attention as a scarce resource, as well as the cost of
creating new and useful pieces of information. Attention is shown to be the foremost motivator in
peer production websites such as digg.com and YouTube [WWH09]; it is also one of the main moti-
vators in online social networks such as Facebook and Twitter. Information and attention are duals
in social networks hence, instead of modeling information and attention as two separate entities, we
model attention as a mechanism for sharing the profit from consuming information. We propose
a model in which all agents are strategic and derive utility simultaneously from consuming and
producing information. Agents are connected to one another in either a symmetric or asymmetric
network, i.e. we don’t make any assumptions on network structure. Also we can re-interpret the
only decision variable in our model from level of contributions to quality of contributions or rate
of updates and our results remain valid.

2 Model

Every user as a member of the social network has friendship relations with at least one other
user. User a produces x

a

units of information which appear on her friends’ feed. She perceives
y
a

:=
P

b⇠a

q
ba

x
b

units of information from her feed where b ⇠ a means a is a friend of b and
q
ba

represents a’s interest in b’s updates. User a pays attention to user b when she consumes the
information produced by her. We model such exchange of attention and information between users
of a social network in a utilitarian framework where every user a incurs an increasing cost c

a

(x
a

)
for producing information and derives increasing utility f

a

(y
a

) from consuming it. Users also derive
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positive utility from receiving attention. We denote the amount of attention user a receives from
her friend b by t

a,b

(~x). So an arbitrary agent a derives

u
a

(~x) = f
a

(y
a

)� c
a

(x
a

) + t
a

(~x) (1)

utility from her network of friends where t
a

(~x) =
P

b⇠a

t
a,b

(~x) and ~x represents the strategy vector.
We analyze the proposed utility scheme and state conditions under which our bicriteria bound

holds. We make three general assumptions throughout the paper. First, we assume that con-
sumption utility f

a

(y
a

) is a di↵erentiable, concave, and increasing function for every agent and
f
a

(0) = 0. Second, we assume that production cost c
a

(x
a

) is a di↵erentiable, increasing, and
strictly convex function for all agents and c

a

(0) = 0. Third, we assume t
a,b

(~x) is increasing in x
a

and t
a,b

(0, ~x�a

) = 0 where ~x�a

is the strategy vector including production level for all users except
for user a. We also study three particular instances of our general model denoted by incremental
utility, Shapley utility, and proportional utility. Each instance corresponds to a di↵erent method
of splitting user attention among friends in online environments.

Incremental utility models the amount of attention a user receives by the sum of consumption
utility margins she imposes on her friends in the social network. Formally, the incremental utility
models the attention user a receives by

t
a

(~x) =
X

b⇠a

f
b

(y
b

)� f
b

(y
b

� q
ab

x
a

). (2)

Shapely utility implements the Shapley cost sharing scheme as a profit sharing mechanism
to split the profit from consuming information among those who originally created it. Shapley
mechanism assigns

t
a

(~x) =
X

b⇠a

X

�2SN(b)

1

d
b

!
f
b

(

�

�1(a)X

i=1

q
�(i)bx�(i))� f

b

(

�

�1(a)�1X

i=1

q
�(i)bx�(i)) (3)

units of utility from attention to every user a, where S
N(b) denotes the set of all permutations of

b’s friends; N(b) is the set of b’s friends and d
b

= |N(b)|. Marginal profit terms inside the second
sum are known as ordered marginals. The Shapley value is defined as the expectation of ordered
marginals over a uniform distribution on all arrival permutations [Sha53]. Shapley utility arises as
a natural attention sharing mechanism when incoming updates are shown at random order in the
feed provided to users.

Proportional utility is an alternate way of splitting user attention among friends in a social
network. The amount of attention a user receives is modeled as the weighted sum of friends’
consumption utilities where the weights are equal to the proportion of the user’s contribution.
Formally, the amount of attention a user receives in the network is

t
a

(~x) =
X

b⇠a

q
ab

x
a

y
b

f
b

(y
b

). (4)

Friends with more high quality updates receive more attention in the proportional mechanism.
Similar to the Shapley utility, proportional mechanism arises as a natural profit sharing scheme
when updates are viewed in a random order. Position bios is a well-established phenomenon
in online social networks; items shown higher in user’s update feed have a higher probability of
receiving actions. We ignore the impacts of position bios on the distribution of attention throughout
the paper.
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3 Existence and Computability of Nash Equilibrium

We determine su�cient conditions such that our general utility model admits pure-strategy Nash
equilibrium. Moreover we identify exact potential functions for incremental and Shapley utility
models; existence of exact potential functions implies convergence of the natural Nash dynamics to
a pure-strategy equilibrium.

Strategy vector ~x is a pure Nash equilibrium if every player a chooses her strategy x
a

to maxi-
mize u

a

(x
a

, ~x�a

). Rosen’s theorem [Ros65] for concave n-player non-cooperative games establishes
existence of a unique pure Nash equilibrium and KKT conditions characterize it.

Proposition 3.1. Our proposed general production game admits a unique pure-strategy Nash equi-
librium if

|@
2
ta(~x)
@x

2
a

� @

2
ca(xa)
@x

2
a

| > ✏ for constant ✏ > 0, and general assumptions hold. Strategy vector ~x is a

Nash equilibrium strategy if and only if for every player a,

x
a

(
@t

a

(~x)

@x
a

� @c
a

(x
a

)

@x
a

) = 0. (5)

Proof: General assumptions guarantee strict concavity of the utility function for very player a.

The strategy space can be reduced to a convex and compact set; since |@
2
ta(~x)
@x

2
a

� @

2
ca(xa)
@x

2
a

| > ✏ we

can define upper bounds on values of x
a

. We can apply Rosen’s theorem for concave n-player
noncooperative games with convex and compact strategy space [Ros65] to conclude existence of
Nash equilibria for proposed utility game.

At Nash equilibrium every player solves the following optimization problem:

Maximize f
a

(y
a

)� c
a

(x
a

) + t
a

(~x)

Subject to: x
a

� 0.

KKT conditions, stated in (5), determine necessary and su�cient conditions for optimality.

Although Proposition 3.1 proves existence of Nash equilibrium for the proposed production
game, it fails to establish Nash equilibrium as naturally arising from user behavior in online social
networks. Proposition 3.2 identifies exact potential functions for incremental and Shapley utility
models. Existence of exact potential functions alludes that the natural Nash Dynamics, in which
players iteratively play best response; converges to a pure Nash Equilibrium for the game although
convergence might take exponential time [Ros73].

Proposition 3.2. The Incremental utility and Shapley utility games admit an exact potential func-
tion defined correspondingly as

�I(~x) =
X

a

{f
a

(y
a

)� c
a

(x
a

)} , (6)

and

�S(~x) =
X

a

�c
a

(x
a

) +
X

S✓N(a),s=|S|

1

s
�
da
s

�f
a

(
X

c2s
q
ca

x
c

). (7)
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Proof: Similar to the proof statement we use a superscript of I to denote the incremental model
and a superscript of S to denote the Shapley utility model. It is easy to observe that

uI
a

(x0
a

, ~x�a

)� uI
a

(~x) = �I(x0
a

, ~x�a

)� �I(~x),

so by definition �I(~x) is an exact potential function for the incremental game.
User Shapley utility uS

a

(~x
a

) can be rewritten as

uS
a

(~x) = f
a

(y
a

)� c
a

(x
a

) +
X

b⇠a

X

S✓N(b),s=|S|

1

s
�
db
s

�{f
b

(
X

c2S
q
cb

x
c

)� f
b

(
X

c2S,c 6=a

q
cb

x
c

)}. (8)

Consider a function of the form

�S(x) =
X

a

�c
a

(x
a

) +
X

S✓N(a),s=|S|


a,s

f
a

(
X

c2S
q
ca

x
c

)

with 
a,s

= 1
s(das )

. This is an exact potential function for the Shapley utility game; if user a switches

strategies from x
a

to x0
a

, then for all of a’s friends the consumption utility f
b

(
P

c2S q
cb

x
c

) changes
in all subsets containing a and the change in potential function is equal to the change in agent a’s
utility given in (8).
While we have not proved convergence bounds with best-response dynamics observe that Under
general assumptions proposed potential functions are strictly concave; hence the unique Nash equi-
librium of the incremental and Shapley utility games can be computed in polynomial time.

We prove a bicriteria bound on the price of anarchy in the rest of the paper and state conditions
under which such bounds hold for the general production games, and apply our bounds to the
Shapley and incremental utility models.

4 Analysis of the Price of Anarchy

Price of anarchy quantifies the degradation in the e�ciency of a game due to strategic behavior
of participating players [RT00]. The pure Nash price of anarchy is defined as the ratio of the
welfare for the worst pure Nash equilibrium and the optimum welfare where the welfare function
W (~x) is defined as the total utility of all agents. The optimum welfare refers to a setting where
a central authority obligates users to behave according to the socially-optimal strategy vector
~x⇤ = argmax

~x

W (x). We derive a bicriteria bound on the price of anarchy that compares W (x⇤)
with equilibrium welfare in an augmented social network. We prove that ine�ciencies from players’
strategic behavior can be compensated by ”doubling“ the happiness function. In section 4.2, we
analyze the price of anarchy for the simplest class of production games without augmentation. We
show that the price of anarchy can be arbitararily big even theough these production games have
linear happiness and polynomial cost functions.

4.1 A Bicriteria Bound on The Price of Anarchy

We derive a bicriteria bound on the price of anarchy for the proposed general production game.
We compare the optimal social welfare in an online environment against the equilibrium welfare
in an augmented environment, where the happiness function is twice as large. We show that the
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equilibrium welfare in this augmented version is at least as large as the optimal welfare for the
original social network. Our result relies on the existence of an exact potential function; it also
requires correctness of certain inequalities. We show that both these inequalities hold for Shapley
and incremental utility models.

This section requires a more detailed notation since we work with two utility models simultane-
ously. We introduce the notation first and then state our result formally. Define g

a

(x) = 2f
a

(x) for
all agents a, W

g

(~x) denotes the social welfare for the general production game with consumption
utilities g

a

(x); similarly W (~x) denotes the social welfare for the general production game with con-
sumption utilities f

a

(x). We di↵erentiate between the incremental and the Shapley utility models
with a superscript of I for the former and superscript of S for the latter. We distinguish the social
optimum from the Nash equilibrium by a superscript of ⇤ for social optimum and a superscript of
e for the Nash equilibrium. For example, ~xI,e represents the equilibrium strategy vector for the
incremental game where consumption utility for all agents a is equal to f

a

(x) and ~xI,⇤
g

denotes the
socially optimal strategy for the same game where consumption utility for all agents a is g

a

(x).
We first state our main result in Theorem 4.1; our result compares equilibrium social welfare in

an augmented social network against the social optimum in the original one. We consider improved
user experience as the source of augmentation in the social network and model it by defining a
new happiness function g

a

(x) = 2f
a

(x). We next show that our result holds for the Shapley and
incremental utility models in Proposition 4.3 and Proposition 4.2.

Theorem 4.1. Let ~xe
g

denote the equilibrium of a general production game with happiness function
g
a

(x) = 2f
a

(x) then W
g

(~xe
g

) � W (~x⇤) if:

1. the general assumptions hold,

2. 8a, |@
2
ta(~x)
@x

2
a

� @

2
ca(xa)
@x

2
a

| > ✏ for constant ✏ > 0,

3. the game admits an exact potential function �(~x), and

4. for all valid strategy vectors ~x, W
g

(~x) � �
g

(~x) and �
g

(~x) � W (~x).

Proof: We would like to show that W
g

(~xe
g

) � W (x⇤). Assumptions one and two guarantee
existence of a unique pure-strategy equilibrium ~xe

g

. We instantiate assumption four with ~x = ~xe
g

so
W

g

(~xe
g

) � �
g

(~x
g

). The equilibrium strategy ~x
g

maximizes �
g

(~x) because �
g

(~x) is an exact potential
function for the general production game, so �

g

(~xe
g

) � �
g

(~x⇤). We can instantiate assumption four
once more with ~x = ~x⇤, obtaining �

g

(~x⇤) � W (~x⇤) which concludes the proof.

Our bicriteria bound suggests that any ine�ciency from user strategic behavior in an online
environment can be compensated by improvements in user experience. Every di↵erent choice of
t
a

(~x) corresponds to a di↵erent attention sharing mechanism. Not all attention sharing mechanisms
admit an exact potential function, e.g. the proportional production game. We identified exact
potential functions for the incremental and Shapley utility models in Proposition 3.2; we only need
to prove that assumption four from Theorem 4.1 holds.

Proposition 4.2. Under general assumptions, W I

g

(~x) � �I

g

(~x) and �I

g

(~x) � W I(~x) for all valid
strategy vectors ~x.
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Proof: Potential function for the incremental utility game is given according to (6) and

W I(~x) =
X

a

(
f
a

(y
a

)� c
a

(x
a

) +
X

b⇠a

f
b

(y
b

)� f
b

(y
b

� q
ab

x
a

)

)
. (9)

It is easy to observe that W I

g

(~x) � �I

g

(~x) since
P

a

P
b⇠a

{f
b

(y
b

)� f
b

(y
b

� q
ab

x
a

)} � 0.

Two simple observations prove the second part of the proposition. First, W I(~x) can be expanded
and rewritten as:

W (~x) =
X

a

(
f
a

(y
a

)� c
a

(x
a

) +
X

b⇠a

f
a

(y
a

)� f
a

(y
a

� q
ba

x
b

)

)

Second, since f
a

(x) is concave and increasing and y
a

=
P

b⇠a

q
ba

x
b

;

f
a

(y
a

) �
X

b⇠a

f
a

(y
a

)� f
a

(y
a

� q
ba

x
b

).

So �I

g

(~x) � W I(~x).

Similarly we use concavity of user happiness function to show that assumption four also holds
for the Shapley utility game.

Proposition 4.3. Under general assumption, WS

g

(~x) � �S

g

(~x) and �S

g

(~x) � WS(~x) for all valid
strategy vectors ~x.

Proof: The social welfare function for Shapley utility game with consumption utility g
a

(x) is

WS

g

(~x) =
X

a

g
a

(y
a

)� c
a

(x
a

) +
X

b⇠a

X

S✓N(b),s=|S|

1

s
�
db
s

�{g
b

(
X

c2S
q
cb

x
c

)� g
b

(
X

c2S,c6=a

q
cb

x
c

)} (10)

and

�S

g

(~x) =
X

a

�c
a

(x
a

) +
X

S✓N(a),s=|S|

1

s
�
da
s

�g
a

(
X

c2S
q
ca

x
c

).

Note that g
a

(
P

c2s qcaxc)  g
a

(y
a

) since g
a

(x) is an increasing function so

�S

g

(~x) 
X

a

�c
a

(x
a

) +
X

S✓N(a),s=|S|

1

s
�
da
s

�g
a

(y
a

). (11)

It is now easy to observe that WS

g

(~x) � �S

g

(~x) since the second term in (11) is equal to g
a

(y
a

) and
the last term in (10) is positive.

We next show �S

g

(~x) � WS(~x). We first expand and rewrite WS(~x) as

WS(~x) =
X

a

f
a

(y
a

)� c
a

(x
a

) +
X

S✓N(a),s=|S|

1

s
�
da
s

�
X

b2S
{f

a

(
X

c2S
q
ca

x
c

)� f
a

(
X

c2S,c6=b

q
ca

x
c

)}. (12)
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Since f
a

(x) is concave and increasing

X

b2S
{f

a

(
X

c2S
q
ca

x
c

)� f
a

(
X

c2S,c6=b

q
ca

x
c

)}  f
a

(
X

c2S
q
ca

x
c

).

This is su�cient to show that

f
a

(y
a

) 
X

S✓N(a),s=|S|

1

s
�
da
s

�f
a

(
X

c2S
q
ca

x
c

). (13)

One can expand the right hand side (RHS) summation in (13) and rewrite it using the size of
subsets as the summation variable as follows

RHS =
daX

s=1

X

S✓N(a),|S|=s

1

s
�
da
s

�f
a

(
X

c2S
q
ca

x
c

).

We prove (13) using a simple procedure.

1. Take values f
a

(
P

c2S q
ca

x
c

) for all subsets S with original size s, take the set with smallest
value.

2. Delete one of its members, x
m

.

3. Choose a subset S0 that does not contain x
m

and add x
m

to it.

4. Repeat the procedure until all sets have the same value.

It is easy to observe that the total sum decreases during the procedure so above procedure shows
that 1

da
f
a

(y
a

) 
P

S✓N(a),|S|=s

1
s(das )

f
a

(
P

c2S q
ca

x
c

) since all remaining subsets evaluate to f
a

(y
a

)

and there are
�
da�1
s�1

�
such subsets after all iterations are over. Summing over all players a we have

P
da
s=1

1
da
f
a

(y
a

)  RHS and (13) holds so �S

g

(~x) � WS(~x).

We showed that the social welfare induced by central control for incremental and Shapley
utility models is no larger than the social welfare under strategic contribution when users have
twice as large consumption utilities. Although our result does not attribute ine�ciencies from user
strategic behavior to lack of attention or excessive information, it indicates that improvements
in user experience such as spam reduction, easy exploration and improved information discovery
compensate for either of the existing ine�ciencies from strategic behavior in online environments.

4.2 Simple Games with Unbounded Price of Anarchy

Our bicriteria bound does not exactly quantify the price of anarchy. Although the social gain from
central control can be compensated by improvements in user experience, the degradation from
strategic behavior can be still unbounded. We introduce a family of general production games that
have an arbitrarily large price of anarchy. We consider agents with linear consumption utilities and
convex polynomial cost functions. It is worthwhile to note that the incremental, proportional and,
Shapley utility functions are equal.
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We investigate a family of production games parameterized by � and a set {↵
a

} of marginal
consumption utilities. Agents have linear consumption utility f

a

(y) = ↵
a

y,↵
a

> 0. Moreover, they
have polynomial cost functions c

a

(x) = 1
�

x� , � > 1. Regardless of network structure the optimal
and equilibrium strategy vectors can be characterized via FOC, so we can exactly quantify the
price of anarchy.

Theorem 4.4. Regardless of the network structure, the price of anarchy for the family of production

games defined by cost function c
a

(x) = 1
�

x� and utility functions f
a

(y) = ↵
a

y, is equal to (2��1
��1 )2

�
1��

when � > 1 and ↵
a

> 0.

Proof: The utility function for every player a is u
a

(~x) = ↵
a

y
a

�c
a

(x
a

)+�
a

x
a

where �
a

=
P

b⇠a

q
ba

↵
b

and the social welfare function is W (~x) =
P

a

{2�
a

x
a

� c
a

(x
a

)}. It is easy to observe that the social
welfare and agent utility functions are strictly concave so the first-order optimality conditions
characterize the pure Nash equilibrium strategy, ~x, and the optimum strategy, ~x⇤, as

x
a

= �
1

��1
a

,

x⇤
a

= (2�
a

)
1

��1 .

Therefore the social welfare at pure Nash equilibrium W (~x) = 2��1
�

P
a

�
�

��1
a

and the optimal so-

cial welfare W ( ~x⇤) = ��1
�

2
�

��1
P

a

�
�

��1
a

. The pure-Nash price of anarchy is defined as the ratio
of the pure Nash equilibrium social welfare divided by the optimum social welfare and is equal to

(2��1
��1 )2

�
1�� .

Exact analysis of the price of anarchy provides us with more predictive power over the existing
ine�ciencies due to strategic behavior. We now distinguish games from the introduced family with
an arbitrarily large and an arbitrarily close-to-one price of anarchy.

Corollary 4.5. Regardless of network structure, the price of anarchy for the family of production
games defined by cost function c

a

(x) = 1
�

x� and utility functions f
a

(y) = ↵
a

y,↵
a

> 0 can be
arbitrarily large when � gets arbitrarily close to one and the price of anarchy can be arbitrarily
close to one when � gets arbitrarily large.

Corollary 4.5 identifies utility games with almost linear cost functions and linear consumption
utilities as instances with unbounded price of anarchy. It also identifies utility games, that have
polynomial cost with large coe�cient and linear consumption utilities, as instances with almost
no ine�ciencies from strategic behavior. Non-existence of ine�ciencies from strategic behavior in
the latter example is mainly due to infinitesimal production at the pure Nash equilibrium and the
social optimum for all users.

5 Robust Analysis of the Price of Anarchy

Smooth analysis of games with sum objectives identifies a su�cient condition for an upper bound on
the price of anarchy of pure Nash equilibria and encodes a canonical proof template for deriving such
bounds [Rou09]. Canonical bounds extend automatically to more general notions of equilibria such
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as mixed Nash equilibrium, correlated equilibrium and no-regret sequences. A utility maximization
game is (�, µ)-smooth if for every two outcomes ~x and ~x⇤,

X

a

u
a

(x⇤
a

, ~x�a

) � �W (~x⇤)� µW (~x). (14)

Roughgarden [Rou09] defines robust price of anarchy as the best lower bound on the price of
anarchy that is provable using a smoothness argument. The robust price of anarchy for a utility
maximization game is

sup

⇢
�

1 + µ
: (�, µ) s.t. game is (�, µ)-smooth

�
. (15)

Congestion games with cost functions restricted to a fixed set are proved to be tight; meaning that
the canonical price of anarchy is also robust. In particular network routing games are (�, µ)-smooth
with robust price of anarchy of 4

3 for non-atomic flows and a price of anarchy of 5
2 for atomic flows.

We focus on production games with linear consumption utility and quadratic cost functions(� = 2).
Theorem 4.4 quantifies price of anarchy of 3

4 for this class of games. On the other hand, we show
that the robust price of anarchy for the same class of games is at most 0.098, meaning that the
robust price of anarchy is not tight which is a strong distinction between production games and
network congestion games.

Theorem 5.1. Robust price of anarchy for a production game with consumption utilities f
a

(y) =
↵
a

y,↵ > 0 and production cost c
a

(x) = 0.5x2 is at most 0.098.

Proof: Agent utility for the proposed family of games is

u
a

(~x) = ↵
a

y
a

� x2
a

2
+ �

a

x
a

, (16)

where �
a

=
P

b⇠a

q
ba

↵
b

. Also the social welfare function can be summarized into

W (~x) =
X

a

⇢
2�

a

x
a

� x2
a

2

�
. (17)

Consider two strategy vectors ~x and ~x⇤ where for all users a, ~x
a

= d�
a

and ~x⇤
a

= c�
a

for
constants c and d (c 6= d). Smoothness conditions in (14) can be written for ~x and ~x⇤ as

X

a

(d+ c� c2

2
)�2

a

�
X

a

(2�c� �
c2

2
� 2µd+ µ

d2

2
)�2

a

.

So (�, µ)-smoothness requires

d+ c� c2

2
� 2�c� �

c2

2
� 2µd+ µ

d2

2
. (18)

Robust price of anarchy is defined as the supremum of �

1+µ

over all pairs of (�, µ) for which

the smoothness conditions hold. Equation (18) requires µ � 2�c��

c2

2 �d�c+ c2

2

2d� d2

2

where 2d� d

2

2 > 0.

Supremum of �

1+µ

takes place at the smallest value of µ, so we can set

µ =
2�c� � c

2

2 � d� c+ c

2

2

2d� d

2

2

. (19)
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After substituting µ from (19), the canonical price of anarchy bound from (14) will be equal to

(2d� d

2

2 )�

(2c� c

2

2 )�+ 2d� d

2

2 � d� c� c

2

2 .
(20)

Equation (20) is a hyperbolic function in � and its supremum is equal to

4d� d2

4c� c2
(21)

when 2c� c

2

2 > 0 and 2d � d

2

2 � d � c � c

2

2 > 0. Our choice of values for c and d that satisfy
above inequalities determines an upper bound on the robust price of anarchy. Values c = 2.2 and
d = 0.1 generate an upper bound of 0.098 for robust price of anarchy using (21) and satisfy above
inequalities with valid values for � and µ.

Theorem 5.1 shows that the robust price of anarchy is not equal to the pure-Nash price of
anarchy so any bound from the canonical analysis of the game is not tight. This is in contrast
with Roughgarden’s result about network routing games where canonical bounds are tight even
for the smallest class of equilibria, i.e. pure Nash equilibria [Rou09]. Theorem 5.1 does not prove
smoothness of the production game but in a sense it shows that canonical analysis and robust price
of anarchy are not the right tool for analyzing proposed production games. Although our bicriteria
bound is very similar to that of Tardos et al. in [RT00], but Theorem 5.1 proves a strong distinction
between routing games and the games studies in this paper.

6 Discussion

We introduced a game-theoretic framework to analyze ine�ciencies from strategic behavior in online
social networks. We proved that the degradation in e�ciency of the proposed game resulting from
strategic user participation can be compensated by improvements in the online environment.

Although we are unable to give a closed-form solution for the pure-equilibrium strategy in the
general production game, we can characterize a closed-form solution in d-regular graphs. We are
also able to find the pure-strategy Nash equilibrium numerically in general networks. Equilibrium
utility is higher for larger values of d in a d-regular graph. Our numerical analysis on several
random networks shows that the equilibrium utility, the utility from attention, and the utility from
information are significantly correlated with the number of friends a user has in the social network.
There are a number of interesting directions for future work within the proposed framework; we
conclude this paper by explaining some of these directions.

A natural direction to explore is to study the proposed general production game as a network
formation game where strategic players can add and drop links in the social network. Because
the proposed general production game does not include any cost for information overload, dense
network structures are more likely to form. Empirical evidence indicates that users appreciate new
information less as they consume more information. We implicitly incorporate cost of information
overload by modeling user happiness as a concave function. An interesting direction is to model
an explicit cost for information overload. Our preliminary results show that unfortunately our
bicriteria bound on the price of anarchy does not hold in this setting.
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Di↵erent mechanisms of viewing information on user news feed in online social networks can
be modeled as a di↵erent attention sharing mechanism within our general production framework.
An interesting future direction is to compare available attention sharing schemes e.g. chronological
sorting, collaborative filtering, and etc in the proposed game-theoretic framework. This is very
similar to the mechanism-design approach that Ghosh et al have taken [GM11][GH11].

Acknowledgements. We are thankful to Amin Saberi and anonymous reviewers for helpful
comments.
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