
Algorithmica (2010) 58: 860–910
DOI 10.1007/s00453-009-9340-1

A Sequential Algorithm for Generating Random
Graphs

Mohsen Bayati · Jeong Han Kim · Amin Saberi

Received: 31 October 2007 / Accepted: 23 June 2009 / Published online: 21 July 2009
© Springer Science+Business Media, LLC 2009

Abstract We present a nearly-linear time algorithm for counting and randomly gen-
erating simple graphs with a given degree sequence in a certain range. For degree
sequence (di)

n
i=1 with maximum degree dmax = O(m1/4−τ ), our algorithm gener-

ates almost uniform random graphs with that degree sequence in time O(mdmax)

where m = 1
2

∑
i di is the number of edges in the graph and τ is any positive con-

stant. The fastest known algorithm for uniform generation of these graphs (McKay
and Wormald in J. Algorithms 11(1):52–67, 1990) has a running time of O(m2d2

max).
Our method also gives an independent proof of McKay’s estimate (McKay in Ars
Combinatoria A 19:15–25, 1985) for the number of such graphs.

We also use sequential importance sampling to derive fully Polynomial-time Ran-
domized Approximation Schemes (FPRAS) for counting and uniformly generating
random graphs for the same range of dmax = O(m1/4−τ ).

Moreover, we show that for d = O(n1/2−τ ), our algorithm can generate an as-
ymptotically uniform d-regular graph. Our results improve the previous bound of
d = O(n1/3−τ ) due to Kim and Vu (Adv. Math. 188:444–469, 2004) for regular
graphs.

Keywords Random graphs · Sequential importance sampling · FPRAS

M. Bayati
Department of Electrical Engineering, Stanford University, Stanford, CA 94305-9510, USA
e-mail: mohsen.bayati@hotmail.com

J.H. Kim (�)
Department of Mathematics, Yonsei University, Yonsei, South Korea
e-mail: jehkim@yonsei.ac.kr

A. Saberi
Departments of Management Science and Engineering, Institute for Computational
and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
e-mail: saberi@stanford.edu

mailto:mohsen.bayati@hotmail.com
mailto:jehkim@yonsei.ac.kr
mailto:saberi@stanford.edu


Algorithmica (2010) 58: 860–910 861

1 Introduction

The focus of this paper is on generating random simple graphs (graphs with no mul-
tiple edges or self loop) with a given degree sequence. Random graph generation
has been studied extensively as an interesting theoretical problem (see [10, 40] for
detailed surveys). It has also become an important tool in a variety of real world
applications including detecting motifs in biological networks [33] and simulating
networking protocols on the Internet topology [1, 12, 17, 32, 38]. The best algorithm
for this problem was given by McKay and Wormald [30] that uses certain switches
on the configuration model and produces random graphs with uniform distribution
in O(m2d2

max) time. However, this running time can be slow for the networks with
millions of edges. This has constrained practitioners to use simple heuristics that are
non-rigorous and have often led to wrong conclusions [33, 34]. Our main contribution
in this paper is to provide a nearly-linear time, fully polynomial randomized approx-
imation scheme (FPRAS) for generating random graphs. An FPRAS provides an ar-
bitrary close approximation in time that depends only polynomially on the input size
and the desired error. (For precise definitions of FPRAS, see Definition 1 in Sect. 2.)

Recently, sequential importance sampling (SIS) has been suggested as a more suit-
able approach for designing fast graph generation algorithms [4, 10, 13, 28]. Chen et
al. [13] used the SIS method to generate bipartite graphs with a given degree se-
quence. Later Blitzstein and Diaconis [10] used a similar approach for generating
general graphs with given degrees. But these results are mostly empirical, and in a
few cases SIS is shown to be slow [8]. However, the simplicity of these algorithms
and their great performance in several instances suggest that a further study of the
SIS method is necessary.

The Result Let d1, . . . , dn be non-negative integers with
∑n

i=1 di = 2m. Our algo-
rithm for generating a graph with degree sequence d1, . . . , dn is a generalization of
Steger and Wormald’s algorithm for regular graphs [37]. It works as follows: start
with an empty graph and sequentially add edges between the pairs of non-adjacent
vertices. In every step of the procedure, the probability that an edge is added between
two distinct vertices i and j is proportional to d̂i d̂j (1−didj /4m) where d̂i and d̂j de-
note the remaining degrees of vertices i and j . The remaining degree of a vertex i is
equal to di minus its current degree. We will show that this algorithm produces an as-
ymptotically uniform sample with running time O(mdmax) when dmax = O(m1/4−τ )

and τ is any positive constant. Then, we use SIS to obtain an FPRAS for any ε, δ > 0
with running time O(mdmaxε

−2 log(1/δ)). The same result holds when the algorithm
is used for generating bipartite graphs. Moreover, we show that for d = O(n1/2−τ ),
this algorithm can generate d-regular graphs with an asymptotically uniform distrib-
ution. Our results improve the bounds of Kim and Vu [27] and Steger and Wormald
[37] for the regular graphs.

Related Work McKay and Wormald [29, 31] give asymptotic estimates for the num-
ber of graphs with dmax = O(m1/3−τ ). However, the error terms in their estimates are
larger than what is needed to apply Jerrum, Valiant and Vazirani’s [20, 21] reduction
to achieve an asymptotically uniform sampling. Jerrum and Sinclair [19], however,



862 Algorithmica (2010) 58: 860–910

use a random walk on the self-reducibility tree and give an FPRAS for uniformly
sampling the graphs with dmax = o(m1/4). The running time of their algorithm is
O(m3n2ε−2 log(1/δ)) [36]. A different random walk that has been studied by [7, 20,
22], gives an FPRAS for the random generation of bipartite graphs with all degree
sequences and general graphs with almost all degree sequences. However, the run-
ning time of all these algorithms is at least O(n4m3dmaxε

−2 log(1/δ)). Other Markov
chain methods are also studied in [15, 16, 18, 23].

McKay and Wormald also introduced an algorithm based on a certain switch-
ing technique on the configuration model that achieves the best performance [30].
It produces random graphs with uniform distribution (better than FPRAS) and has
a faster running time. Their algorithm works for graphs with d3

max = O(m2/
∑

i d
2
i )

and d3
max = o(m + ∑

i d
2
i ) with an average running time of O(m + (

∑
i d

2
i )2). This

leads to an O(n2d4) average running time for d-regular graphs with d = O(n1/3).
Very recently and independently from our work, Blanchet [9] has used McKay’s

estimate [29] and SIS technique to obtain an FPRAS with running time of O(m2ε−2 ×
log(1/δ)) for counting bipartite graphs with given degrees when dmax = o(m1/4). His
work is based on defining an appropriate Lyapunov function as well as using Mckay’s
estimate.

Our Technical Contribution Our algorithm and its analysis are based on the beauti-
ful works of Steger and Wormald [37] and Kim and Vu [26]. The technical contribu-
tions of our work beyond their analysis are as follows:

1. In both [26, 37] the output distribution of the proposed algorithms are asymptoti-
cally uniform. Here we use SIS technique to obtain an FPRAS.

2. Both [26, 37] use McKay’s estimate [29] in their analysis. In this paper we give
a combinatorial argument to control the failure probability of the algorithm and
obtain a new proof for McKay’s estimate.

3. We exploit the combinatorial structure and use a martingale tail inequality to show
the concentration results for d-regular graphs with d = O(n1/2−τ ) where the pre-
vious polynomial inequalities [25] do not work.

Other Applications and Extensions Our algorithm and its analysis provide more
insight into the modern random graph models, such as the configuration model or
the random graphs with a given expected degree sequence [14]. In these models, the
probability of having an edge between vertices i and j of the graph is proportional
to didj . However, one can use our analysis or McKay’s formula [29] to see that in
a random simple graph, this probability is proportional to didj (1 − didj /2m). We
expect that by adding the correction term and using the concentration result of this
paper, it is possible to obtain sandwiching theorems similar to [27].

In a follow up work, Bayati et al. [5] uses similar ideas to generate random
graphs with large girth. These graphs are useful for designing high performance Low-
Density Parity-Check (LDPC) codes (see [3]).

Organization of the Paper The rest of the paper has the following structure. The
algorithm and the main results are stated in Sect. 2. In Sect. 3, we explain the intuition
behind the weighted configuration model and our algorithm while also describing the
SIS approach. Finally Sects. 4–7 are dedicated to the analysis and the proofs.



Algorithmica (2010) 58: 860–910 863

2 Our Algorithm

Suppose that n nonnegative integers d1, d2, . . . , dn with
∑n

i=1 di = 2m are given.
Assume that this sequence is also graphical. That is, there exists at least one simple
graph with these degrees. We propose the following procedure for sampling (count-
ing) an element (the number of elements) of the set L(d̄) of all labeled simple graphs
G with vertices V = {v1, v2, . . . , vn} and degree sequence d̄ = (d1, d2, . . . , dn).
Throughout this paper m = ∑n

i=1 di/2 is the number of edges in the graph, dmax =
maxn

i=1{di} and for the regular graphs, d refers to the degrees; i.e. di = d for all
i = 1, . . . , n. We denote the set of all d-regular graphs with n vertices by L(n, d).

Procedure A
Input: A graphical degree sequence d̄ = (d1, d2, . . . , dn).
Output: A graph G with degree sequence d̄ or failure. An approximation N for the
number of graphs with degree sequence d̄ or 0.

1. Let E be a set of edges, d̂ = (d̂1, . . . , d̂n) be an n-tuple of integers and P be a real
number. Initialize them by E = Empty set, d̂ = d̄, and P = 1.

2. Choose two vertices vi, vj ∈ V with probability proportional to d̂i d̂j (1 − didj

4m
)

among all pairs vi, vj with i �= j and {vi, vj } /∈ E. Denote this probability by pij .
Multiply P by pij , add {vi, vj } to E and reduce each of d̂i , d̂j by 1.

3. Repeat step (2) until no more edges can be added to E.
4. If |E| < m report failure and output N = 0, otherwise output G = (V ,E) and

N = (m! P)−1.

Note that for the regular graphs the factors 1 − didj /4m are redundant and Proce-
dure A is the same as Steger and Wormald’s [37] algorithm. The next two theorems
characterize the output distribution of Procedure A.

Theorem 1 For an arbitrary number τ > 0 and for any degree sequence d̄ with max-
imum degree of O(m1/4−τ ), Procedure A can be implemented so that it terminates
successfully with probability (1 − o(1)) in expected running time O(mdmax). Fur-
thermore, any graph G with degree sequence d̄ is generated with a probability within
1 ± o(1) factor of the uniform probability.

For the regular graphs a similar result can be shown in a larger range for the de-
grees.

Theorem 2 For an arbitrary number τ > 0 and for d = O(n1/2−τ ), Procedure A
generates all graphs G in L(n, d) with probability within 1 ± o(1) factor of the uni-
form probability, except for the graphs in a subset of size o(|L(n, d)|). In other words
as n → ∞, the output distribution of Procedure A converges to the uniform distribu-
tion in total variation distance.



864 Algorithmica (2010) 58: 860–910

The results above show that the output distribution of Procedure A is close to
uniform only when n is sufficiently large. Nevertheless, it is desirable to be close to
uniform for all values of n. In order to do that, we find an FPRAS for calculating
|L(d̄)| and also for randomly generating the elements of L(d̄).

Definition 1 An FPRAS for approximately counting graphs with degree sequence
d̄ is an algorithm that for any ε, δ > 0, outputs an estimate X for |L(d̄)| where
P{(1 − ε)|L(d̄)| ≤ X ≤ (1 + ε)|L(d̄)|} ≥ 1 − δ, and has a running time polynomial
in m,1/ε, log(1/δ).

Similarly, an FPRAS for randomly generating graphs with degree sequence d̄ is
an algorithm that for any ε > 0, has a running time polynomial in m,1/ε, and with
probability at least 0.5, it outputs a graph from the set L(d̄) with probability within
1±ε
c

of the uniform where c is a constant.
Throughout this paper we assume 0 < ε, δ < 1 and for convenience, we define a

real valued random variable X to be an (ε, δ)-estimate for a number y if P{(1−ε)y ≤
X ≤ (1 + ε)y} ≥ 1 − δ.

The following theorem summarizes our main result.

Theorem 3 For an arbitrary number τ > 0, degree sequence d̄ with maximum degree
of O(m1/4−τ ), and any ε, δ > 0, the Algorithm CountGraphs of Sect. 3 is an FPRAS
with an expected running time of O(mdmaxε

−2 log(1/δ)) for counting graphs with
degree sequence d̄ . Moreover, the Algorithm GenerateGraph of Sect. 3 is an FPRAS
with an expected running time of O(mdmaxε

−2) for randomly generating graphs with
degree sequence d̄ .

Remark 1 For generating bipartite graphs, step (2) of Procedure A should be modi-
fied to:

2. Choose two vertices vi, vj ∈ V with probability proportional to d̂i d̂j (1 − didj

2m
)

among all pairs vi, vj with {vi, vj } /∈ E, and vi, vj not belonging to the same part
of the graph. Denote this probability by pij and multiply P by pij . Add {vi, vj }
to E and reduce each of d̂i , d̂j by 1.

Then corresponding versions of Theorems 1–3 can be shown.

3 Definitions and the Main Idea

Before explaining our approach let us quickly review the configuration model
(see [6, 11, 35] for more details). Let W = ⋃n

i=1 Wi be a set of 2m = ∑n
i=1 di labeled

mini-vertices with |Wi | = di . Consider a procedure that finds a random perfect match-
ing M between mini-vertices by choosing pairs of mini-vertices sequentially and
uniformly at random. Such a matching is also called a configuration on W . We can
see that the number of all distinct configurations is equal to (1/m!)∏m−1

r=0

(2m−2r
2

)
.

Given a configuration M, we can obtain a graph GM with degree sequence d̄ by
combining the mini-vertices of each Wi to form a vertex vi .



Algorithmica (2010) 58: 860–910 865

Note that the graph GM might have self edge loops or multiple edges. In fact
McKay and Wormald’s estimate [31] shows that this happens with very high prob-
ability except when dmax = O(log1/2 m). In order to fix this problem, Steger and
Wormald [37] proposed that at any step one can only look at those pairs of mini-
vertices that lead to simple graphs (denote these by suitable pairs) and pick one uni-
formly at random. For d-regular graphs when d = O(n1/28−τ ) Steger and Wormald
have shown that this approach asymptotically samples regular graphs with uniform
distribution and Kim and Vu [26] have extended that to d = O(n1/3−τ ).

3.1 Weighted Configuration Model

Unfortunately, when the degree sequence is not uniform, the above procedure may
generate some graphs with a probability exponentially larger (or smaller) than uni-
form probability. In this paper, we will show that for non-regular degree sequences
suitable pairs should be picked non-uniformly. In fact, Procedure A is a weighted
configuration model where at any step a suitable pair {u,v} with u ∈ Wi and v ∈ Wj

is picked with probability proportional to 1 − didj /4m.
Here is a rough intuition behind Procedure A. Define the execution tree T of

the configuration model as follows: Consider a rooted tree where its root (the ver-
tex at level zero) corresponds to the empty matching in the beginning of the model
and level r vertices correspond to all partial matchings that can be constructed af-
ter r steps. There is an edge in T between a partial matching Mr from level r to
a partial matching Mr+1 from level r + 1 if Mr ⊂ Mr+1. Any path from the root
to a leaf of T corresponds to one possible way of generating a random configura-
tion.

Let us denote those partial matchings Mr whose corresponding partial graph
GMr

is simple by “valid” matchings and denote the remaining partial matchings by
“invalid”. Our goal is to sample valid leaves of the tree T uniformly at random. Steger
and Wormald’s improvement to the configuration model is to restrict the algorithm
at step r to the valid children of Mr and picking one uniformly at random. This
approach leads to an almost uniform generation for the regular graphs [26, 37] since
the number of valid children for all partial matchings at level r of T, is almost equal.
However, it is crucial to note that for non-regular degree sequences if the (r + 1)th-
edge matches two elements belonging to the vertices with larger degrees, the number
of valid children for Mr+1 will be smaller. Thus, there will be a bias towards graphs
that have more of such edges.

In order to find a rough estimate of the bias, fix a graph G with degree sequence d̄ .
Let M(G) be the set of all leaves M of the tree T that lead to graph G; i.e. those con-
figurations M with GM = G. It is easy to see that |M(G)| = m!∏n

i=1 di !. Moreover,
for exactly (1−qr) |M(G)| of these leaves, a fixed edge {i, j} of G appears in the first
r steps of the path leading to them; i.e. {i, j} ∈ Mr . Here qr = (m − r)/m. Further-
more, we can show that for a typical matching after step r , the number of unmatched
mini-vertices in each Wi is roughly diqr . Thus the expected number of unsuitable
pairs {u,v} is about

∑
i∼Gj didj q

2
r (1−qr). Similarly, the expected number of unsuit-

able pairs corresponding to self edge loops is approximately
∑n

i=1

(
diqr

2

) ≈ 2mq2
r λ(d̄)

where λ(d̄) = ∑n
i=1

(
di

2

)
/(
∑n

i=1 di). Therefore, defining γG = ∑
i∼Gj didj /4m and



866 Algorithmica (2010) 58: 860–910

using
(2m−2r

2

) ≈ 2m2q2
r we can approximate PA(G), the probability of generating G

with Procedure A by

PA(G) ≈ m!
(

n∏

i=1

di !
)

m−1∏

r=0

1

2m2q2
r − 2mq2

r λ(d̄) − 4m(1 − qr)q2
r γG

≈ eλ(d̄)+γGm!
(

n∏

i=1

di !
)

m−1∏

r=0

1
(2m−2r

2

) ∝ eγG.

Hence, adding the edge {i, j} roughly creates an exp(didj /4m) bias. To cancel that
effect we need to reduce the probability of picking {i, j} by exp(−didj /4m) ≈
1 − didj /4m. We will rigorously prove the above argument in Sect. 4.

3.2 Obtaining a Fully Polynomial Randomized Approximation Scheme

The output distribution of Procedure A denoted by PA is asymptotically uniform. But
when m is small, it is desirable to reduce the deviation of the output distribution from
the uniform distribution. Note that it is not possible to use an accept/reject scheme to
obtain uniform distribution since the probability PA(G) is not known for any given
graph G. In fact, for an output G of Procedure A, the variable P is the probability
of generating one ordering of the edges of G among all m! possible permutations.
Different orderings can have probabilities that vary exponentially which further com-
plicates the calculation of PA(G).

However, we can use the Sequential Importance Sampling (SIS) method, similar
to [13], to find very close estimates for PA(G) and |L(d̄)|. Then with a simple ac-
cept/reject scheme we can obtain a distribution that is very close to the uniform distri-
bution. For example if PA(G)|L(d̄)| ≥ 1 then we can accept graph G with probability
(PA(G)|L(d̄)|)−1. This approach will be explained in more detail in this section.

3.2.1 FPRAS for Counting via SIS

Denote the set of all orderings N that lead to a graph in L(d̄) by K(d̄). Therefore,
|K(d̄)| = m! |L(d̄)|. Let Q be the uniform distribution on |K(d̄)|. Procedure A sam-
ples an ordering N ∈ K(d̄) from a “trial distribution” PA, where PA(N ) > 0 for all
N ∈ K(d̄). Thus, we have

EPA

(
1

PA

)

=
∑

N ∈K(d̄)

1

PA(N )
PA(N ) = |K(d̄)|.

Hence, we can estimate |K(d̄)| by

̂|K(d̄)| = 1

k

k∑

i=1

1

PA(Ni )



Algorithmica (2010) 58: 860–910 867

from k i.i.d. samples N1, . . . , Nk drawn from PA(N ). Now in order to estimate
|L(d̄)| = |K(d̄)|/m! we can use

̂|L(d̄)| = 1

k

k∑

i=1

1

m!PA(Ni )
.

Note that when an ordering N is the output of Procedure A then the number N , that is
also an output of Procedure A, is equal to 1

m!PA(N )
. Hence, we propose the following

algorithm for estimating |L(d̄)|.
Algorithm: CountGraphs

Input: A graphical degree sequence d̄ , positive numbers ε, δ, and an integer k =
k(ε, δ).

Output: An (ε, δ)-estimate X for the number of graphs with degree sequence d̄ .

1 Run Procedure A k = k(ε, δ) times, and denote the corresponding values for the
random variable N by N1, . . . ,Nk .

2 Output X = N1+···+Nk

k
as an estimate for |L(d̄)|.

We will show in Sect. 8.1, that the variance of the random variable N is small
enough and therefore, an integer k = k(ε, δ) = O(ε−2 log(1/δ)) exists such that the
Algorithm CountGraphs produces an (ε, δ)-estimate for |L(d̄)|.

3.2.2 Approximating PA(G) with SIS

Similar to the above discussion, we will use SIS to find a very close approximation
for PA(G) for each graph G. Recall that for any graph G, each ordering N of the
edges of G is generated with probability PA(N ) by Procedure A. Now let S(G) be
the set of all m! orderings of G. Therefore, the probability PA(G) is given by

PA(G) =
∑

N ∈S(G)

PA(N ). (1)

Let H be the uniform distribution on the set S(G). Then (1) is equivalent to PA(G) =
m! EH(PA(N )).

Therefore, we use H as trial distribution and draw � i.i.d. samples N1, . . . , N�

from H. Then for each sample Ni we calculate PA(Ni ) and report

P̂A(G) = m!
�

�∑

i=1

PA(Ni )

as an estimate for PA(G). This is given by Procedure B.
Note that the variable P at the end of step 3 is exactly PA(N ) for an ele-

ment N ∈ S(G) that is sampled from distribution H. Therefore, it is easy to see
that EB(P ) = EH(PA(N )) = PA(G)/m! which makes PG an unbiased estimate for
PA(G). In Sect. 8.2, by controlling the variance of the random variable P , we will



868 Algorithmica (2010) 58: 860–910

Procedure B
Input: A graph G with degree sequence d̄ , and an integer � = �(ε, δ).
Output: A real number PG that is an (ε, δ)-estimate for PA(G).

1. Let E be a set of edges, d̂ = (d̂1, . . . , d̂n) be an n-tuple of integers, and P be a real
number. Initialize them by E = empty set, d̂ = d̄, and P = 1.

2. Choose an edge e = {vi, vj } of G among all those edges that are not in E, uni-
formly at random. Update P by

P = d̂i d̂j (1 − didj

4m
)P

∑
(vr ,vs )/∈E

vr �=vs

d̂r d̂s(1 − drds

4m
)
.

Add {vi, vj } to E and reduce each of d̂i , d̂j by 1.
3. Repeat step 2 until |E| = m.
4. Repeat steps 1 to 3 exactly � = �(ε, δ) times and let P1, . . . ,P� be the correspond-

ing values for P . Output PG = m!P1+···+P�

�
as an estimate for m! EH(PA(πG)) =

PA(G).

show the existence of an � = �(ε, δ) = O(ε−2 log(1/δ)) such that the value of PG is
an (ε, δ)-estimate for PA(G).

3.2.3 FPRAS for Random Generation

Now that we can find (ε, δ)-estimates for both |L(d̄)| and PA(G) then an FPRAS for
random generation is within reach. Algorithm GenerateGraph, given below provides
such an FPRAS.

Algorithm: GenerateGraph

Input: A graphical degree sequence d̄ and a positive numbers ε.
Output: A graph G with degree sequence d̄ .

1. Let ε′ = min(0.25,1 − 1√
1+ ε

2
, 1√

1− ε
2

− 1) and δ < 0.25.

2. Run Algorithm CountGraph, to obtain X as an (ε′, δ)-estimate for |L(d̄)|.
3. Repeat Procedure A to obtain one successful outcome G.
4. Run Procedure B to obtain an (ε′, δ)-estimate, PG, for PA(G).
5. Report G with probability min( 1

cXPG
,1) and end. Otherwise go to step 3.

We will show in Sect. 4 that a universal constant c exists (independent of all para-
meters m, d̄, ε) where the inequality cXPG ≥ 1 holds whenever X ≥ (1 − ε′)|L(d̄)|
and PG ≥ (1 − ε′)PA(G). Also note that we always assume 0 < ε < 1. Therefore,
ε′ is well defined.



Algorithmica (2010) 58: 860–910 869

4 Analysis

Let us fix a simple graph G with degree sequence d̄ . Recall the weighted config-
uration model from Sect. 3 which is equivalent to Procedure A. Denote the set of
all perfect matchings on the mini-vertices of W that lead to G by R(G). Any two
elements of R(G) can be obtained from one another by permuting the labels of the
mini-vertices in any Wi . Due to this symmetry, all matchings in R(G) are generated
with equal probability using Procedure A. In other words for a fixed element M in
R(G) we have PA(G) = (

∏n
i=1 di !)PA(M).

Now we will find PA(M). First note that there are m! different orders for pick-
ing the edges of M sequentially. Moreover, different orderings can have different
probabilities. Denote the set of these orderings by S(M). Thus

PA(G) =
(

n∏

i=1

di !
)

∑

N ∈S(M)

PA(N ).

For any ordering N = {e1, . . . , em} in the set S(M) and each r with 0 ≤ r ≤
m − 1 denote the probability of picking edge er+1 at step r + 1 of Procedure A
by P(er+1|e1, . . . , er ). Hence PA(N ) = ∏m−1

r=0 P(er+1|e1, . . . , er ) and each term
P(er+1|e1, . . . , er ) is given by

P(er+1 = {i, j}|e1, . . . , er ) = (1 − didj /4m)
∑

{u,v}∈Er
d

(r)
u d

(r)
v (1 − dudv/4m)

(2)

where d
(r)
i denotes the residual degree of vertex i at step r +1 and the set Er consists

of all possible edges after picking e1, . . . , er . Note that d
(r)
i is also equal to the number

of unmatched mini-vertices in Wi at step r + 1. For the analysis we use the notations
{i, j} and {vi, vj } interchangeably.

Denote the number of unsuitable pairs after choosing the edges in Nr =
{e1, . . . , er} by Δr(N ). Thus, the denominator of the right-hand side of (2) can be
written as

(2m−2r
2

) − Ψr(N ) where Ψr(N ) = Δr(N ) + ∑
{u,v}∈Er

d
(r)
u d

(r)
v dudv/4m.

This is because
∑

{u,v}∈Er
d

(r)
u d

(r)
v is the number of the suitable pairs at step r + 1,

and is equal to
(2m−2r

2

) − Δr(N ). The quantity Ψr(N ) can be also viewed as sum

of the weights of the unsuitable pairs. Now using 1 − x = e−x+O(x2) for 0 ≤ x ≤ 1,
when dmax = O(m1/4−τ ) the expression for PA(G) is

PA(G) =
(

n∏

i=1

di !
)[ ∏

i∼Gj

(

1 − didj

4m

)] ∑

N ∈S(M)

m−1∏

r=0

1
(2m−2r

2

)− Ψr(N )

=
(

n∏

i=1

di !
)

e−γG+o(1)
∑

N ∈S(M)

m−1∏

r=0

1
(2m−2r

2

)− Ψr(N )



870 Algorithmica (2010) 58: 860–910

where γG was defined in Sect. 3 to be γG = ∑
i∼Gj didj /4m. The next step is to

show that Ψr(N ) is sharply concentrated around a number ψr(G), independent of
the ordering N . More specifically for

ψr(G) = (2m − 2r)2

(
λ(d̄)

2m
+ r

∑
i∼Gj (di − 1)(dj − 1)

4m3
+ (

∑n
i=1 d2

i )2

32m3
+ o(1)

)

the following is true

∑

N ∈S(M)

m−1∏

r=0

1
(2m−2r

2

)− Ψr(N )
= [1 + o(1)]m!

m−1∏

r=0

1
(2m−2r

2

)− ψr(G)
. (3)

The proof of this concentration result uses Kim and Vu’s polynomial method [25] and
is quite technical. It generalizes Kim and Vu’s [26] calculations for the regular graphs
to the general degree sequences. Section 7 is dedicated to this cumbersome analysis.
But for the case of regular graphs, in Sect. 4.1, we will use a different technique based
on Azuma’s inequality to show concentration in a larger region.

The next step is to show that when dmax = O(m1/4−τ ),

m−1∏

r=0

1
(2m−2r

2

)− ψr(G)
=

m−1∏

r=0

1
(2m−2r

2

)eλ(d̄)+λ2(d̄)+γG+o(1). (4)

The proof of (4) is algebraic and is given in Sect. 7.2.
The above analysis can now be summarized in the following lemma.

Lemma 1 For dmax = O(m1/4−τ ), Procedure A generates all graphs with degree
sequence d̄ with asymptotically equal probability. More specifically

∑

N ∈S(M)

PA(N ) = m!
∏m

r=0

(2m−2r
2

)eλ(d̄)+λ2(d̄)+o(1).

Now we can prove the first theorem.

Proof of Theorem 1 Lemma 1 shows that PA(G) is asymptotically independent of G.
Therefore, we only need to show Procedure A always succeeds with probability
1 − o(1). We will show this in Sect. 5 by proving the following lemma.

Lemma 2 For dmax = O(m1/4−τ ), the probability of failure of Procedure A is o(1).

Therefore, all graphs G are generated with asymptotically uniform probability. Note
that this fact, combined with (3) will also give an independent proof of McKay’s
formula [29] for the number of graphs.

Finally we are left with the analysis of the running time which is summarized in
the following lemma. The proof of this lemma is given in Sect. 6.



Algorithmica (2010) 58: 860–910 871

Lemma 3 Procedure A can be implemented so that the expected running time is
O(mdmax) for dmax = O(m1/4−τ ).

This completes the proof of Theorem 1. �

Proof of Theorem 3 First we will prove that Algorithm CountGraphs is an FPRAS
for the counting problem. This is shown by the following lemma.

Lemma 4 For any ε, δ > 0 there exist k = k(ε, δ) = O(ε−2 log(1/δ)) such that the
output X of Algorithm CountGraphs is an (ε, δ)-estimate for |L(d̄)|.

Proof Since EA(N) = L(d̄),

P
[
(1 − ε)|L(d̄)| < X < (1 + ε)|L(d̄)|]

= P

⎛

⎝− εEA(N)
√

VarA(N)
k

<
X − EA(X)
√

VarA(N)
k

<
εEA(N)
√

VarA(N)
k

⎞

⎠ . (5)

On the other hand, as a consequence of the Central Limit Theorem, when k goes to
infinity, the quantity X−EA(X)√

VarA(N)/k
converges to a random variable Z which has a nor-

mal distribution with mean zero and variance 1. Therefore similar to the discussion
given in [9], the inequality εEA(N)√

VarA(N)/k
> zδ guarantees that X is an (ε, δ)-estimate

for |L(d̄)| where P(|Z| > zδ) = δ. This condition is equivalent to the following lower
bound for the number of repetitions of Procedure A

k > z2
δε

−2 VarA(N)

EA(N)2
.

Moreover, the tail of the normal distribution, P(|Z| > x), for very large values of x

can be approximated by the quantity ax−1e−x2/2(2π)−1 where a > 0 is a constant.
This means that the quantity z2

δ is of O(log(1/δ)). Therefore, if we show that the
variance ratio VarA(N)/EA(N)2 is bounded from above by a constant, then with
k = O(log(1/δ)ε−2) repetitions, we can obtain an (ε, δ)-estimate. In fact we will
prove the stronger statement

VarA(N)

EA(N)2
= o(1) (6)

in Sect. 8.1. This finishes the proof of Lemma 4. �

Note that by Theorem 1, Procedure A uses O(mdmax) operations. Therefore
the running time of Algorithm CountGraphs is k(ε, δ) times O(mdmax) which is
O(mdmaxε

−2 log(1/δ)). This shows that Algorithm CountGraphs is an FPRAS for
estimating |L(d̄|.

Now we will prove that Algorithm GenerateGraph is an FPRAS for the random
generation problem as well. First notice that if the ratio VarB(P )/EB(P )2 is bounded
from above by a constant, then similar calculations as in the proof of Lemma 4 for



872 Algorithmica (2010) 58: 860–910

the tail of the normal distribution can be used to find � = �(ε, δ) = O(ε−2 log(1/δ))

such that the output of Procedure B, PG, is an (ε, δ)-estimate for PA(G). In fact we
will show the stronger result

VarB(P )

EB(P )2
= o(1) (7)

in Sect. 8.2. Therefore, (7) gives the following lemma.

Lemma 5 For any ε, δ > 0 and a graph G with degree sequence d̄ , there exist � =
�(ε, δ) = O(ε−2 log(1/δ)) for Procedure B such that its output, PG, is an (ε, δ)-
estimate for PA(G).

The next step in analyzing Algorithm GenerateGraph is to prove the existence of
constant c that is used in step 5.

Lemma 6 There exists a constant c such that for all parameters m, d̄, ε and all
graphs G with degree sequence d̄ , the inequality cXPG ≥ 1 holds whenever X ≥
(1 − ε′)|L(d̄)| and PG ≥ (1 − ε′)PA(G).

Proof By Theorem 1, [1 − o(1)]|L(d̄)|−1 ≤ PA(G) ≤ [1 + o(1)]|L(d̄)|−1. Let M be
large enough such that for all m > M the o(1) terms are less than 1/2. Now define

d = min

(
1

2
, min
m≤M

min
G∈L(d̄)

(PA(G)|L(d̄)|)
)

and

e = max

(
3

2
, max
m≤M

max
G∈L(d̄)

(PA(G)|L(d̄)|)
)

.

Therefore, d and e are positive and finite constants that are independent of all of the
parameters m, d̄, ε and d ≤ PA(G)|L(d̄)| ≤ e. Now when X ≥ (1 − ε′)|L(d̄)| and
PG ≥ (1 − ε′)PA(G),

d

4
≤ d(1 − ε′)2 ≤ PGX.

This is because ε′ ≤ 0.25. Therefore c = 4/d suffices. �

Now we need to analyze the output distribution and the running time of Algorithm
GenerateGraph. Consider one iteration of Algorithm GenerateGraph from step 1 to
step 5. Let Ev1 be the event that at least one of the fractions X

|L(d̄)| or PG

PA(G)
is not in

the interval [1−ε′,1+ε′]. Let Ev2 be the event that a graph is reported in step 5. This
means Evc

2 is when “Otherwise go to step 3” is called. Therefore, P(Ev1) ≤ 2δ < 0.5
and P(Ev1) + P(Ev2|Evc

1)P(Evc
1) + P(Evc

2|Evc
1)P(Evc

1) = 1.
For each graph G ∈ L(d̄) let Ev2(G) be the event that G is reported in step 5.

Each graph G is reported with probability P(Ev2(G)|Evc
1) = PA(G)/(cXPG) that



Algorithmica (2010) 58: 860–910 873

satisfies

1 − ε/2

c|L(d̄)| ≤ 1

c(1 + ε′)2|L(d̄)| ≤ P(Ev2(G)|Evc
1) ≤ 1

c(1 − ε′)2|L(d̄)| ≤ 1 + ε/2

c|L(d̄)| .
(8)

Note that the events Ev2(G)|Ev1 are not important and have low probability. Now
we obtain

P(Ev2) ≥ P(Evc
1)

∑

G∈L(d̄)

P(Ev2(G)|Evc
1) ≥ 0.5(1 − ε/2)

c
.

Therefore, the expected number of times that “Otherwise go to step 3” is called is
P(Ev2)

−1 ≤ 4c. This means that the expected running time of Algorithm Generate-
Graph is at most 4c times the expected running time of a successful run of Proce-
dure A plus 4c times the expected running time of Procedure B plus the expected
running time of Algorithm CountGraphs. The total number of operations can be writ-
ten as

4cO(mdmax) + 4cO(mdmaxε
′−2 log(1/δ)) + O(mdmaxε

′−2 log(1/δ))

which is O(mdmaxε
−2), since ε′ ≥ min(ε/4,0.25) gives ε′−2 = O(ε−2).

Notice that the probability that Algorithm GenerateGraph eventually reports a
graph, in an iteration that Ev1 did not occur, is at least 1 − P(Ev1) > 0.5. More-
over, the probability that the reported graph is a fixed graph G ∈ L(d̄) satisfies

∞∑

i=0

P(Evc
2)

i
P(Ev2(G)|Evc

1)P(Evc
1)

= P(Ev2(G)|Evc
1)P(Evc

1)

P(Ev2)
∈
[

1 − ε

c′|L(d̄)| ,
1 + ε

c′|L(d̄)|
]

where c′ = P(Evc
1)

cP(Ev2)
. This finishes the proof of Theorem 3. �

4.1 Concentration Inequality for Regular Graphs

The aim of this section is to prove Theorem 2. Recall that L(n, d) denotes the set of
all simple d-regular graphs with m = nd/2 edges. Let PU be the uniform probability
on L(n, d). Similar to the analysis of Procedure A for general degree sequences, let
G be a fixed graph in L(n, d) and M be a fixed matching on W with GM = G.
The main goal is to show that for d = o(n1/2−τ ) the probability of generating G with
Procedure A is at least 1 − o(1) times PU(G); i.e.

PA(G) ≥ (1 − o(1))PU(G). (9)

For the moment, assume (9) is true. We will show that Theorem 2 follows. Later we
will show why (9) holds.



874 Algorithmica (2010) 58: 860–910

Proof of Theorem 2 First, we will show that the total variation distance between the
probability measures PA and PU, dTV(PA,PU) ≡ supS⊂L(n,d) |PA(S) − PU(S)| is
o(1). We will use the following upper bound on the total variation distance

dTV(PA,PU) ≤
∑

G∈L(n,d)

|PA(G) − PU(G)|.

Therefore, we have the upper-bound

∑

G∈L(n,d)

|PA(G) − PU(G)|

=
∑

G∈L(n,d)

PA≥PU

(
PA(G) − PU(G)

)
+

∑

G∈L(n,d)

PA<PU

|PA(G) − PU(G)|

=
∑

G∈L(n,d)

(
PA(G) − PU(G)

)
+ 2

∑

G∈L(n,d)

PA<PU

|PA(G) − PU(G)|

(a)≤ 2
∑

G∈L(n,d)

PA<PU

|PA(G) − PU(G)|

(b)≤ 2o(1)
∑

G∈L(n,d)

PA<PU

PU(G) ≤ o(1).

Here (a) uses
∑

G∈L(n,d) PA(G) ≤ 1 and
∑

G∈L(n,d) PU(G) = 1. To see why (b)

holds, note that PU(G) − PA(G) ≤ o(1)PU(G) which is equivalent to inequality (9).
Now, dTV(PA,PU) = o(1) implies that PA(G) ≤ (1 + o(1))PU(G) except for

graphs G in a subset of L(n, d) with size o(|L(n, d)|). This finishes the proof of
Theorem 2. �

4.1.1 Proof of inequality (9)

In order to prove inequality (9) we prove the following equivalent inequality

(d!)n
∑

N ∈S(M)

P(N ) ≥ 1 − o(1)

|L(n, d)| . (10)

Our proof of inequality (10) builds upon the steps in [27]. First define μr = μ
(1)
r +

μ
(2)
r where

μ(1)
r = (2m − 2r)2(d − 1)

4m

μ(2)
r = (2m − 2r)2(d − 1)2r

4m2
.



Algorithmica (2010) 58: 860–910 875

Let m1 = m

d2ω
where ω goes to infinity very slowly; e.g. ω = O(logδ n) for some

small δ > 0. The following summarizes the analysis of Kim and Vu [27] for d =
O(n1/3−τ )

|L(n, d)|(d!)n
∑

N ∈S(M)

P(N )
(c)= 1 − o(1)

m!
∑

N ∈S(M)

m−1∏

r=0

(2m−2r
2

)− μr
(2m−2r

2

)− Δr(N )

(d)≥ 1 − o(1)

m!
∑

N ∈S(M)

m1∏

r=0

(

1 + Δr(N ) − μr
(2m−2r

2

)− Δr(N )

)

(e)≥
(

1 − o(1)
) m1∏

r=0

(

1 − 3
T

(1)
r + T

(2)
r

(2m − 2r)2

)

(f)≥
(

1 − o(1)
)

exp

(

−3e

m1∑

r=0

T
(1)
r + T

(2)
r

(2m − 2r)2

)

. (11)

Here we explain these steps in more detail. Our main focus will be on step (e) which
is the main step. For the rest, we provide a brief description and a reference to [27].
Step (c) follows from (3.5) of [27] and writing McKay-Wormald’s estimate [31]
for |L(n, d)| as a multiple of the product

∏m−1
r=0 [(2m−2r

2

) − μr ]. Similarly, step (d)

follows from the algebraic calculations in page 455 of [27].
The important step (e) follows from a sharp concentration. For simplicity write

Δr instead of Δr(N ) and break Δr into two terms Δ
(1)
r + Δ

(2)
r . Here Δ

(1)
r and Δ

(2)
r

denote the number of unsuitable pairs in step r corresponding to the self edge loops
and to the double edges respectively. For pr = r/m, qr = 1 − pr Kim and Vu [27]
used their polynomial concentration inequality [25] to derive two bounds T

(1)
r , T

(2)
r

and to show that with very high probability |Δ(1)
r − μ

(1)
r | < T

(1)
r and |Δ(2)

r − μ
(2)
r | <

T
(2)
r . More precisely for some constants c1, c2 the bounds are

T (1)
r = c1 log2 n

√
nd2q2

r (2dqr + 1), T (2)
r = c2 log3 n

√
nd3q2

r (d2qr + 1).

Now it is easy to see that for each i ∈ {1,2} the bound T
(i)
r and the quantity μ

(i)
r are

o((2m − 2r)2). This validates the step (e).
Finally, the step (f) is straightforward using 1 − x ≥ e−ex for 0 ≤ x ≤ 1.
The rest of the proof focuses on showing that the right-hand side of inequality

(11) is at least 1 − o(1). Kim and Vu show that for d = O(n1/3−τ ) the exponent
in (11) is o(1). Using similar calculations as (3.13) in [27] it can be shown that for
d = O(n1/2−τ ) and m2 = (m log3 n)/d

m1∑

r=0

T
(1)
r

(2m − 2r)2
= o(1),

m1∑

r=m2

T
(2)
r

(2m − 2r)2
= o(1).

But unfortunately the summation
∑m2

r=0
T

(2)
r

(2m−2r)2 is Ω(d3/n). In fact it turns out that

the random variable Δ
(2)
r has large variance for d = O(n1/2−τ ).



876 Algorithmica (2010) 58: 860–910

Let us explain the main difficulty for moving from d = O(n1/3−τ ) to d =
O(n1/2−τ ). Note that Δ

(2)
r is defined on a random subgraph GNr

of graph G which
has exactly r edges. Both [37] and [26, 27] have approximated the subgraph GNr

with Gpr in which each edge of G appears independently with probability pr = r/m.

But when d = O(n1/2−τ ), this approximation causes the variance of Δ
(2)
r to become

exponentially large.
In order to fix the problem, we modify Δ

(2)
r before moving to Gpr . It can be shown

via simple algebraic calculations that: Δ
(2)
r − μ

(2)
r = Xr − Yr where

Xr =
∑

u∼GNr
v

[d(r)
u − qr(d − 1)][d(r)

v − qr(d − 1)],

Yr = qr(d − 1)
∑

u

[(d(r)
u − qrd)2 − dprqr ].

This modification is critical since the equality Δ
(2)
r − μ

(2)
r = Xr − Yr does not hold

in Gpr .

The next task is to find a new bound T̂
(2)
r such that |Xr − Yr | < T̂

(2)
r with very

high probability and
∑m2

r=0
T̂

(2)
r

(2m−2r)2 = o(1). It is easy to see that in Gpr both Xr and
Yr have zero expected value.

At this time we will move to Gpr and show that Xr and Yr are sharply concentrated
around zero. It is easy to see that with probability at least 1/n, the subgraph Gpr has
exactly r edges. This is in fact Lemma 21 which is proven in Sect. 7. Therefore, Xr

and Yr will be sharply concentrated around 0 in GNr
as well. In the following we

will show the concentration of Xr in Gpr . The concentration of Yr can be shown
similarly.

Consider the edge exposure martingale (page 94 of [2]) for Gpr that examines
the edges of G in the order e1, . . . , em. In particular for any 0 ≤ � ≤ r define Zr

� =
E(Xr | e1, . . . , e�). Therefore, Zr

m is just the value of Xr and Zr
0 is its expected value

E(Xr) in Gpr . To simplify the notation, let us drop the index r from Zr
�, d

(r)
u ,pr

and qr .
The next step is to bound the martingale difference |Zi − Zi−1| and use a martin-

gale concentration inequality. In order to bound the quantity |Zi −Zi−1|, assume that
ei = {u,v}. The difference between Zi and Zi−1 is in the terms involving ei in the
summation

∑
u′∼Gp v′ [du′ − q(d − 1)][dv′ − q(d − 1)]. But ei only participates in du

and dv . Thus, for any u′ where u′ ∼Gp u, the term [du′ − q(d − 1)][du − q(d − 1)]
appears in both Zi and Zi−1. The value of du′ − q(d − 1) is unchanged by revealing
the status of ei , but the value of du − q(d − 1) can fluctuate by at most 1. Moreover,
if ei ∈ Gp then an extra term [du −q(d −1)][dv −q(d −1)] is also added to Zi . This
means we have

|Zi − Zi−1| ≤ ∣
∣(du − (d − 1)q)(dv − (d − 1)q)

∣
∣

+
∣
∣
∣
∣

∑

u′∼Gp u

(du′ − (d − 1)q)

∣
∣
∣
∣+

∣
∣
∣
∣

∑

v′∼Gp v

(dv′ − (d − 1)q)

∣
∣
∣
∣. (12)



Algorithmica (2010) 58: 860–910 877

Bounding the above difference should be done carefully since the standard worst case
bounds are weak for our purpose.

First, we start by a useful observation. For a typical ordering N of the edges of G,
the residual degrees, du, dv, du′, dv′ are roughly dq ±√

dq . We will make this more
precise. For any vertex ū ∈ G consider the event

Lū = {|dū − dq| ≤ c log1/2 n(dq)1/2}

where c > 0 is a large constant.

Lemma 7 For all 0 ≤ r ≤ m2 we have P(Lc
ū) = o( 1

m4 ).

Proof Note that in the Gp model the residual degree of a vertex ū, dū, is sum of d

independent Bernoulli random variables with mean q . Two generalizations of Cher-
noff inequality (Theorems A.1.11, A.1.13 in page 267 of [2]) state that for a > 0 and
X1, . . . ,Xd i.i.d. Bernoulli(q) random variables:

P(X1 + · · · + Xd − qd ≥ a) < e
− a2

2qd
+ a3

2(qd)2

P(X1 + · · · + Xd − qd < −a) < e
− a2

2qd

Applying these two for a = √
12qd logn proves Lemma 7. �

To finish bounding the martingale difference we look at the last two terms in the
right-hand side of (12). For the vertex u consider the event

Ku =
{∣
∣
∣
∣

∑

u′∼Gp u

(du′ − (d − 1)q)

∣
∣
∣
∣ ≤ c

[
(dq)3/2 + qd + dq1/2] logn

}

where c > 0 is a large constant. We will use the following lemma to show that the
complement of Ku has very low probability.

Lemma 8 For all 0 ≤ r ≤ m2 the event Kc
u has probability o( d

m4 ).

Proof For any vertex u let NG(u) ⊂ V (G) denote the neighbors of u in G. Consider
the subsets

AG(u), BG(u), CG(u) ⊂ E(G)

where AG(u) consists of the edges that are adjacent to u, BG(u) has those edges with
both endpoints in NG(u), and CG(u) contains those edges with exactly one endpoint
in NG(u) and one endpoint outside NG(u)∪{u}. For any edge e of G let te = 1{e/∈Gp}.
Then we can write



878 Algorithmica (2010) 58: 860–910

∑

u′∼Gp u

(du′ − (d − 1)q)

=
∑

u′∈NGp (u)

∑

e∈AG(u′)\AG(u)

(te − q)

=
∑

u′∈NG(u)

∑

e∈AG(u′)\AG(u)

(te − q) −
∑

u′∈NG(u)\NGp (u)

∑

e∈AG(u′)\AG(u)

(te − q)

=
∑

e∈CG(u)

(te − q)

︸ ︷︷ ︸
(i)

+2
∑

e∈BG(u)

(te − q)

︸ ︷︷ ︸
(ii)

−
∑

u′∈NG(u)\NGp (u)

(d ′
u − 1 − q(d − 1))

︸ ︷︷ ︸
(iii)

.

Here each of (i) and (ii) is a sum of O(d2) i.i.d. Bernoulli(q) random variables minus
their expectations. Therefore similar to Lemma 7, both (i) and (ii) can be shown to be
O(

√
12qd2 logn) with a probability at least 1 − o(1/m4). For (iii) we can say

∑

u′∈NG(u)\NGp (u)

(d ′
u − 1 − q(d − 1)) ≤ du max

u′∈NG(u)\NGp (u)
(|du′ − 1 − q(d − 1)|).

Now using Lemma 7 for du and each term du′ − 1 − q(d − 1) we can say (iii) is
O([dq + √

12qd logn]√12qd logn) with a probability at least 1 − o(d/m4). These
finish the proof of Lemma 8. �

The final step in bounding the martingale difference is to apply Lemmas 7, 8 and
the union bound to event L = ⋂m2

r=0

⋂n
u=1(Lu ∩ Ku) and obtain P(Lc) = o(1/m2).

Hence for the martingale difference we have

|Zi − Zi−1|1L ≤ O(dq + dq1/2 + (dq)3/2) logn.

Note that Azuma’s inequality cannot be used directly, since the martingale difference
|Zi − Zi−1| can be large outside the set L. But the complement of L has very low
probability and we can use the following variation of Azuma’s inequality.

Proposition 1 (Kim [24]) Consider a martingale {Yi}ni=0 adaptive to a filtration
{Bi}ni=0. If for all k there are Ak−1 ∈ Bk−1 such that E[eωYk |Bk−1]1Ak−1 ≤ Ck for
all k = 1,2, . . . , n with Ck ≥ 1 for all k, then

P(Y − E[Y ] ≥ λ) ≤ e−λω
n∏

k=1

Ck + P

(
n−1⋃

k=0

Ak

)

Proof of Theorem 2 Applying the above proposition for a large enough constant
c′ > 0 gives

P

(

|Xr | > c′
√

6r log3 n
(
dq + d(q)1/2 + (dq)3/2

)2
)

≤ e−3 logn + P(Lc) = o

(
1

m2

)

.



Algorithmica (2010) 58: 860–910 879

Now using the fact that Gp has r edges with probability at least 1/n, the same event
in the random model GNr

has probability o(1/m). A similar bound holds for Yr since
the martingale difference for Yr is O(|dq(du − qd)|) = O((dq)3/2 log1/2 n)) using
Lemma 7.

Therefore defining T̂
(2)
r = c′(dq + d(q)1/2 + (dq)3/2)

√
6r log3 n, we only need to

show

m2∑

r=0

(dq + d(q)1/2 + (dq)3/2)

√
6r log3 n

(2m − 2r)2
= o(1).

But using ndq = 2m − 2r we have

m2∑

r=0

(dq + dq1/2 + (dq)3/2)

√
6r log3 n

n2d2q2

=
m2∑

r=0

O

(
d1/2 log1.5 n

n1/2(2m − 2r)
+ d log1.5 n

(2m − 2r)3/2
+ d1/2 log1.5 n

n(2m − 2r)1/2

)

= O

(
d1/2 log(nd)

n1/2
+ d

(n log3 n)1/2
+ d

n1/2

)

log1.5 n = o(1)

for d = O(n1/2−τ ). �

5 Probability of Failure of Procedure A

In this section we will prove Lemma 2 from Sect. 4. First we present the following
remark.

Remark 2 Lemma 1 gives an upper bound for the number of simple graphs with
degree sequence d̄ independently from all known formulas for |L(d̄)|. If dmax =
O(m1/4−τ ) then

|L(d̄)| ≤ e−λ(d̄)−λ2(d̄)+o(1)

∏m
r=0

(2m−2r
2

)

m!∏n
i=1 di ! .

In this section we will show that the above inequality is in fact an equality. This is
done by proving that the probability of failure of Procedure A is very small.

First we will characterize the degree sequence of the partial graph that is generated
up to the time of failure. Then we apply the upper bound of Remark 2 to derive an
upper bound on the probability of failure and show that it is o(1).

Lemma 9 If Procedure A fails in step s then 2m − 2s ≤ d2
max + 1.



880 Algorithmica (2010) 58: 860–910

Proof Procedure A fails when there is no suitable pair left to choose. If the failure
occurs in step s then the number of unsuitable edges is equal to the total number
of possible pairs, that is

(2m−2s
2

)
. On the other hand, it can be easily shown that the

number of unsuitable edges at step s is at most d2
max(2m − 2s)/2 (see Corollary 3.1

in [37] for more detail). Therefore 2m − 2s ≤ d2
max + 1. �

Failure in step s means there are some Wi ’s which have unmatched mini-vertices
(d(s)

i �= 0). Let us call them “unfinished” Wi ’s. Since the algorithm fails, any two
unfinished Wi ’s should be already connected. Hence there are at most dmax of them.
This is because for all i: |Wi | = di ≤ dmax. The main goal is now to show that this
scenario is a very rare event. Without loss of generality assume that W1,W2, . . . ,Wk

are all the unfinished sets. The argument given above shows k ≤ dmax. Moreover, by
construction k ≤ 2m−2s. The algorithm up to this step has created a partial matching
Ms where graph GMs

is simple and has degree sequence d̄(s) = (d1 −d
(s)
1 , . . . , dk −

d
(s)
k , dk+1, . . . , dn). Let A

d
(s)
1 ,...,d

(s)
k

denote the above event of failure. Hence

P(fail) =
d2

max+1∑

2m−2s=2

max(dmax,2m−2s)∑

k=1

n∑

i1,...,ik=1

PA(A
d

(s)
1 ,...,d

(s)
k

). (13)

The following lemma is the central part of the proof.

Lemma 10 The probability of the event that Procedure A fails in step s and the
vertices v1, . . . , vk are the only unfinished vertices; i.e. d

(s)
i �= 0 i = 1, . . . , k, is at

most

(1 + o(1))
d

k(k−1)
max

∏k
i=1 d

d
(s)
i

i

m(k
2)(2m)2m−2s

(
2m − 2s

d
(s)
1 , . . . , d

(s)
k

)

.

Proof Following the above notation, the event that we are considering is denoted
by A

d
(s)
1 ,...,d

(s)
k

. Note that graph GMs
should have a clique of size k on vertices

v1, . . . , vk . Therefore, the number of such graphs should be less than |L(d̄
(s)
k )|

where d̄
(s)
k =(d1 − d

(s)
1 − (k − 1), . . . , dk − d

(s)
k − (k − 1), dk+1, . . . , dn). Thus,

PA(A
d

(s)
1 ,...,d

(s)
k

) is at most |L(d̄
(s)
k )| PA(GMs

). On the other hand, we can use Re-

mark 1 to derive an upper bound for |L(d̄
(s)
k )| because m − s and k are small relative

to m and it is easy to show that dmax = O([s − (
k
2

)]1/4−τ ). The result of these steps
is

PA(A
d

(s)
1 ,...,d

(s)
k

) ≤
(

(2s − k(k − 1))! exp[−λ(d̄
(s)
k ) − λ2(d̄

(s)
k ) + o(1)]

[
s − (

k
2

)]!2s−(k
2)
∏n

i=1(d
(s)
i )!

)

PA(GMs
).



Algorithmica (2010) 58: 860–910 881

The next step is to bound PA(GMs
). We can use the same methodology as in the

beginning of Sect. 4 to derive

PA(GMs
) =

∏n
i=1 di !

(∏k
i=1

[
d

(s)
i

]!)
∑

Ns∈S(Ms )

PA(Ns)

= s! exp

(

−
∑

i∼Gs j didj

4m
+ o(1)

)
s−1∏

r=0

1
(2m−2r

2

)− ψr(GMs
)

= s! exp

(
m

s
λ(d̄) + m2

s2
λ2(d̄) + o(1)

) s−1∏

r=0

1
(2m−2r

2

) .

Similar to ψr , the quantity ψr(GMs
) is an approximation for the expected value of

Ψr conditioned on obtaining GMs
at step s. Now using the simple algebraic approx-

imation

m

s
λ(d̄) + m2

s2
λ2(d̄) − λ(d̄

(s)
k ) − λ2(d̄

(s)
k ) = O

(
λ(d̄)[λ(d̄) − λ(d̄

(s)
k )])

= O

(
d4

max

m2

)

= o(1)

the following is true

PA(A
d

(s)
1 ,...,d

(s)
k

) ≤ eo(1) [2s − k(k − 1)]! (2m − 2s)!s!2(k
2)
∏k

i=1 di !
[
s − (

k
2

)]!(2m)!∏k
i=1[(d(s)

i )!(di − k − d
(s)
i + 1)!]

≤ eo(1)

∏k
i=1 d

d
(s)
i +k−1

i

∏2m
�=2s+1 �

∏(k
2)

j=1(2s − 2j + 1)

(
2m − 2s

d
(s)
1 , . . . , d

(s)
k

)

. (14)

The next step is to use m − s = O(d2
max) and k = O(dmax) to show that

∏(k
2)

j=1(2s −
2j +1) ≥ m(k

2) and (1/m2m−2s)
∏2m

�=2s+1 � ≥ e−O(d4
max/m). These two facts combined

with (14) finish the proof of Lemma 10. �

Now we are ready to prove the main result of this section.

Proof of Lemma 2 First, we show that the event of failure has a negligible probability
when there is only one unfinished vertex left, i.e., when k = 1. In this case Lemma 10
simplifies to PA(A

d
(s)
1

) = O((D
m

)2m−2s). Therefore, summing over all possibilities of

k = 1 gives

d2
max+1∑

2m−2s=2

n∑

i=1

PA(A
d

(s)
i

) = O

⎛

⎝
d2

max+1∑

2m−2s=2

d2m−2s−1
max

m2m−2s−1

⎞

⎠ = O

(
dmax

m

)

= o(1).



882 Algorithmica (2010) 58: 860–910

For k > 1 we use Lemma 10 differently. Using d
k(k−1)
max /m(k

2) ≤ d2
max/m and (13) we

have

P(fail) ≤ o(1)

+ eo(1)d2
max

m

d2
max+1∑

2m−2s=2

(a)
︷ ︸︸ ︷
max(dmax,2m−2s)∑

k=2

n∑

i1,...,ik=1

k∏

i=1

d
d

(s)
i

i

(
2m − 2s

d
(s)
1 , . . . , d

(s)
k

)

(2m)2m−2s
.

Now note that the double sum (a) is at most (d1 + · · · + dn)
2m−2s = (2m)2m−2s since∑k

i=1 d
(s)
i = 2m − 2s. Therefore

P(fail) ≤ o(1) + eo(1) d
2
max

m

d2
max+1∑

2m−2s=2

1 = O

(
d4

max

m

)

= o(1).
�

6 Running Time of Procedure A

In this section we prove Lemma 3.

Proof of Lemma 3 Our proof is very similar to the analysis of Steger and Wormald
[37]. They use a non-trivial data structure and algorithm to efficiently choose a pair of
vertices vi ∈ V and vj ∈ V with probabilities proportional to d̂i and d̂j respectively.
They explain their methods for regular graphs but they only use the fact that the
maximum degree is bounded. We include their analysis in Sect. 6.1 for the sake of
completeness.

We need to add a few steps to their method. After choosing vertices vi and vj

with the above probabilities, toss a biased coin that comes head with probability
1 − didj /4m. Accept the pair {vi, vj } if the coin shows head, i �= j , and {vi, vj } /∈ E.
Add {vi, vj } to E and reduce each of d̂i , d̂j by 1. Otherwise reject the pair {vi, vj }
and repeat. The expected number of repeats is bounded by a constant because dmax =
O(m1/4−τ ) and therefore 1 − didj /4m > 1/2.

Efficient calculation of P is also straightforward. Note that

pij = (1 − didj /4m)d
(r)
i d

(r)
j

(2m−2r
2

)− Ψr(N )
.

Therefore, pij can be easily calculated from
(2m−2r

2

) − Ψr(N ). At the beginning of
Procedure A we have

(
2m

2

)

− Ψ (N0) =
(

2m

2

)

−
∑

u

(
du

2

)

− (
∑

u d2
u)2 −∑

u d4
u

8m



Algorithmica (2010) 58: 860–910 883

which can be calculated with O(n) operations. Now we show that in step r + 1, pij

can be updated from step r with O(dmax) operations. This is because by choosing a
pair {vi, vj } at step r + 1:

[(
2m − 2r − 2

2

)

− Ψr+1(N )

]

−
[(

2m − 2r

2

)

− Ψr(N )

]

=
∑

(va,vb)∈Er+1

d(r+1)
a d

(r+1)
b

(

1 − dadb

4m

)

−
∑

(va,vb)∈Er

d(r)
a d

(r)
b

(

1 − dadb

4m

)

= −d
(r)
i d

(r)
j

(

1 − didj

4m

)

−
∑

(vi′ ,vi )∈Er

d
(r)

i′

(

1 − didi′

4m

)

−
∑

(vj ′ ,vj )∈Er

d
(r)

j ′

(

1 − djdj ′

4m

)

= −d
(r)
i d

(r)
j

(

1 − didj

4m

)

+ Ξi,r + Ξj,r + di + dj

4m
Ωr + Oi,r + Oj,r

where Ξi,r = ∑
vi′∼GNr

vi
d

(r)

i′ (1 − didi′
4m

), Ωr = ∑n
i′=1 dr

i′di′ , and Oi,r =
d

(r)
i (1 − d2

i /4m) − (2m − 2r). It is clear to see from Ωr+1 − Ωr = −di − dj that
Ωr can be updated at each step by only one operation, and the calculation of Oi,r ,
Oj,r takes constant time. Moreover, each of Ξi,r , Ξj,r is a summation with at most
dmax terms. We will show in the next section that it is possible to find neighbors of
vi and vj in GNr

with O(dmax) operations. Therefore Ξi,r , Ξj,r can be calculated
with O(dmax) operations. Thus the running time of the new implementation of Proce-
dure A is O(mdmax) for general degree sequences. Now using Lemma 2, the running
time of Procedure A is of O(mdmax). �

6.1 Steger and Wormald’s Method for Choosing a Suitable Pair

Steger and Wormald’s (SW) [37] implementation has three phases and uses the con-
figuration model.

In the first phase, the algorithm puts all of the mini-vertices in an array L where
all of the matched mini-vertices are kept in the front. It is also assumed that the
members of each pair of matched mini-vertices will be two consecutive elements
of L. There is another array I that keeps location of each mini-vertex inside array L.
Then two elements of L (selected uniformly at random) can be checked for suit-
ability in time O(dmax). This is because from I we can find the neighbors of the
selected elements in the partially constructed graph GNr

. Note that in our modifi-
cation (Procedure A), the pair is accepted with probability 1 − didj /4m when they
belong to Wi,Wj . This also completes the above argument for updating Ψr(N ) with
O(dmax) operations. Repeat the above till a suitable pair is found then update L

and I .
Phase 1 ends when the number of remaining mini-vertices falls below 2d2

max.
Hence using Corollary 3.1 in [37], throughout phase 1 the number of suitable pairs is



884 Algorithmica (2010) 58: 860–910

more than half of the total number of available pairs. Therefore, the expected number
of repetitions in the above process is at most 2. This means the expected running time
of phase 1 is O(mdmax).

Phase 2 starts when the number of available mini-vertices is less than 2d2
max and

finishes when the number of available vertices is at least 2dmax. In this phase in-
stead of choosing the mini-vertices, choose a pair of vertices of GNr

(two random
set Wi,Wj in the configuration model) from the set of vertices that are not fully
matched. Repeat the above till vi, vj is not already an edge in GNr

. Again the ex-
pected number of repetitions is at most 2. Now randomly choose one mini-vertex
in each selected Wi . If both of the mini-vertices are not matched yet add the edge,
otherwise pick another two mini-vertices. The expected number of repetitions here
is at most O(d2

max) and hence the expected running time of the phase 2 is at most
O(d4

max).
Phase 3 starts when the number of available vertices (not fully matched Wi ’s) is

less than 2dmax. We can construct a graph H , in time O(d2
max), that indicates the set

of all possible connections. Now choose an edge {vi, vj } of H uniformly at random
and accept it with probability d̂i d̂j /d

2
max. Again, the expected number of repetitions

will be at most O(d2
max). Update H in constant time and repeat the above till H is

empty. Therefore the expected running time of phase 3 is also O(d4
max).

Hence, the total running time for dmax = O(m1/4−τ ) will be O(mdmax).

7 Generalizing Kim and Vu’s Analysis

The aim of this section is to show (3) via generalization of Kim and Vu’s analysis
[26]. Let us define

f (N ) =
m−1∏

r=0

(2m−2r
2

)− ψr(G)
(2m−2r

2

)− Ψr(N )

then (3) is equivalent to

E(f (N )) = 1 + o(1) (15)

where the expectation is with respect to the uniform distribution on the set S(M)

of all m! orderings of the matching M. Proof of (15) is done by partitioning the set
S(M) into smaller subsets and looking at the deviation of f on each set separately.
The partition is explained in Sect. 7.3. But before that we need to define some nota-
tion.

7.1 Definitions

In Sect. 4 we saw that the probability of choosing an edge between Wi and Wj at step

r + 1 of Procedure A is equal to (1 − didj

4m
)[(2m−2r

2

)− Ψr(N )]−1 where

Ψr(N ) =
∑

{vi ,vj }/∈Er

d
(r)
i d

(r)
j +

∑

{vi ,vj }∈Er

d
(r)
i d

(r)
j

didj

4m
.



Algorithmica (2010) 58: 860–910 885

To simplify the notation, throughout the rest of this section, we will use Ψr and Δr

to denote Ψr(N ) and Δr(N ) respectively. We will also use the notation {vi, vj } and
{i, j} interchangeably. Moreover, the notation {i, j} includes the cases of i = j as
well.

For our analysis we need to write Ψr = Δr + Λr where

Δr =
(

2m − 2r

2

)

−
∑

{i,j} ∈ Er

d
(r)
i d

(r)
j ,

Λr =
∑

{i,j }
i �=j

d
(r)
i d

(r)
j

didj

4m
−

∑

{i,j }/∈Er
i �=j

d
(r)
i d

(r)
j

didj

4m
.

Notice that Δr counts the number of possibilities for creating a self loop (i = j ) or
making double edges. We distinguish between these two cases by an extra index. That
is

Δ(1)
r =

n∑

i=1

(
d

(r)
i

2

)

= # of self loops, and

Δ(2)
r = Δr − Δ(1)

r = # of double edges.

Note that since all the existing pairs are suitable, the only type of multiple pairs that
can be created at step r + 1 are double pairs. Moreover,

4mΛr =
∑

{i,j }
i �=j

d
(r)
i d

(r)
j didj −

∑

{i,j } /∈ Er
i �=j

d
(r)
i d

(r)
j didj

= (
∑n

i=1 d
(r)
i di)

2 −∑n
i=1(d

(r)
i )2d2

i

2
−

∑

{i,j } /∈ Er
i �=j

d
(r)
i d

(r)
j didj .

We distinguish between these three summations by adding a numerical index to Λr ;
i.e.

Λ(1)
r =

n∑

i=1

d
(r)
i di, Λ(2)

r =
n∑

i=1

(d
(r)
i )2d2

i , Λ(3)
r =

∑

{i,j }/∈Er
i �=j

d
(r)
i d

(r)
j didj .

Hence,

Λr = (Λ
(1)
r )2 − Λ

(2)
r

8m
− Λ

(3)
r

4m
.

The following simple bounds will be very useful throughout Sect. 7.

Lemma 11 For all r the following equations hold:

(i) Δr ≤ (2m−2r)d2
max

2



886 Algorithmica (2010) 58: 860–910

(ii) Λ
(1)
r ≤ dmax(2m − 2r)

(iii) Λr ≤ (2m−2r)2d2
max

8m
.

Proof (i) At step r there are 2m − 2r mini-vertices left and for each u ∈ Wi there
are at most dmax − 1 mini-vertices in Wi that u can connect to. Hence, Δ

(1)
r ≤

(2m−2r)(dmax−1)
2 . Similarly u can connect to at most (dmax −1)2 mini-vertices in some

Wj with i �= j to create a double edge. Thus, Δ
(2)
r ≤ (2m−2r)(dmax−1)2

2 . Now using

Δr = Δ
(1)
r + Δ

(2)
r the proof of (i) is clear.

(ii) Λ
(1)
r ≤ dmax

∑
u d

(r)
u = dmax(2m − 2r).

(iii) It follows from the definition of Λr that

Λr =
∑

{i,j}∈Er

d
(r)
i d

(r)
j

didj

4m
≤ d2

max

4m

∑

{i,j}∈Er

d
(r)
i d

(r)
j ≤ d2

max

4m

(
2m − 2r

2

)

.
�

In order to define ψr we look at a slightly similar model. Recall that GNr
is

the partial graph that is constructed up to step r . Imposing the uniform distribu-
tion on S(M), graph GNr

turns to a random subgraph of G that has exactly r

edges. We can approximate this graph by a different random subgraph of G. This
is done, by selecting each edge of G independently with probability pr = r/m and
denoting the resulted graph by Gpr . Now using Gpr as an approximation to GNr

,

we are ready evaluate quantities Epr (Δ
(1)
r ), Epr (Δ

(2)
r ), Epr (Λ

(1)
r ), Epr (Λ

(2)
r ), and

Epr (Λ
(3)
r ). Throughout this section we often use the notations Δ

(i)
pr

, Λ
(i)
pr

, and Ψpr to
emphasis that the model is Gpr instead of GNr

.

Lemma 12 For each r the following equations hold:

(i) Epr (Δ
(1)
r ) = (2m − 2r)2

2

(∑n
i=1

(
di

2

)

2m2

)

= (2m − 2r)2

2

(
λ(d̄)

m

)

(ii) Epr (Δ
(2)
r ) = (2m − 2r)2

2

(
r
∑

i∼Gj (di − 1)(dj − 1)

2m3

)

(iii) Epr (Λ
(1)
r ) = (2m − 2r)

∑n
i=1 d2

i

2m

(iv) Epr (Λ
(2)
r ) = (2m − 2r)2

∑n
i=1 d4

i

4m2
+ 2r(2m − 2r)

∑n
i=1 d3

i

4m2

(v) Epr (Λ
(3)
r ) = (2m − 2r)2

2

(
r
∑

i∼Gj didj (di − 1)(dj − 1)

2m3

)

.

Proof (i) In the random model of Gpr each edge has a probability of r
m

to be cho-
sen. Let Xi the number of unsuitable edges that connect two mini-vertices of Wi at



Algorithmica (2010) 58: 860–910 887

(r + 1)th step of creating N . Hence, Xi is equal to the number of unordered tuples
{j, i, k} where {j, i}, {i, k} ∈ E(G) \ E(GNr

) which gives

Δ(1)
r =

n∑

i=1

Xi. (16)

On the other hand for a fixed i, the number of tuples {j, i, k} where {j, i}, {i, k} ∈
E(G) is exactly

(
di

2

)
, and with probability (1 − r

m
)2 the edges {j, i}, {i, k} do not

belong to E(GNr
). Thus, the equality E(Xi) = (1 − r

m
)2
(
di

2

)
holds and it can be used

in (16) to complete the proof of (i).
(ii) Define Yij to be the number of unsuitable edges between Wi and Wj at

(r +1)th step of creating N . It is not hard to see that Yij also counts the number of un-
ordered tuples {k, i, j, l} where {i, j} ∈ E(GNr

) but {k, i}, {j, l} ∈ E(G) \ E(GNr
).

Hence,

Δ(2)
r =

∑

i∼Gj

Yij . (17)

On the other hand for a fixed i ∼G j , the number of tuples {k, i, j, l} where
{k, i}, {j, l} belong to E(G) is exactly (di − 1)(dj − 1). Moreover, the edges
{k, i}, {j, l} do not belong to E(GNr

) with probability (1 − r
m

)2, and the edge
{i, j} belongs to E(GNr

) with probability r
m

. This gives the equality E(Yij ) =
r
m

(1 − r
m

)2(di − 1)(dj − 1) which can be used with (17) to complete the proof of (ii).

(iii) The proof directly follows from E(d
(r)
i ) = (1 − r

m
)di .

(iv) Since each d
(r)
i is a summation of di Bernoulli i.i.d. random variables. We can

show

E[(d(r)
i )2] =

(

1 − r

m

)2

d2
i + r

m

(

1 − r

m

)

di

which proves (iv).
(v) The proof is similar to (ii), except we are using the following instead of (17)

Λ(3)
r =

∑

i∼Gj

didj

4m
Yij .

�

The next step is to define ψr as an approximation to Epr (Ψr). For that we will use
Lemma 12 and the following two estimates

Epr

(
Λ

(2)
r

8m

)

= (2m − 2r)2

2

[

O

(
d3

max

m2

)

+ O

(
d2

max

m2

2r

2m − 2r

)]

,

Epr

(
Λ

(3)
r

4m

)

= r(2m − 2r)2

2
O

(
d4

max

m3

)

.



888 Algorithmica (2010) 58: 860–910

Note that here we used the bound

n∑

i=1

ds
i =

∑

i∼Gj

(ds−1
i + ds−1

j ) = O(mds−1
max )

that will be repeatedly used in this section.
Now Epr (Ψr) is given by the following expression

Epr (Ψr) = (2m − 2r)2

2

[
λ(d̄)

m
+ r

∑
i∼Gj (di − 1)(dj − 1)

2m3

+ (
∑n

i=1 d2
i )2

16m3
+ O

(
rd4

max

m3
+ rd2

max

(m − r)m2

)]

. (18)

Definition 2 The expected value of Ψr is denoted by ψr . i.e. ψr = Epr (Ψr).

The following lemma is equivalent to (18).

Lemma 13 For all r ,

ψr = (2m − 2r)2

2

(
λ(d̄)

m
+ r

∑
i∼Gj (di − 1)(dj − 1)

2m3
+ (

∑n
i=1 d2

i )2

16m3
+ ςr

)

where ςr = O(
rd4

max
m3 + rd2

max
(m−r)m2 ).

It is also straightforward to show that the following upper bound holds for ψr .

Lemma 14 For all r the quantity ψr is bounded above by O(
d2

max(2m−2r)2

2m
).

Now we are ready to prove (4).

7.2 Algebraic Proof of (4)

For simplicity, we define χG to be
∑

i∼Gj (di − 1)(dj − 1). Therefore,

m−1∏

r=0

(2m−2r
2

)

(2m−2r
2

)− ψr

=
m−1∏

r=0

(
1 + ψr

(2m−2r
2

)− ψr

)

=
m−1∏

r=0

(

1 +
λ(d̄)
m

+ r
∑

i∼Gj (di−1)(dj −1)

2m3 + (
∑

i d2
i )2

16m3 + ςr

1 − 1
2m−2r

− O(
d2

max
m

)

)



Algorithmica (2010) 58: 860–910 889

= exp

[
m−1∑

r=0

log

(

1 +
λ(d̄)
m

+ rχG

2m3 + (
∑

i d2
i )2

16m3 + ςr

1 − 1
2m−2r

− O(
d2

max
m

)

)]

= exp

[
m−1∑

r=0

log

(

1 + λ(d̄)

m
+ rχG

2m3
+ (

∑
i d

2
i )2

16m3
+ O

(
d4

max

m2
+ rd2

max

(m − r)m2

))]

= exp

[
m−1∑

r=0

(
λ(d̄)

m
+ rχG

2m3
+ (

∑
i d

2
i )2

16m3
+ O

(
d4

max

m2
+ rd2

max

(m − r)m2

))]

(19)

= exp

[

λ(d̄) + m(m − 1)χG

4m3
+ (

∑
i d

2
i )2

16m2
+ O

(
d4

max

m
+ d2

max

m
log(2m)

)]

= exp

[

λ(d̄) + χG

4m
+ (

∑
i d

2
i )2

16m2
+ o(1)

]

= exp

[

λ(d̄) +
∑

i∼Gj didj

4m
−

∑
i∼Gj (di + dj )

4m
+ 1

4
+ (

∑
i d

2
i )2

16m2
+ o(1)

]

(20)

= (
1 + o(1)

)
exp

[

λ(d̄) + λ2(d̄) +
∑

i∼Gj didj

4m

]

(21)

where (19) uses log(1+x) = x−O(x2) and (20) uses dmax = O(m1/4−τ ). The bound
ψr

(2m−2r)2 = O(
d2

max
m

) was used a few times as well. �

7.3 Partitioning the Set of Orderings S(M)

In order to prove (15), we need to study the large deviation behavior of function f on
the set S(M). For that we partition the set S(M) in four “major” steps. At each step,
one subset of S(M) will be removed from it.

Step 1. Consider those orderings N ∈ S(M) where at any state during the algorithm,
the number of unsuitable edges does not exceed a constant (strictly less than 1)
fraction of the number of all available edges. More specifically, for a small number
0 < τ ≤ 1/3 let

S∗(M) =
{

N ∈ S(M) | Ψr(N ) ≤ (1 − τ/4)

(
2m − 2r

2

)

: ∀0 ≤ r ≤ m − 1

}

.

Then the first element of the partition will be S(M) \ S∗(M).
Step 2. Consider those orderings N from the set S∗(M) for which Ψr(N ) − ψr >

Tr(logn)1+δ for all 0 ≤ r ≤ m − 1. The function Tr will be defined in Sect. 7.4
and δ is a small positive constant. For example δ < 0.1 works. Denote the set of all
such N by A.

Step 3. From the set S∗(M) \ A, remove those elements with Ψr(N ) > 0 for some r

with 2m − 2r ≤ (logn)1+2δ . Put these elements in the set B.
Step 4. The last element of the partition is the remaining subset C = S∗(M) \

(A ∪ B).



890 Algorithmica (2010) 58: 860–910

The journey towards proving (3) is divided into these five parts

E(f (N )1A) = o(1), (22)

E(f (N )1B) = o(1), (23)

E(f (N )1C ) ≤ 1 + o(1), (24)

E(f (N )1C ) ≥ 1 − o(1), (25)

E(f (N )1S(M)\S∗(M)) = o(1). (26)

These parts will be all proved is Sect. 7.5. The hardest of these proofs is for (22)
which is carried out by partitioning the set A into further subsets and using Vu’s
inequality on them. The remaining proofs for (23)–(26) are based on the standard
combinatorial and algebraic bounds.

7.4 More Notation

In order to prove (22) we need more notation. Remember from Sect. 7.3 that δ > 0
is a very small constant. Let ω = (logn)δ . Let λ0 = ω logn and λi = 2iλ0 for i =
1,2, . . . ,L. L is such that λL−1 < cd2

max logn ≤ λL where c is a large constant that
is specified later.

Definition 3 Let qr = (1 − r/m), pr = 1 − qr ∀0 ≤ r ≤ m − 1. Then let

βr(λ) = c

√
λ(md2

maxq
2
r + λ2)(d2

maxqr + λ),

γr(λ) = c

√
λ(md2

maxq
3
r + λ3)(d2

maxq
2
r + λ2),

νr = 8md2
maxq

3
r .

Now the function Tr for all 0 ≤ r ≤ m − 1 is defined by

Tr(λ) =
{

3βr(λ) + 2 min(γr(λ), νr ) if 2m − 2r ≥ ωλ,

λ2/ω otherwise.

The intuition behind this definition will become clear when we use Vu’s concentra-
tion inequality in Sect. 7.5.2. Note that inequalities αr(λ) ≤ βr(λ) and ζr (λ) ≤ βr(λ)

hold and we will use them in Sect. 7.5 to simplify the computations. Moreover,
with the above definition, since λi = 2λi−1, the following relation holds between
Tr(λi), Tr(λi−1).

Tr(λi) ≤ 8Tr(λi−1). (27)

Now we will subpartition A and B. Define subsets A0 ⊆ A1 ⊆ · · · ⊆ AL ⊆ S∗(M)

by

Ai = {N ∈ S∗(M) | Ψr(N ) − ψr < Tr(λi), ∀0 ≤ r ≤ m − 1}.



Algorithmica (2010) 58: 860–910 891

Moreover, define A∞ by A∞ = S∗(M) \⋃L
i=0 Ai . Then we have

A = A∞ ∪
(

L⋃

i=1

Ai \ Ai−1

)

.

Since the main objective of partitioning A is to prove (22), we are only interested
in finding upper bounds for f (N ) = ∏m−1

r=0 (1 + Ψr(N )−ψr

(2m−2r
2 )−Ψr(N )

). Therefore, the cases

with Ψr(N ) ≤ ψr are not troublesome.
Let K be an integer such that 2K−1 < (logn)2+δ +1 ≤ 2K . Next step is to consider

a chain of subsets B0 ⊆ B1 ⊆ · · · ⊆ BK ⊆ A0 that are defined by

Bj = {N ∈ A0 | Ψr(N ) < 2j , ∀r ≥ (2m − ωλ0)/2}.
It is not hard to see that the set C that was defined in step 4 in Sect. 7.3 is equal to
the set B0. Note that Tr ’s are chosen such that for all r ≥ (2m − ωλ0)/2 we have
Tr(λ0) = λ0 logn and by Lemma 14, for all r ≥ (2m − ωλ0)/2 we have ψr = o(1).
Thus, for all such r and all elements of A0,

Ψr < λ0 logn + ψr < 2K.

This shows that A0 = (
⋃K

j=0 Bj ) ∪ C and also B = ⋃K
j=1 Bj .

7.5 Proofs of (22), (23) and (24)

In this section we will bound the expected value E(f (N )) on the sets A∞, C , and on
each of the sets of the form Ai \ Ai−1 and Bj \ Bj−1.

Lemma 15 For all 1 ≤ i ≤ L:

(a) P(Ai \ Ai−1) ≤ e−Ω(λi).

(b) For all N in Ai \ Ai−1 we have f (N ) ≤ eo(λi ).

Lemma 16 For a large enough constant c:

(a) P(A∞) ≤ e−cd2
max logn.

(b) For all N in A∞ we have f (N ) ≤ e4d2
max logn.

Lemma 17 For all 1 ≤ j ≤ K :

(a) P(Bj \ Bj−1) ≤ e−Ω(2j/2 logn)

(b) For all N in Bj \ Bj−1 we have f (N ) ≤ eO(23j/4).

Lemma 18 For all N ∈ C we have f (N ) ≤ 1 + o(1).

Now it is easy to see that (22) follows from Lemmas 15 and 16. Note that by the
definition of K we have 2K/4 � logn which gives 23j/4 � 2j/2 logn. Thus, we can
deduce (23) from Lemma 17. Finally, (24) is consequence of Lemma 18.



892 Algorithmica (2010) 58: 860–910

Proof of Lemma 15 uses Vu’s concentration inequality but for the other three lem-
mas, typical algebraic and combinatorial bounds are sufficient. Throughout the rest
of this section we present a quick introduction to Vu’s concentration inequality. Then
we prove the above lemmas.

7.5.1 Vu’s Concentration Inequality

Proofs of Lemmas 15(a) and 16(a) use a very strong concentration inequality proved
by Vu [39] which is a generalized version of an earlier result by Kim and Vu [25].
Consider independent random variables t1, t2, . . . , tn with arbitrary distribution in
[0,1]. Let Y(t1, t2, . . . , tn) be a polynomial of degree k and coefficients in (0,1].
For any multi-set A of elements t1, t2, . . . , tn let ∂AY denote the partial derivative
of Y with respect to variables in A. For example if Y = t1 + t3

1 t2
2 and A = {t1, t1},

B = {t1, t2} then

∂AY = ∂2

∂t2
1

Y = 6t1t
2
2 , ∂BY = ∂2

∂t1∂t2
Y = 6t2

1 t2.

For all 0 ≤ j ≤ k, let Ej (Y ) = max|A|≥j E(∂AY ). Define parameters ck, dk recur-
sively as follows: c1 = 1, d1 = 2, ck = 2k1/2(ck−1 + 1), dk = 2(dk−1 + 1).

Theorem 4 (Vu) Take a polynomial Y as defined above. For any collection of positive
numbers E0 > E1 > · · · > Ek = 1 and λ satisfying:

(a) Ej ≥ Ej (Y ), and
(b) Ej /Ej+1 ≥ λ + 4j logn, 0 ≤ j ≤ k − 1

the following is true

P

(
|Y − E(Y )| ≥ ck

√
λE0 E1

)
≤ dke

−λ/4.

7.5.2 Proof of part (a) of Lemmas 15 and 16

In order to show part (a) of Lemma 15 we prove the stronger property

P(Ac
i−1) ≤ e−Ω(λi). (28)

This property combined with λL ≥ cd2
max logn proves part (a) of Lemma 16 as well.

From (27) we have

Ac
i−1 ⊆

{

Ψr − ψr ≥ Tr(λi)

8

}

.

Hence, in order to show (28) it is sufficient to show the following two lemmas.

Lemma 19 For all r such that 2m − 2r ≥ ωλi :

P

(

|Ψr(N ) − ψr | ≥ 3βr(λi) + 2 min(γr(λi), νr )

8

)

≤ e−Ω(λi).



Algorithmica (2010) 58: 860–910 893

Lemma 20 For any r such that 2m − 2r < ωλi we have

P(Ψr(N ) − ψr ≥ λ2
i /ω) ≤ e−Ω(λi).

Now we focus on Lemma 19. For each variable Δr , Λr , Ψr denote their analogues
quantity in Gpr by Δpr , Λpr , Ψpr .

Lemma 21 For all r we have Ppr ({|E(Gpr )| = r}) ≥ 1
n
.

Proof let f (m, r) = Ppr ({|E(Gpr )| = r}) then it can be seen that

f (m, r + 1)

f (m, r)
= (1 + 1/r)r

(1 + 1
m−r−1 )m−r

≤ 1 ∀r ≤ (m − 1)/2.

Hence, the minimum of f (m, r) is around r = m/2. Using Stirling’s approximation
we can get f (m, r) ≥ 1√

2m
≥ 1

n
. �

By Lemma 21, with probability at least 1/n, Gpr has exactly r edges. Hence,
using λi � logn, for proving Lemma 19 we only need to show

P

(

|Ψpr − ψr | ≥ 3βr(λi) + 2 min(γr(λi), νr )

8

)

≤ e−Ω(λi). (29)

In order to prove (29) we define

αr(λ) = c

√
λ(mdmaxq2

r + λ2)(dmaxqr + λ),

ζr (λ) = c
d2

max

m

√
λ(mdmaxq2

r + λ2)(q + λ).

It is flashforward that αr(λ), ζr (λ) ≤ βr(λ). Therefore, (29) is the result of the fol-
lowing lemma. Throughout the rest of the proof we fix r, i and remove all sub-indices
r, i for simplicity.

Lemma 22 For all p we have:

(i) P(|Δ(1)
p − E(Δ

(1)
p )| ≥ α

8 ) ≤ e−Ω(λ)

(ii) P(|Δ(2)
p − E(Δ

(2)
p )| ≥ min(β+γ,β+ν)

8 ) ≤ e−Ω(λ)

(iii) P(| (Λ
(1)
p )2−Λ

(2)
p

8m
− E(Λ

(1)
p )2−E(Λ

(2)
p )

8m
| ≥ ζ

8 ) ≤ e−Ω(λ)

(iv) P(|Λ
(3)
p

4m
− E(Λ

(3)
p )

4m
| ≥ min(β+γ,β+ν)

8 ) ≤ e−Ω(λ).

Proof (i) Similar to Kim and Vu’s proof, for each edge e of G consider a random
variable te which is equal to 0 when e is present in Gp and 1 otherwise. These te’s
will be i.i.d. Bernoulli with mean q . Now note that

Δ(1)
p =

∑

u

∑

u∈e∩f, e �=f

tetf



894 Algorithmica (2010) 58: 860–910

and

E(Δ(1)
p ) =

∑

u

(
du

2

)

q2 ≤ mdmaxq
2.

For each te we have

E(∂teΔ
(1)
p ) = E

( ∑

f :f ∩e �=∅
tf

)

≤ 2(dmax − 1)q < 2dmaxq.

Moreover, any partial second order derivative is at most 1. Hence,

E0(Δ
(1)
p ) ≤ max(mdmaxq

2,2dmaxq,1),

E1(Δ
(1)
p ) ≤ max(2dmaxq,1) and

E2(Δ
(1)
p ) ≤ 1.

Now set E0 = 4mdmaxq
2 + 4λ2, E1 = 2dmaxq + 2λ, and E2 = 1. Then since λ �

logm, the conditions of Theorem 4 are fulfilled. On the other hand, for c sufficiently
large in the definition of α, c2

√
λE0 E1 ≤ α/8.

(ii) We need to prove the following statements

P

(

|Δ(2)
p − E(Δ(2)

p )| ≥ β + γ

8

)

≤ e−Ω(λ), (30)

P

(

|Δ(2)
p − E(Δ(2)

p )| ≥ β + ν

8

)

≤ e−Ω(λ). (31)

Consider the same random variables te from part (i). Let Q be the set of all paths of
length 3 in G. Then

Δ(2)
p =

∑

{e,f,g}∈Q

tetg(1 − tf ) =
∑

{e,f,g}∈Q

tetg −
∑

{e,f,g}∈Q

tetf tg.

Now let Y1 = ∑
{e,f,g}∈Q tetg/4 and Y2 = ∑

{e,f,g}∈Q tetf tg . Similar to part (i) we
have

E0(Y1) ≤ max(md2
maxq

2/4, d2
maxq/2,1),

E1(Y1) ≤ max(d2
maxq/2,1) and E2(Y1) ≤ 1.

Therefore, set E0 = md2
maxq

2/2+2λ2, E1 = d2
maxq/2+2λ, and E2 = 1. These satisfy

the conditions of Theorem 4. Again by considering c large enough we have

P(|Y1 − E(Y1)| ≥ β/32) ≤ e−Ω(λ). (32)



Algorithmica (2010) 58: 860–910 895

For Y2 we have

E0(Y2) ≤ max(md2
maxq

3,2d2
maxq

2,2dmaxq,1),

E1(Y2) ≤ max(2d2
maxq

2,2dmaxq,1)

and

E2(Y2) ≤ max(2dmaxq,1) and E3(Y2) = 1.

As before, set E0 = 2md2
maxq

3 + 3λ3, E1 = 2d2
maxq

2 + 2λ2, and E2 = 2dmaxq + λ,
E3 = 1 to obtain

P

(

|Y2 − E(Y2)| ≥ γ

8

)

≤ e−Ω(λ). (33)

Combining (32) and (33), (30) is proved. Finally, (31) is the result of (32) and the
following,

|Δ(2)
p − E(Δ(2)

p )| ≤ |4Y1 − 4E(Y1)| + E(Y2) ≤ |4Y1 − 4E(Y1)| + md2
maxq

3

≤ |4Y1 − 4E(Y1)| + ν

8
.

(iii) Here we will prove

P

(∣
∣
∣
∣
(Λ

(1)
p )2

8m
− E(Λ

(1)
p )2

8m

∣
∣
∣
∣ ≥ c1d

2
maxq

√
λ(λ + mq)

)

≤ e−Ω(λ), and (34)

P

(∣
∣
∣
∣
Λ

(2)
p

8m
− E

(
Λ

(2)
p

8m

)∣
∣
∣
∣ ≥ c1d

2
max

m

√

λ(mdmaxq2 + 2λ2)(q + λ)

)

≤ e−Ω(λ). (35)

Note that by making c in the definition of ζ large enough, (34) and (35) together give
us (iii). First we prove (34). Write

Λ
(1)
p

2dmax
=

∑

e={u,v}∈E(G)

du + dv

2dmax
te

which is a polynomial with coefficients in (0,1]. As before

E0

(
Λ

(1)
p

2dmax

)

≤ max(mq,1), E1

(
Λ

(1)
p

2dmax

)

≤ 1.

Now set E0 = λ + mq and E1 = 1. Thus,

P

(∣
∣
∣
∣

Λ
(1)
p

2dmax
− E

(
Λ

(1)
p

2dmax

)∣
∣
∣
∣ ≤ c1

√
λ(λ + mq)

)

≤ d1e
−Ω(λ). (36)



896 Algorithmica (2010) 58: 860–910

By Lemma 11(ii) we have Λ
(1)
p ≤ 2mdmaxq . Hence, inequality |(Λ(1)

p )2 −E(Λ
(1)
p )2| ≥

8c1md2
maxq

√
λ(λ + mq) gives

∣
∣
∣
∣

Λ
(1)
p

2dmax
− E

(
Λ

(1)
p

2dmax

)∣
∣
∣
∣ ≥ c1

√
λ(λ + mq).

Now using (36), (34) is trivial.
The proof of (35) is similar to the proofs in (i) and (ii). We start with the following

polynomial representation for Λ
(2)
p

Λ
(2)
p

2d2
max

=
n∑

i=1

d2
i

2d2
max

( ∑

e=(i,.)

te

)2

=
n∑

i=1

d2
i

2d2
max

( ∑

e=(i,.)

te

)

+ 2
n∑

i=1

d2
i

2d2
max

∑

e∩f =i

tetf .

Then we represent the right-hand side by Z1 + Z2 where

Z1 =
n∑

i=1

d2
i

2d2
max

( ∑

e=(i,.)

te

)

and Z2 = 2
n∑

i=1

d2
i

2d2
max

∑

e∩f =i

tetf .

The next step is to use Vu’s inequality for both Z1 and Z2 separately. The concentra-
tion for Z2 is less sharp and it will dominate the concentration for Z1 + Z2. For Z1
the inequalities

E0(Z1) ≤ max(mq,1), E1(Z2) ≤ 1

show that the same E0, E1 as in (36) can be used to obtain the inequality

P

(∣
∣
∣
∣
2d2

maxZ1

8m
− E

(
2d2

maxZ1

8m

)∣
∣
∣
∣ ≤ c2

d2
max

m

√
λ(λ + mq)

)

≤ d2e
−Ω(λ). (37)

Now for Z2 the bounds on the partial derivatives are given by E0(Z2) ≤ max(
mdmaxq2

2 ,

q,1), E1(Y1) ≤ max(q,1), and E2(Y1) = 1. Therefore, E0 = mdmaxq
2 + 2λ2 and

E1 = q + λ, E2 = 1 satisfy the conditions of Theorem 4 and we obtain the inequality

P

(∣
∣
∣
∣
2d2

maxZ2

8m
− E

(
2d2

maxZ2

8m

)∣
∣
∣
∣ ≤ c3

d2
max

m

√

λ(mdmaxq2 + 2λ2)(q + λ)

)

≤ d2e
−Ω(λ). (38)

The final inequality (35) can now be shown by combining equations (37) and (38).
(iv) This case is treated exactly the same as (ii) because we have the following

Λ
(3)
p

d2
max

=
∑

{e,f,g}∈R, e={u,v}

dudv

d2
max

tetg(1 − tf ).
�



Algorithmica (2010) 58: 860–910 897

Proof of Lemma 20 Using Lemma 11(iii) and the definition of Ψ , from Ψp ≥ λ2/ω

we can get

Δp ≥ λ2

ω
− Λp ≥ λ2

ω
− md2

maxq
2 >

λ2

ω
− d2

maxω
2λ2

4m
(39)

>
λ2

2ω
(40)

where (39) uses 2mq = 2m − 2r < ωλ and (40) holds since d2
maxω

3 � m.
Since 2m − 2r is small then Gp is very dense. Let us consider its complement Gq

which is sparse. Let N0(u) = N(u) ∪ {u}. Then using

Δpr ≤
∑

u

dGq (u)
∑

v∈N0(u)

dGq (v)

and Δp ≥ λ2/2ω, one of the following statements should hold:

(a) Gq has more than ω2λ/4 edges.
(b) For some u,

∑
v∈N0(u) dGq (v) ≥ λ/ω3.

If (a) holds, since 2mq ≤ ωλ then

P

(

Gq has more than
ω2λ

4
edges

)

≤
(

m
ω2λ

4

)

q
ω2λ

4 ≤
(

4mqe

ω2λ

) ω2λ
4

≤ e− ω2λ
4 (logω−1−log 2) = e−Ω(λ).

If (b) holds then the number of edges in G that contribute to
∑

v∈N0(u) dGq (v) is at

most d2
max and each edge can contribute at most twice. Hence,

P

( ∑

v∈N0(u)

dGq (v) ≥ λ/ω3
)

≤
(

d2
max
λ

2ω3

)

q
λ

2ω3

≤
(

2d2
maxqω3e

λ

) λ

2ω3 ≤
(

d2
maxω

4e

m

) λ

2ω3

= e
− λ

2ω3 (logm−log(d2
maxω

4)−1) ≤ e
−Ω( λ

ω3 logm) = e−Ω(λ).

Note that we need δ in the definition of ω to be small enough such that logm � ω3

and for δ < 1 this is true. �

7.5.3 Proof of part (b) of Lemmas 15 and 16

Note that

f (N ) =
m−1∏

r=0

(

1 + Ψr(N ) − ψr
(2m−2r

2

)− Ψr(N )

)



898 Algorithmica (2010) 58: 860–910

and since Ψr(N ) ≤ (1 − τ/4)
(2m−2r

2

)
for N ∈ S∗(M) then

f (N ) ≤
m−1∏

r=0

(

1 + 16/τ max(Ψr(N ) − ψr,0)

(2m − 2r)2

)

.

Proof of Lemma 15(b) Using 1 + x ≤ ex we only need to show

m−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2
≤ o(λ).

To simplify the notation, let g(r) = max(Ψr (N )−ψr ,0)

(2m−2r)2 . Note that 0 ≤ g(r) ≤ 1 which

gives
∑λ/ω1/2

2m−2r=2 g(r) = o(λ). Hence, we only need to show
∑2m−2

2m−2r=λ/ω1/2 g(r) =
o(λ). Also note that the numerator of g(r) is at most Tr(λ). Therefore, using the
definition of Tr(λ),

2m−2∑

2m−2r=λ/ω1/2

g(r) ≤
ωλ∑

2m−2r=λ/ω1/2

λ2

(2m − 2r)2ω
+

ωλ2
∑

2m−2r=ωλ

3βr(λ) + 2νr

(2m − 2r)2

+
2m−2∑

2m−2r=ωλ2

3βr(λ) + 2γr(λ)

(2m − 2r)2
.

Therefore, it suffices to show

ωλ∑

2m−2r=λ/ω1/2

λ2

(2m − 2r)2ω
+

ωλ2
∑

2m−2r=ωλ

3βr(λ) + 2νr

(2m − 2r)2

+
2m−2∑

2m−2r=ωλ2

3βr(λ) + 2γr(λ)

(2m − 2r)2
= o(λ).

A series of elementary inequalities will now be used to bound these three summa-
tions. We will use qr = 2m−2r

2m
to obtain

2m−2∑

2m−2r=2

(λmd4
maxq

3
r )1/2

(2m − 2r)2
= λ1/2d2

max

2m
√

2

2m−2∑

2m−2r=2

1√
2m − 2r

= O

(
λ1/2d2

max

m

∫ 2m

x=2

1√
x

dx

)

= O

(
λ1/2d2

max√
m

)

= o(λ),

2m−2∑

2m−2r=2

(λ2md2
maxq

2
r )1/2

(2m − 2r)2
= λdmax

2m1/2

2m−2∑

2m−2r=2

1

2m − 2r
= O

(
λdmax

m1/2
logm

)

= o(λ),



Algorithmica (2010) 58: 860–910 899

2m−2∑

2m−2r=2

(λ3d2
maxqr)

1/2

(2m − 2r)2
= λ3/2dmax

(2m)1/2

2m−2∑

2m−2r=2

1

(2m − 2r)3/2

= O

(
λ3/2dmax

m1/2

)

= o(λ), and

2m−2∑

2m−2r=ωλ

λ2

(2m − 2r)2
≤ λ2

∫ 2m

x=ωλ

x−2dx = o(λ).

Furthermore, we can show the following bounds

2m−2∑

2m−2r=2

(λ3md2
maxq

3
r )1/2

(2m − 2r)2
= λ3/2dmax

2m
√

2

2m−2∑

2m−2r=2

1√
2m − 2r

= O

(
λ3/2dmax√

m

)

,

2m−2∑

2m−2r=2

λ2dmaxqr

(2m − 2r)2
= O

(
λ2dmax logm

2m

)

,

2m−2∑

2m−2r=ωλ2

λ3

(2m − 2r)2
= O

(

λ3
∫ ∞

x=ωλ2
x−2dx

)

= O

(
λ3

ωλ2

)

= o(λ), (41)

and

ωλ2
∑

2m−2r=2

md2
maxq

3
r

(2m − 2r)2
=

ωλ2
∑

2m−2r=2

d2
max(2m − 2r)

8m2
= O

(
ω2λ4d2

max

m2

)

. (42)

Remark 3 All previous equations are of order o(λ), since λ ≤ λL = O(d2
max logn)

and dmax = o(m
1
4 −τ ). Note that we also used

√
A + B ≤ √

A + √
B to find upper

bounds for βr, γr .
�

Proof of Lemma 16(b) Similar to proof of Lemma 15(b) we will show

f (N ) ≤
m∏

r=m−d2
max+1

(2m−2r
2

)− ψr
(2m−2r

2

)− Ψr(N )

m−d2
max∏

r=0

(

1 + 16/τ
max(Ψr(N ) − ψr,0)

(2m − 2r)2

)

≤
(

2d2
max

2

)d2
max

·
m−d2

max∏

r=0

(

1 + 16/τ
Ψr

(2m − 2r)2

)

≤ (2d4
max)

d2
max ·

m−d2
max∏

r=0

(

1 + 16/τ
d2

max

2m − 2r

)

(43)



900 Algorithmica (2010) 58: 860–910

≤ e
d2

max log(2d4
max)+3

∑m

i=d2
max+1

d2
max
i

≤ ed2
max(log(2d4

max)+3 logdmax+logm)

≤ e4d2
max logn (44)

where (43) use Lemma 11, and (44) uses m ≤ ndmax/2 and dmax � m1/3 ≤ n1/2. �

Proof of Lemma 18 By the definition of C : ∑ωλ0
2m−2r=2 g(r) = 0. Thus, we only need

to show that if Ψr(N ) − ψr ≤ Tr(λ0) for all r with 2m − 2r ≥ ωλ0 then

m∑

2m−2r=ωλ0

g(r) = o(1).

For that it is sufficient to prove

m∑

2m−2r=ωλ0

Tr(λ0)

(2m − 2r)2
= o(1).

The proof is similar to the proof of Lemma 15(b) with a slight modification. Instead
of using (41) and (42) we use

2m−2∑

2m−2r=ωλ3
0

λ3
0

(2m − 2r)2
= O

(

λ3
0

∫ ∞

ωλ3
0

x−2dx

)

= O

(
λ3

0

ωλ3
0

)

= o(1),

and

ωλ3
0∑

2m−2r=2

md2
maxq

3
r

(2m − 2r)2
=

ωλ3
0∑

2m−2r=2

(2m − 2r)d2
max

m2
= O

(
d2

maxω
2λ6

0

m2

)

= o(1).
�

For the other equations in the proof of Lemma 15(b) let λ = λ0 and they will
be o(1).

Proof of Lemma 17 (a) We have 2m − 2r ≤ ωλ0 � (logn)2. This means proving the
bound only for one r is enough. Similar to the proof of Lemma 20, from Ψp ≥ 2j−1

we get Δp ≥ 2j−2. Thus, one of the following statements hold:

(i) Gq has more than 2j/2−2 edges
(ii) For some u,

∑
v∈N0(u) dGq (v) ≥ 2j/2−1

and rest of the proof will be exactly as in Lemma 20.
(b) By the definition of Bj

ωλ0∑

2m−2r=2

g(r) ≤
ωλ0∑

2m−2r=2

2j

(2m − 2r)2
= O(2j ).

�



Algorithmica (2010) 58: 860–910 901

7.6 Proof of (25)

From Lemma 19, for all r with 2m − 2r ≥ ωλ0,

P(|Ψr − ψr | ≥ αr(λ0) + βr(λ0) + (1 + d2
max/4m)γr(λ0) + ζr (λ0)) = o(1). (45)

Let N be an ordering with |Ψr − ψr | ≤ αr(λ0) + βr(λ0) + (1 + d2
max/4m)γr(λ0) +

ζr (λ0) for all 2m − 2r ≥ ωλ0. Then

f (N ) ≥
2m−2∏

2m−2r=ωλ3
0

(

1 − (16/τ)
αr(λ0) + βr(λ0) + γr(λ0) + ζr (λ0)

(2m − 2r)2

)

×
ωλ3

0∏

2m−2r=2

(

1 − (16/τ)
ψr

(2m − 2r)2

)

. (46)

In Sect. 7.5 it was shown that 3
τ

∑2m−2
2m−2r=ωλ3

0

αr (λ0)+βr (λ0)+γr (λ0)+ζr (λ0)

(2m−2r)2 = o(1). Now

one can use 1 − x ≥ e−2x when 0 ≤ x ≤ 1/2 to see that the first product in the
right-hand side of (46) is 1 − o(1). The second product is also 1 − o(1) because of

ωλ3
0d

2 = o(m) and the bound ψr = O[(2m − 2r)2 d2
max
m

] given Lemma 14. These,
together with (45) finish the proof of (25). In fact they show the stronger statement
E(f (N )1S∗(M)) > 1 − o(1).

Remark 4 The proofs of this section and Sect. 7.5 yield the following corollary which
will be used in Sect. 7.7.

Corollary 1 For sufficiently large c in the definition of λL,

E

(

exp

[
1

τ 2

m−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

])

= 1 + o(1) (47)

Proof Bounds of Sect. 7.5 show that the contribution of the sets Ai \ Ai−1 and Bj \
Bj−1 are all o(1) and the contribution of C is 1 + o(1). The contribution of A∞ also
is o(1) by taking the constant c large enough. �

7.7 Proof of (26)

In this section we deal with those orderings N for which the condition

Ψr(N ) ≤ (1 − τ/4)

(
2m − 2r

2

)

(∗)

is violated for some r . If this happens for some r then from Lemma 11(iii) and d4
max =

o(m) we have



902 Algorithmica (2010) 58: 860–910

Δr(N ) ≥ Ψr(N ) − d2
max

8m
(2m − 2r)2

> Ψr(N ) − τ/4

(
2m − 2r

2

)

> (1 − τ/2)

(
2m − 2r

2

)

.

On the other hand using Lemma 11(i) we have Δr(N ) ≤ d2
max(2m−2r)

2 . So for

2m − 2r ≥ d2
max

2−τ
we have Δr(N ) ≤ (1 − τ/2)

(2m−2r
2

)
. Thus condition (∗) is violated

only for r very close to m. Let St (M), t = 1, . . . ,
d2

max
2−τ

, be the set of all ordering N
for which (∗) fails for the first time at r = m − t . We will use

∑∞
t=1

1
mτt = o(1) to

prove (26). In particular we show

E(f (N )1St ) ≤ O

(
1

mτt

)

.

Note that
(2m−2r

2

)−Ψr(N ) = ∑
{i,j} ∈ Er

d
(r)
i d

(r)
j (1− didj

4m
) ≥ (m−r)(1− d2

max
4m

) since
at step r there should be at least m − r suitable edges to complete the ordering N .

Hence using dmax = O(m
1
4 −τ ) we have

(2m−2r
2

)

(2m−2r
2

)− Ψr(N )
≤ 2m − 2r − 1 + O

(
d4

max

m

)

≤ 2m − 2r. (48)

This gives

m−1∏

r=m−t

(2m−2r
2

)

(2m−2r
2

)− Ψr(N )
≤ 2t t ! ≤ 2t t

and since t is the first place that (∗) is violated, then

m−t−1∏

r=0

(2m−2r
2

)− ψr
(2m−2r

2

)− Ψr(N )
≤ exp

[
16

τ

m−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

]

.

Thus,

f (N )1St = 1St

m−1∏

r=0

(2m−2r
2

)− ψr
(2m−2r

2

)− Ψr(N )

≤ 2t t1St exp

[
16

τ

m−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

]

.



Algorithmica (2010) 58: 860–910 903

Now using Hölder’s inequality

E(f (N )1St ) ≤ 2t tE

(

1St exp

[
16

τ

m−t−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

])

≤ 2t tE(1St )
1−τ/2

E

(

1St exp

[
32

τ 2

m−t−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

])τ/2

.

But using Corollary 1, the second term in the above product is 1 + o(1) and we only
need to show

2t tP(St )
1−τ/2 ≤ (1 + o(1))

1

mτt
.

Let r = m − t and Γ (u) = NGNr
(u) be the set of all neighbors of u in GNr

. Note
that

Δr(N ) = 1

2

∑

u

d(r)
u

∑

v∈Γ (u)∪{u}
(d(r)

v − 1u=v)

and
(

2m − 2r

2

)

= 1

2

∑

u

d(r)
u

∑

v

(d(r)
v − 1u=v).

Now Δr(N ) > (1 − τ/2)
(2m−2r

2

)
> (1 − τ)

(2m−2r
2

)
implies that a vertex u with

d
(r)
u > 0 exists and

∑

v∈Γ (u)∪{u}
(d(r)

v − 1u=v) > (1 − τ)
∑

v

(d(r)
v − 1u=v).

Equivalently
∑

v /∈Γ (u)∪{u}
d(r)
v ≤ τ

∑

v

(d(r)
v − 1u=v) ≤ τ(2m − 2r − 1) ≤ 2τ t. (49)

Any of the last t edges of N that have at least one endpoint outside of Γ (u), con-
tributes at least once to the left-hand side of (49). So there are at most 2τ t such edges.
Let k = du − |Γ (u)| and let � be the number of edges that are entirely in Γ (u). Then
we should have k ≥ 1 and � ≥ (1 − 2τ)i. Thus, the probability that d

(r)
u > 0 and

∑
v /∈Γ (u)∪{u} d

(r)
v ≤ 2τ t , for a fixed vertex u is upper bounded by

∑

k≥1, �≥(1−2τ)t

(
du

k

)((du−k
2 )
�

)(m−du−(du−k
2 )

t−k−�

)

(
m
t

) .

Hence,

P(St ) ≤
∑

u

∑

k≥1, �≥(1−2τ)t

(
du

k

)((du−k
2 )
�

)(m−du−(du−k
2 )

t−k−�

)

(
m
t

) .



904 Algorithmica (2010) 58: 860–910

Now using
(

du

k

)

≤ dk
u

k! ,

((
du−k

2

)

�

)

≤ (d2
u/2)�

�! ,

(
m − du − (

du−k
2

)

t − k − �

)

≤ mt−k−�

(t − k − �)!
for t = O(d2

max) = o(m1/2) we have

(
m

t

)

= (
1 + o(1)

)mt

t ! .

This means

P(St ) ≤ (1 + o(1))
∑

u

∑

k≥1, �≥(1−2τ)t

dk
u

k!
(d2

u/2)�

�!
mt−k−�

(t−k−�)!
mt

t !

= (1 + o(1))
∑

u

∑

k≥1, �≥(1−2τ)t

(du/m)k(d2
u/2m)�t !

k!�!(t − k − �)!

≤ (1 + o(1))2τ t
∑

u

(du/m)(d2
u/2m)(1−2τ)t

(
t

2τ t

)

≤ (1 + o(1))t
dmax

m

∑

u

(d2
u/2m)(1−2τ)t2t (50)

≤ (1 + o(1))t22t/3 dmax

m

∑

u

(
d2
u

m

)(1−2τ)t

(51)

≤ (
1 + o(1)

)
2t22t/3

(
d2

max

m

)(1−2τ)t

(52)

where (50) and (51) are based on τ ≤ 1/3 and
(
a
b

) ≤ 2a . Moreover, (52) uses
∑

u dk
u =

∑
u∼Gv(d

k−1
u + dk−1

v ) ≤ 2mdk−1
max . Now we can use t ≤ d2

max
2−τ

, dmax ≤ m
1
4 −τ , and τ ≤

1/3 to get

2t tP(St )
1−τ/2 ≤ (1 + o(1))4t

(
22−τ/3

2 − τ

d4−5τ+2τ 2

max

m1−2.5τ+τ 2

)t

≤ (1 + o(1))4t

(
d4−5τ+2τ 2

max

m1−2.5τ+τ 2

)t

≤ (1 + o(1))4t

(

m−2.75τ+3.5τ 2−2τ 3
)t

≤ O(m−τ t ). �



Algorithmica (2010) 58: 860–910 905

8 Bounding the Variance of the SIS Estimate

In this section we will prove two variance bounds from Sect. 4. We will borrow some
notation and results from Sect. 7.

8.1 Proof of (6)

It is easy to see that instead of proving (6) directly, we can consider the equivalent
formulation EA(N2)/EA(N)2 ≤ 1 + o(1). For the numerator we have

EA(N2) =
∑

G

∑

N

(
1

m! PA(N )

)2

PA(N ) =
∑

G

∑

N

1

(m!)2 PA(N )
.

On the other, we have the following estimate from the analysis of Theorem 1,

|L(d̄)| =
[1 + o(1)]∏m−1

r=0

[(2m−2r
2

)− ψr

]

m!∏n
i=1 di ! .

Therefore,

EA(N2)

EA(N)2
=

∑
G

∑
N

1
(m!)2 PA(N )

|L(d̄)|2

=
∑

G

∑
N

∏m−1
r=0

[ (2m−2r
2 )−Ψr(N )

(2m−2r
2 )−ψr

]

m!|L(d̄)|

=
∑

G E(g(N ))

|L(d̄)| (53)

where g(N ) = ∏m−1
r=0

(2m−2r
2 )−Ψr(N )

(2m−2r
2 )−ψr

and the expectation E is with respect to the uni-

form distribution on the set of all m! orderings, S(M). The goal is now to show that
if G ∈ L(d̄) then

E(g(N )) ≤ 1 + o(1). (54)

Note that (53) and (54) finish the proof. Thus, we only need to prove (54).

Proof of (54) Before starting the proof it is important to see that g(N ) = f (N )−1

and the aim of Sect. 7 was to show that E(f (N )) = 1 + o(1). In this section we will
show that the concentration results of Sect. 7 are strong enough to bound the variance
of g(N ) as well.

Recall the definitions for variables λi and T (λi) from Sect. 7. Here we will con-
sider a different partitioning of the set S(M). Define subsets F0 ⊆ F1 ⊆ · · · ⊆ FL ⊆
S(M) as follows:

Fi = {N ∈ S(M) | ψr − Ψr(N ) < Tr(λi) : ∀0 ≤ r ≤ m − ωλi/2}



906 Algorithmica (2010) 58: 860–910

and F∞ = S(M) \ ⋃L
i=0 Fi . The following two lemmas are equivalent versions of

Lemmas 15, 18.

Lemma 23 For all 1 ≤ i ≤ L:

(a) P(Fi \ Fi−1) ≤ e−Ω(λi).
(b) For all N in Fi \ Fi−1 we have g(N ) ≤ eo(λi ).

Lemma 24 If N ∈ F0 then g(N ) ≤ 1 + o(1).

Proof of these lemmas is similar to the proofs for Lemmas 15 and 18, and the only
extra information that is required is

ωλ∑

2m−2r=2

g(N ) ≤ 2
ψr

(2m−2r)2

2

= O

(
ωλd2

max

m

)

.

Then for Lemma 23 we use ωλd2
max

m
= o(λ) and for Lemma 24 we use ωλ0d

2
max

m
= o(1).

The combination of these two lemmas gives E(g(N )) ≤ 1 + o(1). �

8.2 Proof of (7)

Similar to Sect. 8.1 we will use lemmas from Sect. 7. The main technical point in
this section is a new result which exploits the combinatorial structure of the model to
obtain a tighter bound than in Sect. 7.

Equation (7) is equivalent to

EB(P 2)

EB(P )2
< 1 + o(1).

First notice that

EB(P 2)

EB(P )2
= m! ∑

N PB(N )2

PB(G)2
= E(f (N )2)

E(f (N ))2
.

Therefore, all we need to show is E(f (N )2) = 1 + o(1).
Consider the same partitioning of the set S(M) as in Sect. 7. It is straightforward

to see that Lemmas 15, 16, 17, and 18 give us the following stronger results as well

E(f (N )21A) = o(1),

E(f (N )21B) = o(1),

E(f (N )21C ) ≤ 1 + o(1).

Thus, the only missing part is the following

E(f (N )21S∗(M)\S∗(M)) = o(1) (55)

which we will prove by using the combinatorial properties of the model.



Algorithmica (2010) 58: 860–910 907

Proof of (55) Recall that S∗(M) \ S∗(M) consists of those orderings N that violate
the condition

Ψr(N ) ≤ (1 − τ/4)

(
2m − 2r

2

)

(∗)

for some r . If this happens for some r then from Lemma 11(iii) and d4
max = o(m) we

have

Δr(N ) ≥ Ψr(N ) − d2
max

8m
(2m − 2r)2

> Ψr(N ) − τ/4

(
2m − 2r

2

)

> (1 − τ/2)

(
2m − 2r

2

)

.

On the other hand using Lemma 11(i) from Sect. 7: Δr(N ) ≤ d2
max(2m−2r)

2 . So for

2m − 2r ≥ d2
max

2−τ
we have Δr(N ) ≤ (1 − τ/2)

(2m−2r
2

)
. Thus condition (∗) is violated

only for r very close to m. For these values of r we use the following combinatorial
lemma to find an upper bound for f (N ).

Lemma 25 For all r such that 2m − 2r ≤ d2
max

2−τ
,

(2m−2r
2

)− ψr
(2m−2r

2

)− Ψr(N )
≤ 2dmax.

Proof Let nr be the number of available vertices (vi ’s with Wi �= 0) at step r + 1.
Without loss of generality assume that all such vertices are v1, . . . , vnr . For each
1 ≤ i ≤ nr let d̃

(r)
i be the number of neighbors of vi among v1, . . . , vnr at step r + 1.

Then the number of suitable pairs at step r +1 is at least 1/2
∑nr

i=1(nr −1− d̃
(r)
i )d

(r)
i .

Now consider the cases nr ≥ 2dmax or nr < 2dmax separately.
1. For nr ≥ 2dmax the number of suitable pairs at step r + 1 is at least

1/2
∑nr

i=1(dmax)d
(r)
i = dmax(m − r). Therefore,

(2m−2r
2

)− ψr
(2m−2r

2

)− Ψr(N )
≤ (m − r)(2m − 2r − 1)

dmax(m − r)(1 − d2
max
4m

)
≤ 2dmax.

Here we used d2
max = o(m) and (2m − 2r) ≤ d2

max
2−τ

≤ 3d2
max/5.

2. For nr < 2dmax we use nr ≥ 1 + d̃
(r)
i + d

(r)
i to show that the number of suitable

pairs is at least

1/2
nr∑

i=1

(nr − 1 − d̃
(r)
i )d

(r)
i ≥ 1/2

nr∑

i=1

(d
(r)
i )2 ≥ 1/2

(
∑nr

i=1 d
(r)
i )2

nr

.



908 Algorithmica (2010) 58: 860–910

Hence,
(2m−2r

2

)− ψr
(2m−2r

2

)− Ψr(N )
≤ (m − r)(2m − 2r − 1)

(m−r)(2m−2r)
nr

(1 − d2
max
4m

)

≤ nr

1 − 1
d2

max

1 − o(1)
≤ 2dmax. �

Lemma 25 gives

m−1∏

r=m−t

(2m−2r
2

)− ψr
(2m−2r

2

)− Ψr(N )
≤ 2t dt

max.

From here we will closely follow the steps taken in Sect. 7.7. Since t is the first place
that (∗) is violated

m−t−1∏

r=0

(2m−2r
2

)− ψr
(2m−2r

2

)− Ψr(N )
≤ exp

[
16

τ

m−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

]

.

So,

f (N )1St = 1St

m−1∏

r=0

(2m−2r
2

)− ψr
(2m−2r

2

)− Ψr(N )

≤ 2t dt
max1St exp

[
16

τ

m−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

]

.

Now using Hölder’s inequality

E(f (N )21St )

≤ 22t d2t
maxE

(

1St exp

[
32

τ

m−t−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

])

≤ 22t d2t
maxE(1St )

1−τ/2
E

(

1St exp

[
64

τ

m−t−1∑

r=0

max(Ψr(N ) − ψr,0)

(2m − 2r)2

])τ/2

.

From Corollary 1 the second term in the above product is 1 + o(1) and we only need
to show

22t d2t
maxP(St )

1−τ/2 ≤
(

1 + o(1)
) 1

mτt
.

Now using the bound given by (52) for P(St ) we have

22t d2t
max2t tP(St )

1−τ/2 ≤ (1 + o(1))2t

(
24−τ/3

2 − τ

d4−5τ+2τ 2

max

m1−2.5τ+τ 2

)t



Algorithmica (2010) 58: 860–910 909

≤ (1 + o(1))2t

(

4
d4−5τ+2τ 2

max

m1−2.5τ+τ 2

)t

≤ (1 + o(1))2t
(

4m−2.75τ+3.5τ 2−2τ 3
)t

≤ O(m−τ t ). �

Acknowledgements We would like to thank Joe Blitzstein, Persi Diaconis, Adam Guetz, Milena Mihail,
Alistair Sinclair, Eric Vigoda and Ying Wang for insightful discussions and useful comments on earlier
version of this paper. We also thank the anonymous referees for their great comments and suggestions.
M. Bayati was supported by Microsoft Technical Computing Iniciative. J.H. Kim was supported by the
Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government(MOST) (No.
R16-2007-075-01000-0) and the second stage of the Brain Korea 21 Project in 2007. A. Saberi thanks the
support of NSF.

References

1. Alderson, D., Doyle, J., Willinger, W.: Toward and optimization-driven framework for designing and
generating realistic Internet topologies. HotNets (2002)

2. Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (1992)
3. Amraoui, A., Montanari, A., Urbanke, R.: How to find good finite-length codes: from art towards

science. Preprint, cs.IT/0607064 (2006)
4. Bassetti, F., Diaconis, P.: Examples comparing importance sampling and the Metropolis algorithm

(2005)
5. Bayati, M., Montanari, A., Saberi, A.: Generating random graphs with large girth. In: ACM-SIAM

Symposium on Discrete Algorithms (SODA) (2009)
6. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequence.

J. Comb. Theory Ser. A 24(3), 296–307 (1978)
7. Bezáková, I., Bhatnagar, N., Vigoda, E.: Sampling binary contingency tables with a greedy start. In:

Symposium on Discrete Algorithms (SODA) (2006)
8. Bezáková, I., Sinclair, A., S̆tefankovič, D., Vigoda, E.: Negative examples for sequential importance

sampling of binary contingency tables. In: Proceedings of Annual European Symposium, vol. 14.
Lecture Notes in Computer Science, vol. 4168, pp. 136–147. Springer, Berlin (2006)

9. Blanchet, J.: Efficient importance sampling for binary contingency tables. Ann. Appl. Probab. 19(3),
949–982 (2009)

10. Blitzstein, J., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs
with prescribed degrees. Ann. Appl. Probab. (2005, submitted)

11. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs.
Eur. J. Comb. 1(4), 311–316 (1980)

12. Bu, T., Towsley, D.: On distinguishing between Internet power law topology generator. In: INFOCOM
(2002)

13. Chen, Y., Diaconis, P., Holmes, S., Liu, J.S.: Sequential Monte Carlo methods for statistical analysis
of tables. J. Am. Stat. Assoc. 100, 109–120 (2005)

14. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequence.
Ann. Comb. 6(2), 125–145 (2002)

15. Cooper, C., Dyer, M., Greenhill, C.: Sampling regular graphs and peer-to-peer network. Comb.
Probab. Comput. 16 (2007)

16. Diaconis, P., Gangolli, A.: Rectangular arrays with fixed margins. In: Discrete Probability and Al-
gorithms, Minneapolis, MN, 1993. IMA Volumes in Mathematics and Its Applications, vol. 72, pp.
15–41. Springer, New York (1995)

17. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In:
SIGCOM (1999)

18. Gkantsidis, C., Mihail, M., Zegura, E.: The Markov chain simulation method for generating connected
power law random graphs. Alenex (2003)

http://arxiv.org/abs/cs.IT/0607064


910 Algorithmica (2010) 58: 860–910

19. Jerrum, M., Sinclair, A.: Approximate counting, uniform generation and rapidly mixing Markov
chains. Inf. Comput. 82(1), 93–133 (1989)

20. Jerrum, M., Sinclair, A.: Fast uniform generation of regular graphs. Theor. Comput. Sci. 73(1), 91–
100 (1990)

21. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform
distribution. Theor. Comput. Sci. 43, 169–188 (1986)

22. Jerrum, M., Sinclair, A., McKay, B.: When is a graphical sequence stable? In: Random Graphs, Poz-
nań, 1989, vol. 2, pp. 101–115. Wiley-Interscience, New York (1992)

23. Kannan, R., Tetali, P., Vempala, S.: Simple Markov chain algorithms for generating bipartite graphs
and tournaments. Random Struct. Algorithms 14, 293–308 (1999)

24. Kim, J.H.: On Brooks’ theorem for sparse graphs. Comb. Probab. Comput. 4, 97–132 (1995)
25. Kim, J.H., Vu, V.H.: Concentration of multivariate polynomials and its applications. Combinatorica

20(3), 417–434 (2000)
26. Kim, J.H., Vu, V.H.: Generating random regular graphs. In: STOC 2003, pp. 213–222
27. Kim, J.H., Vu, V.: Sandwiching random graphs. Adv. Math. 188, 444–469 (2004)
28. Knuth, D.: Mathematics and computer science: coping with finiteness. Science 194(4271), 1235–1242

(1976)
29. McKay, B.: Asymptotics for symmetric 0-1 matrices with prescribed row sums. Ars Combinatoria A

19, 15–25 (1985)
30. McKay, B., Wormald, N.C.: Uniform generation of random regular graphs of moderate degree. J. Al-

gorithms 11(1), 52–67 (1990)
31. McKay, B., Wormald, N.C.: Asymptotic enumeration by degree sequence of graphs with degrees

o(n1/2). Combinatorica 11(4), 369–382 (1991)
32. Medina, A., Matta, I., Byers, J.: On the origin of power laws in Internet topologies. ACM Comput.

Commun. Rev. 30(2), 18–28 (2000)
33. Milo, R., ShenOrr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple

building blocks of complex networks. Science 298, 824–827 (2002)
34. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M., Alon, U.: On the uniform generation of random

graphs with prescribed degree sequences. http://arxiv.org/PS_cache/cond-mat/pdf/0312/0312028.pdf
(2004)

35. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random
Struct. Algorithms 6(2–3), 161–179 (1995)

36. Sinclair, A.: Personal communication (2006)
37. Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Comb. Probab. Comput. 8(4),

377–396 (1997) (English summary in Random Graphs and Combinatorial Structures, Oberwolfach)
38. Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Network topology genera-

tors: degree based vs. structural. In: ACM SIGCOM (2002)
39. Vu, V.H.: Concentration of non-Lipschitz functions and applications, Probabilistic methods in combi-

natorial optimization. Random Struct. Algorithms 20(3), 267–316 (2002)
40. Wormald, N.C.: Models of random regular graphs. In: Surveys in Combinatorics. Canterbury. Lon-

don Mathematical Society Lecture Note Series, vol. 265, pp. 239–298. Cambridge University Press,
Cambridge (1999)

http://arxiv.org/PS_cache/cond-mat/pdf/0312/0312028.pdf

	A Sequential Algorithm for Generating Random Graphs
	Abstract
	Introduction
	The Result
	Related Work
	Our Technical Contribution
	Other Applications and Extensions
	Organization of the Paper

	Our Algorithm
	Definitions and the Main Idea
	Weighted Configuration Model
	Obtaining a Fully Polynomial Randomized Approximation Scheme
	FPRAS for Counting via SIS
	Approximating PA(G) with SIS
	FPRAS for Random Generation


	Analysis
	Concentration Inequality for Regular Graphs
	Proof of inequality (9)


	Probability of Failure of Procedure A
	Running Time of Procedure A
	Steger and Wormald's Method for Choosing a Suitable Pair

	Generalizing Kim and Vu's Analysis
	Definitions
	Algebraic Proof of (4)
	Partitioning the Set of Orderings S(M)
	More Notation
	Proofs of (22), (23) and (24)
	Vu's Concentration Inequality
	Proof of part (a) of Lemmas 15 and 16
	Proof of part (b) of Lemmas 15 and 16

	Proof of (25)
	Proof of (??

	Bounding the Variance of the SIS Estimate
	Proof of (6) 
	Proof of (7)

	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


