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Abstract

Among scheduling algorithms used in input queued switches, it is known that
the Maximum Size Matching (MSM) algorithm maximizes the instantaneous through-
put. Although there have been results on the stability of some specific types of
MSMs for scheduling traffic [5], the question of how it performs under uniform
traffic remains open. Simulations suggest the stability of MSM algorithms under
uniform traffic but there have been no analytical results proving the same. In this
article, we introduce a new Lyapunov function in order to prove that under uniform
arrival traffic MSM algorithm achieves 100% throughput and also to find a stability
region for the arrival rates.

1 Introduction

Input queued (IQ) switch architectures have a low memory bandwidth requirement com-
pared to output queued (OQ) or shared memory switches. This property has made IQ
switches more suitable for implementation in internet routers and ATM switches. It is
well known that IQ switches have throughput limitations due to the head of line (HoL)
blocking which reduces the throughput to about 58% [3]. To overcome HoL blocking,
separate virtual output queues (VOQ) were introduced at each input, one VOQ for the
cells at each input destined to each of the N outputs. The use of VOQs and the maxi-
mum weight matching algorithm for scheduling packets from inputs to outputs was then
shown to yield 100% throughput, or equally, to ensure the stability of the switch [1, 2, 6].

In this paper we will study the performance of the Maximum Size Matching (MSM)
algorithm. Previous work [1] has shown that that a 3×3 switch is unstable under MSM
(when ties are broken randomly1). This instability result is surprising because, by defi-
nition, the MSM algorithm transfers the maximum possible work in each time slot; i.e.
it maximizes the instantaneous throughput. However, the counter-example of [1] shows
that this myopic action does not lead to the maximum (long-term) throughput. Later
on, with some extra work, [4] proved that the MSM algorithm is unstable even for 2×2
switches.

These results raise the following natural question:

1That is, when there is more than one matching with the maximum size, the MSM algorithm chooses
one of them uniformly at random. We shall also use this tie-breaking rule for all MSM algorithms in
this paper.



• Does the MSM algorithm with random tie breaking have a nonempty stability re-
gion? That is, is there an admissible arrival rate vector so that the MSM algorithm
is stable? What is the stability region?

One approach to answer this question is to study the stability of the MSM algorithm
under the uniform arrival rate matrix; i.e. where the average arrival rate at input i for
output j equals α/N (for α < 1) for every i and j. This is the most benign type of
input matrix, because under this input even the Random policy (which chooses one of
the N ! matchings uniformly at random, and independently of the state of the switch) is
stable. This is easy to see: Under the uniform arrival rate matrix and with Bernoulli
i.i.d. arrival distribution a packet arrives at each input i with probability α in each time
slot. An arriving packet is destined to one of the N outputs with probability 1/N .
Thus, focussing on any one VOQ, we see that the arrivals to the VOQ are Bernoulli with
probability α/N . Under the Random policy the VOQ is served with probability 1/N in
each time slot. Thus, the size of the VOQ is a birth-death chain with birth rate strictly
smaller than the death rate, proving the stability of the Random policy under uniform
arrivals. Clearly, the MSM algorithm is better than the Random policy, so its stability
under uniform arrivals ought to be easy to establish. However, this statement seems
surprisingly difficult to prove.

In this paper, we introduce a new Lyapunov function for addressing the stability of
the MSM. We use this Lyapunov function to prove the stability of the MSM algorithm
for switches of size 2 and 3 under uniform arrivals. In fact, we provide a stability region
which is larger and includes the uniform arrival rate vector. Our work takes a first step
towards understanding the complete stability region of the MSM algorithm. Given that
the MSM algorithm is not stable at speedup 1, this in turn could help determine the
smallest speedup such that the MSM algorithm is stable. Such results are interesting not
just for our theoretical understanding of switch algorithms, but they could also help us
understand how to design better algorithms at speedups bigger than 1.

2 Coefficient Rate of Random Processes

In the theory of dynamical systems the method of Lyapunov functions is a way to show
the stability of solutions of differential equations. This method has been developed and
applied to Markov Chains to show the stability (Foster’s criterion), as it has been used
to show the stability of MWM [6, 1, 2].

To begin consider an N ×N switch. Let the number of packets waiting at input i for
output j at time n be denoted by qij(n) and assume the arrival traffic is uniform with
rate λ = α/N . During this section we represent the switch by a bipartite graph with
inputs and outputs as vertices and nonempty queues as edges.

Definition 1 At every time slot let L(n) be the following quadratic form

L(n) =
∑

i,j

qij(n)2 +
2

3

∑

i,j,r,s

fijrsqij(n)qrs(n) −
2

3

∑

i,j,r,s

gijrsqij(n)qrs(n) (1)

where

fijrs =

{

1 if edges {i, j} and {r, s} have a common vertex.
0 otherwise



and gijrs = 1 − fijrs.

Remark The quadratic form which is often used to show the stability of IQ switches is
L̂(n) =

∑

i,j qij(n)2. For example, it has been used to show the stability of the MWM [6, 1, 2].
But, it does not show the stability of MSM algorithm. The function L(n), defined in (1) consists
of L̂(n) and two extra terms. First one is 2/3 times sum of the terms qijqrs where qij and qrs

share either their inputs or their outputs and the second term in (1) is −2/3 times sum of the
terms qijqrs where qij and qrs have no common input or output, for all possible i, j, r and s.
Since number of the negative terms is of O(N4) and number of positive terms is of O(N3) for
large N the quadratic form is not even positive and cannot be a Lyapunov function. Hence our
result is only for N < 4.

For simplicity, let’s write the quadratic form in matrix format: L(n) = Q(n)tPQ(n) with P

the appropriate N2 × N2 matrix and Q(n) an N2 × 1 vector with entries qij(n). For example
if N = 2 and Q(n) = [q11(n), q12(n), q21(n), q22(n)]t then:

P =









1 1
3

1
3

−1
3

1
3 1 −1

3
1
3

1
3

−1
3 1 1

3
−1
3

1
3

1
3 1









Theorem 1 Consider an N ×N IQ switch with uniform arrival traffic. If MSM algorithm
with random tie breaking is applied. For N < 4, there exists an ε > 0 and a constant c(N)
depending only on N such that (Foster’s Criteria)2:

E(L(n + 1) − L(n)|Q(n)) ≤ −ε





∑

ij

qij(n)



+ c(N) (2)

proof: First, for all i, j, n, let πij(n) be the random variable defined as:

πij(n) =

{

1 if MSM algorithm uses edge {i, j} at the nth time slot
0 otherwise

If the arrival and departure vectors are denoted by A(n) and D(n) respectively, then for
the drift of L(n) we have:

E

(

L(n + 1) − L(n)|Q(n)
)

= E

(

Q(n + 1)tPQ(n + 1) − Q(n)tPQ(n)|Q(n)
)

= E

(

2Q(n)tPA(n) + A(n)tPA(n) + D(n)tPD(n)

−2D(n)tPA(n) − 2Q(n)tPD(n)|Q(n)
)

= E

(

2Q(n)tPA(n) − 2Q(n)tPD(n)|Q(n)
)

+E

(

A(n)tPA(n) + D(n)tPD(n) − 2D(n)tPA(n)|Q(n)
)

2This condition is the same as the Foster’s Criteria because if at least one of qij(n) becomes very
large then right hand side of (2) will become negative.



The second term (i.e. E
(

A(n)tPA(n) + D(n)tPD(n) − 2D(n)tPA(n)|Q(n)
)

) is bounded by a
constant called c(N), because the vectors A(n) and D(n) have entries at most equal to one and
P is a fixed matrix.3. Hence, from now on let’s focus on the first term which is denoted by F.

Independence of the arrivals and queue sizes plus the fact that E(Aij(n)) = λ results in:

E(2Q(n)tPA(n)|Q(n)) = 2





∑

ij

qij(n)



 (
sum of any row or column of P

N
)

= 2





∑

ij

qij(n)





(

1 +
2(N − 1)

3
−

(N − 1)2

3

)

λ

= 2





∑

ij

qij(n)





(

N(4 − N)

3

)

λ

Let pijrs be the entry in row ij and column rs of the matrix P then:

E(2Q(n)tPD(n)|Q(n)) = 2
∑

ij

qij(n)
∑

rs

pijrsE(Drs(n))

= 2
∑

ij

qij(n)
∑

rs

pijrsE(πrs(n)1{qrs(n)>0}|Q(n))

Hence F reduces to:

2
∑

ij

qij(n)

(

(

N(4 − N)

3

)

λ −
∑

rs

pijrsE(πrs(n)1{qrs(n)>0}|Q(n))

)

Let 0 < ε ≤ 2N(4−N)
3 ( 1

N
− λ). The term 2N(4−N)

3 ( 1
N

− λ) is positive by admissibility of the
arrivals and assumption N < 4. Proving the following for all i and j proves (2):

qij(n)

(

∑

rs

pijrsE(πrs(n)1{qrs(n)>0}|Q(n))

)

≥ qij(n)

(

4 − N

3

)

(3)

Note that this holds when qij(n) = 0. Since (3) is symmetric with respect to all qij’s, it is
enough to show that it holds when i = j = 1. So in the rest of the proof assume q11(n) > 0 and
the goal is to show that:

∑

rs

p11rsE(πrs(n)1{qrs(n)>0}|Q(n)) ≥
4 − N

3
(4)

For the simplicity of notation let Y11 =
∑

rs p11rsπrs(n)1{qrs(n)>0}. Now partition all the edges
of the graph other than q11 in two different groups:

3Other than the fact that arrival is uniform, it is also assumed that if at time slot n the arrival to qij

is denoted by Aij(n) then E(A2
ij(n)) < ∞.



• A = {all edges that are adjacent to q11} (i.e. all qij such that f11ij = 1)

• B = {all edges that are non-adjacent to q11} (i.e. all qij such that g11ij = 1)

Since q11(n) > 0 there are only three types of maximum size matchings:

• a) q11 and k edges from B for 0 ≤ k ≤ N − 1

• b) Two edges from the set A and k edges from B for 0 ≤ k ≤ N − 2

• c) One edge from the set A and k edges from B for 0 ≤ k ≤ N − 2

For matchings of type a, Y11 = 1 − k
3 ≥ 1 − N−1

3 = 4−N
3 and for matchings of type b,

Y11 = 2
3 − k

3 ≥ 2
3 − N−2

3 = 4−N
3 hence in both cases the inequality Y11 ≥ 4−N

3 holds. Type c
matchings need to be treated differently. If a type c matching is a maximum size matching it
has one edge from A. Replacing this edge with q11 results in a type a maximum size matching.
Since MSM algorithm chooses one matching at random among the set of all possible maximum
size matchings, the new constructed type a matching can be chosen instead of the original type
c with equal probability.

If the size of the maximum size matching is k + 1, a matching of size k from the set B can
participate in exactly one type a and at most N − k− 1 type c matchings. That is because the
vertices already used by edges in B cannot be used for A edges and also all the participated A
edges have to use only one of the endpoints of q11, otherwise a matching of size k + 2 will be
constructed which is a contradiction. Hence:

E(Y11|Q(n)) ≥
1 − k

3 + (N − k − 1)(1
3 − k

3 )

N − k
≥

4 − N

3

And the last inequality holds for all values of N = 2, 3 and 0 < k + 1 ≤ N . �

Next step is to show that L(n) is positive for N < 4 which added to Theorem 1 shows
the stability of MSM algorithm under uniform arrival traffic for 2 × 2 and 3 × 3 input-queued
switches.

Theorem 2 The function L(n) which is defined in (1) is positive when N =2 and 3.

proof: Let R(N,x, y, z) be the N2 × N2 matrix whose entries rijrs are as follows:

rijrs =







x if edges fijrs = 1
y if edges gijrs = 1
z if {i, j} = {r, s}

For all N : P = R(N, 1
3 ,−1

3 , 1). When N = 2, let R1 = R(2, 1
3 , 0, 2

3 ) and R2 = R(2, 0,−1
3 , 1

3).
Using matlab R2 is positive definite matrix and since entries of R1 are non-negative then by
the fact that queue sizes are not negative numbers then

Q(n)tPQ(n) = Q(n)tR1Q(n) + Q(n)tR2Q(n) ≥ 0

Similarly for N = 3 : R2 = R(3, 1
6 ,−1

3 , 1) is positive definite and R1 = R(3, 1
6 , 0, 0) has

non-negative entries.

�

So the following is proved:

Theorem 3 In 2 × 2 and 3 × 3 IQ switches with uniform arrival traffic, MSM algorithm
with random tie breaking achieves 100% throughput.



3 Generalization and further work

The current function L(n) as mentioned in the last section, can be negative for large N . In
fact it is only positive for N < 4. Hence at this time we can only prove the stability for N =2
and 3. However we are at this time working on finding a more general quadratic form which
does not have these limitations, to extend the result to all N : i.e. proving the stability of any
N × N switch under uniform traffic.

Furthermore using the same Lyapunov function we can find a larger stability region which
includes the uniform traffic for MSM algorithm. This is a step towards finding the complete
stability region of the MSM algorithm. For example, when N = 2 the function L(n) shows the
stability of the the switch using MSM algorithm and following arrival matrix:

(

λ1 λ2

λ2 λ1

)

where λ1 + λ2 < 1. To show this, rewriting (4) for the new arrival traffic:

∑

rs

p11rsE(πrs(n)1{qrs(n)>0}|Q(n)) ≥ λ1 +
2

3
λ2 −

1

3
λ1

=
2

3
(λ1 + λ2)

which holds for λ1 + λ2 < 1.
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