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Abstract— In this paper we rigorously prove the validity of
the cavity method for the problem of counting the number
of matchings in graphs with large girth. Cavity method is
an important heuristic developed by statistical physicists that
has lead to the development of faster distributed algorithms
for problems in various combinatorial optimization problems.
The validity of the approach has been supported mostly by
numerical simulations. In this paper we prove the validity of
cavity method for the problem of counting matchings using
rigorous techniques. We hope that these rigorous approaches
will finally help us establish the validity of the cavity method
in general.

I. INTRODUCTION

A. Motivation

Distributed message passing algorithms like belief propa-
gation have been around for over a decade now [14], [20],
[18], [1]. Recently some important problems in combinatorial
optimization have seen faster distributed algorithms - moti-
vated using a heuristic technique in statistical physics called
the cavity method - that seem to solve problem instances
much larger than what was previously feasible. This method
has also led to analytical predictions about some threshold
phenomenon in various problems of cross-disciplinary inter-
est. Some examples of its application include the satisfiability
threshold for random constraint satisfaction [11], [12] and
the corresponding survey-propagation algorithm , iterative
decoding algorithms in multi-user CDMA [9], etc.

However, very few rigorous results are known concerning
the validity of the cavity method and the convergence of
the algorithms. In this paper we wish to add to the body
of rigorous results [2], [3], [6], [15], [16] supporting the
predictions of the cavity method by showing its correctness
for the problem of counting matchings in large sparse graphs.
We borrow some of the techniques from Gamarnik et.al.
[6] but we hope that some newer lines of the argument
(e.g. showing validity of the free energy shifts) could lead
to useful insights into the validity of the method for other
instances in which the method was applied.

The algorithms generated using this method in some
instances resemble the naive believe propagation equations,
whereas in some other instances they resemble two-layered
belief propagation (or survey propagation) equations, and
in few other cases are significantly more involved. In the
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problem of counting matchings, the equations generated us-
ing the cavity method resemble the naive belief propagation
equations. In this paper we show the convergence of the
cavity equations and the uniqueness of the fixed points for
arbitrary graphsG. In general such convergence results are
not known except for trees or graphs with exactly one cycle
[19].

B. The matching problem

Counting the number and size of matchings on various
types of random graphs has been a classical problem in graph
theory. This problem has been intensively studied for a long
time by mathematicians and computer scientists [13]. Very
recently Zdebrová and Mézard [21] used the cavity method
to solve this problem. They believed that the results obtained
by this heuristic are exact for the matching problem and using
this approach: a) they derived an algorithm that computes the
entropy for arbitrary graphs with girth that diverges in the
large size limit and b) derived analytical results for regular
and Erdös-Rényi random graph ensembles.

We first define the problem of finding the number of
perfect matchings in a simple graph and then describe the
cavity equations for solving it.

1) Problem setup and notation:Consider a graphG =
(V,E) with n verticesV , and edge-setE. Throughout this
paper we will always assume thatG is simple (i.e. G has
no multi-edge or self-loops) and undirected. Thegirth of a
graphG is defined as the length of the shortest cycle. A
matching is a subset of edgesM ⊂ E such that no two
edges ofM have a common endpoint. Let|M | denote the
size of matchingM and letM∗ be a matching of maximum
size. If |M∗| = n/2 thenM∗ is called aperfectmatching.

Counting the number of perfect matchings in a graph
G is shown to be #-P complete [17], (i.e. in general no
polynomial-time algorithm can find the exact number of
perfect matchings ofG unlessP = NP ). Since it is widely
believed thatP 6= NP , many approaches have been focused
on finding polynomial-time algorithms for approximately
counting the number of perfect matchings [7], [8], [5], [4].

Let a, b, . . . denote the vertices ofG andi, j, . . . denote the
edges. For every vertexa ∈ G let N(a) denote the vertex-
neighborhood of vertexa, i.e.N(a) = {b : (a, b) ∈ E}, and
let E(a) denote the edge-neighborhood of vertexa, i.e. the
set of edges inE that have the vertexa as an endpoint.

Describe a matchingM by variablessi = sa,b ∈ {0, 1}
assigned to each edgei = (a, b) ∈ E with

si =

{

1 edgei ∈M
0 edgei /∈M



SinceM is a matching, it follows that for any vertexa ∈
V :

∑

b∈N(a)

sa,b ≤ 1

For every matchingM ⊂ E define its energy to be its
number of unmatched vertices:

EG(M) =
∑

a∈V

Ea(M) = n− 2|M |

whereEa(M) = 1 −
∑

b∈N(a) sa,b.
This induces a probability distribution (called theGibb’s

distribution) on the set of all matchings,M(G), of the graph
G, defined by:

PG,β(M) =
1

ZG(β)
e−βEG(M)

whereβ is a positive number and is calledinverse temper-
ature. The normalizing termZG(β) =

∑

M e−βEG(M) is
calledpartition function.

The partition function of an empty graph is defined as1.
To simplify notation we will omit the dependence onβ and
write PG instead ofPG,β andZG instead ofZG(β).

Let a configuration denote a collection of edgesS ⊂ E.
Observe thatPG can also be represented on the set of all
configurations, as below. Let for alla ∈ V

ψa(S) = 1{
P

b∈N(a) sa,b≤1}e
−β(1−

P
b∈N(a) sa,b).

Then it follows that

PG(S) =
1

ZG

∏

a∈V

ψa(S).

Note thatEG(M) is minimized whenM is a maximum size
matching and for large values ofβ the partition function
is dominated by the terms corresponding to maximum size
matchings ofG. Hence forβ ≫ 0

FG
△
= −

1

β
logZG ≈

− log(NG)

β
+ EG(M∗)

whereNG is number of maximum size matchings inG.
FG(β) is defined as the free-energy of the system. Observe
that for largeβ, we have

EG(M∗) ≈
∂

∂β
(βFG)

log(NG) ≈ β

(

∂

∂β
(βFG) − FG

)

,

with the approximation becoming exact asβ → ∞.
The cavity method of statistical physics is a heuristic that

is used to evaluate the partition function. In the next section
we will state the equations derived in [21] using the cavity
approach and then prove that these equations compute the
partition function exactly for sparse graphs.

Remark 1: In the first few sections the term sparse graph
is used loosely to mean graphs that have no short loops. The
precise dependence needed between the length of the shortest
loop and the size of the graphs (measured in terms of the
number of vertices and number of edges) will be spelt out
in the final section.

C. The cavity-claims for the matching problem

Let hi→a : E × V → R be the ‘message’ that edgei =
(a, b) conveys to vertexa, one of its end-points. Note that
there are2|E| messages as there are two messages for each
edge.

The following two claims form the algorithmic and ana-
lytical crux of the cavity method for this problem.

Claim 1 (Zdeborov́a-Mézard): Consider the iterative
equation defined by

hi→a(t+ 1) = −
1

β
log



e−β +
∑

j∈E(b)\i

eβhj→β(t)



 . (1)

These iterative equations converge to a unique fixed point
for a large sparse graph whose girth diverges with the size
of the graph.

Let hi→a be the unique fixed points of the system of
equations in the above claim, i.e.

hi→a = −
1

β
log



e−β +
∑

j∈E(b)\i

eβhj→β



 . (2)

Claim 2 (Zdeborov́a-Mézard): The free energy for a sin-
gle large sparse graph is given by

FG =
∑

a

∆Fa −
∑

i

∆Fi

where

e−β∆Fa = e−β+
∑

i∈E(a)

eβhi→a

, e−β∆Fi = 1+eβ(hi→a+hi→b).

∆Fa is often called thefree energy shiftcorresponding
to the removal of a vertexa and its associated edges, and
∆Fi the free energy shiftcorresponding to the removal of
the edgei.

Remark 2:Our outline of the proof is as follows: first we
will prove the cavity-claims for the case whenG is a tree,
and then we will proceed to establish this for a large sparse
graph. Validity of Claim 1 is well-known for the case of a
tree and the main result in the next section is to show that
Claim 2 is exact as well.

II. T HE VALIDITY OF THE CAVITY -CLAIMS ON A TREE

In this section, we shall assume that the graphG is a tree.
Note that removing any edgei = (a, b) from G splits the
graph into two subgraphs:Gi,a containing the vertexa, and
Gi,b containing the vertexb.

Remark 3:For any graphG = (V,E) with a ∈ V and
i ∈ E, letGi denote the graph with edgei removed. Further,
let Ga denote the graphG with vertexa and with all edges
adjacent toa removed. In Figure 1, observe thatGi,a

a is
formed fromGi,a by removing vertexa and all its adjacent
edges.

Observe that,

ZGi

ZG
=

ZGi,aZGi,b

ZGi,aZGi,b + ZGi,a
a
ZGi,b

b



G

a

b

i

a

b

i,a

i,b
G

G
i,aG

G

a

b

a

i

Fig. 1. The graphG and the various sub-graphs

Defining

eβhi→b

=
ZGi,a

a

ZGi,a

, eβhi→a

=
ZGi,b

b

ZGi,b

, (3)

we see that

e−β∆Fi
△
=

ZG

ZGi

= 1 + eβ(hi→a+hi→b). (4)

Note that

ZGa

ZG
=

∏

i∈E(a) ZGi,bi

∏

i∈E(a) ZGi,bi (e−β +
∑

i∈E(a)

Z
G

i,bi
bi

Z
Gi,bi

)

.

Thus,

e−β∆Fa
△
=

ZG

ZGa

= e−β +
∑

i∈E(a)

eβhi→a

. (5)

Lemma 1:Free energyFG, can be expressed as the sum
of free energy shifts when G is a tree, i.e.

FG =
∑

a

∆Fa −
∑

i

∆Fi

Proof: Observe that

∏

a∈V

e−β∆Fa

∏

i∈E

eβ∆Fi =
∏

a∈V

ZG

ZGa

∏

i∈E

ZGi

ZG

=
∏

a∈V

ZG
∏

i∈E(a) ZGi,bi

∏

i∈E

ZGi,aZGi,b

ZG

(a)
=

Z
|V |
G

Z
|E|
G

(b)
= ZG = e−βFG

(6)

Here(a) follows form the fact that
∏

a∈V

∏

i∈E(a)

ZGi,bi =
∏

i∈E

ZGi,aZGi,b

and (b) follows form the fact that in a tree|E| = |V | − 1.

To complete the proof of Claim 2 for the case that G is a
tree we need to show the following:

(i) The variableshi→a defined in (3) satisfy equation (2).
(ii) The equations (2) have a unique fixed point.

Remark 4:The fact that the equations (2) have a unique
fixed point is a well-known fact for the case whenG is a tree.
For general graphsG, the convergence and the uniqueness
is not known. One of the main technical ingredients in this
paper is to establish the convergence and the uniqueness for
general graphs as well.

Lemma 2:The variableshi→a defined in (3) satisfy equa-
tion (2).

Proof: We need to show that

hi→a = −
1

β
log



e−β +
∑

j∈E(b)\i

eβhj→β



 .

This is equivalent to showing that

e−βhi→a

+ eβhi→b

= e−β +
∑

j∈E(b)

eβhj→b

.

Now using the equations (5), (3) we see that this reduces to
showing

ZGi,b

ZGi,b
b

+
ZGi,a

a

ZGi,a

=
ZG

ZGb

.



Observe that this follows from the following:ZG =
ZGi,bZGi,a + ZGi,b

b
ZGi,a

a
andZGb

= ZGi,aZGi,b
b

.

III. C ONVERGENCE OF THE ITERATIVE EQUATIONS

Consider any simple graphG and consider the iterative
equations defined on it according to (1). The proof for
the convergence of the iterative equations is based on the
following lemma:

Lemma 3:Let f : R
rs −→ R be a real valued function

defined as follows:

f(x) =
−1

β
log
(

e−β +

r
∑

k=1

1

e−β +
∑s

ℓ=1 e
βxkℓ

)

(7)

then for anyx, y ∈ R
rs:

|f(x) − f(y)| ≤
r

r + e−2β
‖x − y‖∞. (8)

Proof: Sincef(x) is differentiable, multi-variable ver-
sion of the mean value theorem implies that for anyx, y ∈
R

rs there exist a pointz on the line-segment connectingx
andy in R

rs such that:

f(x) − f(y) = ∇f(z) · (x − y)

From Hölder’s inequality it follows that

|f(x) − f(y)| ≤ ‖∇f(z)‖1‖x − y‖∞

In order to show (8) it suffices to show that‖∇f(z)‖1 ≤
r

r+e−2β . Note that,

‖∇f(z)‖1 =
∑

k,ℓ

|
∂f

∂zkℓ
| =

∑

k,ℓ

eβzkℓ

(e−β+
Ps

q=1 eβzkq )2

e−β +
∑r

p=1
1

e−β+
P

s
q=1 eβzpq

=

r
∑

k=1

Ps
ℓ=1 eβzkℓ

(e−β+
P

s
q=1 eβzkq )2

e−β +
∑r

p=1
1

e−β+
P

s
q=1 eβzpq

.

For simplicity of notation letAk = 1
e−β+

P
s
ℓ=1 eβzkℓ

, then
one obtains

‖∇f(z)‖1 =

∑r
k=1(1 − e−βAk)Ak

e−β +
∑r

k=1 Ak

= 1 −
e−β + e−β

∑r
k=1 A

2
k

e−β +
∑r

k=1Ak
.

Now using0 ≤ Ak ≤ eβ :

‖∇f(z)‖1 ≤ 1 −
e−β

e−β + reβ
=

r

r + e−2β

This completes the proof of Lemma 3.
Next we will use Lemma 3 to prove convergence of the

cavity equations (1) for any graphG.
Theorem 1:For any graphG the set of cavity equations

(1) converges to a unique fixed point independent of its initial
conditions.

Proof: Consider an arbitrary initial condition
{hi→a(0)}. The iterative equations in (1) states that

hi→a(t+ 1) = −
1

β
log



e−β +
∑

j∈E(b)\i

eβhj→β(t)



 .

DefineF (x) to be the multi-valued function fromR2|E|

to R
2|E| such that

{hi→a(t+ 1)} = F ({hi→a(t)}).

Consider the two-iterate of functionF , i.e. letF 2 = F ◦
F . Let F 2 = (f1(x), . . . , f2|E|(x)) where eachfi is a real
valued function onR2|E|.

Observe that each functionfi(x) can be written in
the form (7) wherer, s ≤ maxa∈V (deg(a)). Let ∆ =
maxa∈V (deg(a)), the maximum degree of a vertex inG.
Now using Lemma 3 for anyt ≥ 2, we have:

‖{hi→a(t+ 2)} − {hi→a(t)}‖∞

= ‖F 2({hi→a}(t)) − F 2({hi→a(t− 2)})‖∞

= max
1≤k≤2|E|

(|fk({hi→a(t)}) − fk({gi→a(t− 2)}|)

≤
∆

e−2β + ∆
‖{hi→a(t)} − {hi→a(t− 2)}‖∞

≤

(

∆

e−2β + ∆

)t/2

‖{hi→a(2)} − {hi→a(0)}‖∞.

(9)

Thus the sequence{hi→a(t)} is Cauchy and hence con-
verges to a point{hi→a} ∈ R

2|E|. This shows that the
equations (1) converge for any graphG.

To show uniqueness consider two different initial condi-
tions {hi→a(0)} and {gi→a(0)}. Using the same argument
as in equation (9) one has:

‖{hi→a(t)} − {gi→a(t)}‖∞

≤

(

∆

e−2β + ∆

)t/2

‖{hi→a(0)} − {gi→a(0)}‖∞

(10)
so both sequences{hi→a(t)} and{gi→a(t)} converge to the
same point and this contradicts the existence of multiple fixed
points.

This completes the proof of the Theorem 1 and shows that
the equations (1) converge to a unique fixed point for any
graph.

In the next section we show that validity of the cavity-
claims when the graphG has a large girth.

IV. VALIDITY OF THE CAVITY -CLAIMS FOR GRAPHS

WITH LARGE GIRTH

Theorem 1 proves the validity of the Claim 1 for arbitrary
graphs and in particular for graphs with large girth. Therefore
it suffices to show the validity of Claim 2 for graphs with
large girth. Before starting the proof, we note the following
bounds on the values of the fixed points of the equation (1).
The proof of this lemma is straightforward and is omitted.



Lemma 4:Let {hi→a} be the the unique fixed points of
the iterative equations on any graphG with maximum degree
∆. Then

−
1

β
log
[

e−β + (∆ − 1)eβ
]

≤ hi→a ≤ 1.

Consider a fixed graphG of size n. Let ra denote the
maximum distance such that the subgraph,G(a; ra), formed
using the vertices that are within a distancera from the
vertex a is a tree. Let the vertices inG(a; ra) be denoted
by V (a; ra). Consider the set of edges,C, that connect
V (a; ra) andV (a; ra)c. Further let the subgraph formed by
the verticesV (a; ra)c be denoted asH(a; ra).

This decomposes the original graphG into three parts:
the subgraphG(a; ra), the set of edgesC, and the subgraph
H(a; ra). Pick any subset of the edgesD ⊂ C. Let MD ⊂
M(G) denote the set of matchings inG that use precisely
the subset of edgesD in C. Let VC ⊂ V (a; ra) denote the
set of vertices inG(a; ra) that are the endpoints of the edges
C. Let VD ⊂ VC denote the set of vertices inG(a; ra) that
are the endpoints of the edgesD. Further, letUD denote the
set of vertices inH(a; ra) that are the endpoints of the edges
D.

DenoteG(a; ra − 1) as the sub-graph formed using the
vertices that are within distancera−1 from vertexa. Observe
that

G(a; ra) ⊃ GVD (a; ra) ⊃ G(a; ra − 1)

Lemma 5:Let D1 and D2 be two different subsets of
C. Let {hj→b}, {gj→b} be the unique fixed points of the
iterative equations on the graphsGVD1

andGVD2
. Then

|hi→a − gi→a|

≤

(

∆

e−2β + ∆

)(ra−1)/2
1

β
log
[

1 + (∆ − 1)e2β
]

Proof: SinceGVD1
(a; ra), GVD2

(a; ra) ⊃ G(a; ra − 1)

we can set{hj→b(0)} = {gj→b(0)} for the messages in the
sub-graphG(a; ra − 2).

To bound the difference in the messages at the boundary
depending on choice ofD, observe the following: Letv
be any vertex at distancera − 1 from a and let u be
any neighbor ofv that is at distancera − 2. Let 0 ≤
δ1, δ2 ≤ ∆ denote the degree of the vertexv in the graphs
GVD1

(a; ra), GVD2
(a; ra) respectively. Lete denote the edge

joining v to u. Then from Lemma 4 we see that

|he→u − ge→u| ≤
1

β
log
[

1 + (∆ − 1)e2β
]

.

We can use Lemma 3 to determine the propagation of this
difference to the messages ata. It is not difficult to see from
repeated use of Lemma 3 that

|hi→a − gi→a|

≤

(

∆

e−2β + ∆

)(ra−1)/2
1

β
log
[

1 + (∆ − 1)e2β
]

For simplicity of notation let us denote

ν =
1

β
log
[

1 + (∆ − 1)e2β
]

, K =
∆

e−2β + ∆
.

It is easy to see thatν ≤ 3 for large enoughβ.
Let i be an edge that is connected to the vertexa. We will

show that the free-energy shift∆Fi for the graphG can be
approximated by the free energy shift corresponding to the
treeG(a, ra).

Lemma 6:Let δ = νK(ra−1)/2. Then,

e−2βδ Z(G(a; ra))

Z(Gi(a; ra))
≤

Z(G)

Z(Gi)
≤ e2βδ Z(G(a; ra))

Z(Gi(a; ra))

Proof: Observe that

Z(G) =
∑

D

Z(GVD (a; ra))Z(HUD (a; ra))

Similarly for Gi, obtained by removing edgei in G, we
obtain

Z(Gi) =
∑

D

Z(GVD ,i(a; ra))Z(HUD (a; ra))

Let hi→a
∅ be the converged values of the iterative equations

for the case whenD = ∅. Combining the result for trees and
our bounds on the converged values ofhi→a for different
initial conditions in Lemma 5 we know that

1 + eβ(hi→a
∅ +hi→b

∅ −2δ) ≤
Z(GVD (a; ra))

Z(GVD ,i(a; ra))

≤ 1 + eβ(hi→a
∅ +hi→b

∅ +2δ).

Therefore for all choices ofD the following holds

Z(G(a; ra))

Z(Gi(a; ra))
e−2βδ ≤

Z(GVD (a; ra))

Z(GVD ,i(a; ra))
≤

Z(G(a; ra))

Z(Gi(a; ra))
e2βδ

Using this result and the decompositions ofZ(G) and
Z(Gi) presented above we obtain that

Z(G(a; ra))

Z(Gi(a; ra))
e−2βδ ≤

Z(G)

Z(Gi)
≤

Z(G(a; ra))

Z(Gi(a; ra))
e2βδ

Observing that the boundary conditions do not influence
the value ofhi→a, the fixed points of the iterative equations
for the graphG, we can infer that

(

1 + eβ(hi→a+hi→b)
)

e−2βδ ≤
Z(G)

Z(Gi)

≤
(

1 + eβ(hi→a+hi→b)
)

e2βδ.

In a very similar manner to the removal of an edge, we can
also show that for somẽδ ≤ log(∆) + δ

Z(G(a; ra))

Z(Ga(a; ra))
e−βδ̃ ≤

Z(G)

Z(Ga)
≤

Z(G(a; ra))

Z(Ga(a; ra))
eβδ̃. (11)



Similar to the case of the removal of the edge, the above
equation implies that



e−β +
∑

i∈E(a)

eβhi→a



 e−βδ̃ ≤
Z(G)

Z(Ga)

≤



e−β +
∑

i∈E(a)

eβhi→a



 eβδ̃.

A. Proof of Claim 2 for graphs with large girth

Let G be a graph that satisfies thegirth condition.

girth(G) >
8(log ν + log β + 2 logm+ log ∆ + log 1

log(1+ǫ) )

log 1
K

(12)
wherem = |V | + |E|.

Theorem 2:For anyǫ, β > 0. LetG be a graph satisfying
the girth condition. Then the free energy shifts approximates
ZG within factor 1 + ǫ, i.e.

ZG(1 + ǫ)−1 ≤ XG ,

∏

a
ZG

ZGa
∏

i
ZG

ZGi

≤ ZG(1 + ǫ). (13)

Note that whenE = ∅, thenXG = 1 and so (13) holds.
Let E = {i1, i2, . . . , i|E|} be an ordering of edges andg =
⌊girth(G)/4 − 1⌋. The following lemma is crucial to prove
Theorem 2.

Lemma 7:For all 1 ≤ r ≤ |E|:

ZGEr

ZGEr−1

e−ν∆βmKg/2

≤
XGEr

XGEr−1

≤
ZGEr

ZGEr−1

eν∆βmKg/2

whereEr = {i1, . . . , ir}, K = ∆
∆+e−2β andm = n+ |E|.

Before proving Lemma 7 we will show how it can be used
to prove Theorem 2.

Proof: [Proof of Theorem 2]
Assuming Lemma 7 and taking the telescopic product of

r = 1 to |E|, we obtain

e−ν∆βm2Kg/2
|E|
∏

r=1

ZGEr

ZGEr−1

≤

|E|
∏

r=1

XGEr

XGEr−1

≤ eν∆βm2Kg/2
|E|
∏

r=1

ZGEr

ZGEr−1

and hence

e
−ν∆βm2

�
∆

∆+e−2β

�g/2

ZG ≤ XG ≤ e
ν∆βm2

�
∆

∆+e−2β

�g/2

ZG.

The assumptions on the girth of the graph in (12) implies
that eν∆βm2Kg/2

≤ 1 + ǫ and this completes the proof.

Therefore, all that remains is to prove Lemma 7.

Proof: [Proof of Lemma 7]
We need to show that
ZGEr

ZGEr−1

e−ν∆βmKg/2

≤
XGEr

XGEr−1

≤
ZGEr

ZGEr−1

eν∆βmKg/2

.

Observe that,

XGEr

XGEr−1

=

∏

a∈V

ZGEr

ZGEr,a

∏

i∈E\Er

ZGEr

ZGEr,i







∏

a∈V

ZGEr−1

ZGEr−1,a

∏

i∈E\Er−1

ZGEr−1

ZGEr−1,i







−1

=

∏

a∈V

ZGEr

ZGEr−1

(

ZGEr,a

ZGEr−1,a

)−1

∏

i∈E\Er

ZGEr

ZGEr−1

(

ZGEr,i

ZGEr−1,i

)−1 .

(14)
Let ar be an endpoint of the edgeir. We will estimate the

product

∏

a∈V

ZGEr

ZGEr−1

(

ZGEr,a

ZGEr−1,a

)−1

∏

i∈E\Er

ZGEr

ZGEr−1

(

ZGEr,i

ZGEr−1,i

)−1

by partitioning the vertices and edges into two groups; those
that are inG(ar, g) and those that are outsideG(ar, g).

Using equation (11) whenevera /∈ GEr−1(ar; g), we have

e−ν∆βKg/2

≤
ZGEr

ZGEr−1

(

ZGEr,a

ZGEr−1,a

)−1

≤ eν∆βKg/2

. (15)

Similarly wheneveri /∈ GEr−1(ar; g) then from Lemma 6
we have

e−ν∆βKg/2

≤
ZGEr

ZGEr−1

(

ZGEr,i

ZGEr−1,i

)−1

≤ eν∆βKg/2

. (16)

Now we consider the case whena, i ∈ G(ar, g).
SinceGEr−1(ar; g) ⊂ GEr−1(ar; 2g) and both graphs are

trees, we can use (11) fora ∈ GEr−1(ar; g) to obtain

e−ν∆βKg/2 ZGEr

ZGEr;a

≤
ZGEr (ar;g)

ZGEr,a(ar ;g)
≤

ZGEr

ZGEr,a

eν∆βKg/2

e−ν∆βKg/2 ZGEr−1

ZGEr−1,a

≤
ZGEr−1

(ar;g)

ZGEr−1,a(ar ;g)
≤

ZGEr−1

ZGEr−1,a

eν∆βKg/2

.

(17)
Similarly, for i ∈ GEr−1(ar; g) using Lemma 6 we have

e−ν∆βKg/2 ZGEr

ZGEr,i

≤
ZGEr (ar,g)

ZGEr,i(ar ,g)
≤

ZGEr

ZGEr,i

eν∆βKg/2

e−ν∆βKg/2 ZGEr−1

ZGEr−1,i

≤
ZGEr−1

(ar,g)

ZGEr−1,i(ar ,g)
≤

ZGEr−1

ZGEr−1,i

eν∆βKg/2

.

(18)
Note that,



XGEr

XGEr−1

=

∏

a/∈G(ar;g)

ZGEr

ZGEr−1

(

ZGEr,a

ZGEr−1,a

)−1

∏

i/∈G(ar;g)

ZGEr

ZGEr−1

(

ZGEr,i

ZGEr−1,i

)−1 ×

∏

a∈G(ar;g)

ZGEr

ZGEr,a

∏

i∈G(ar ;g)

ZGEr

ZGEr,i







∏

a∈G(ar;g)

ZGEr−1

ZGEr−1,a

∏

i∈G(ar ;g)

ZGEr−1

ZGEr−1,i







−1

.

(19)
Using equations (15), (16), in the first product and equa-

tions (17), (18) in the second product (and from the definition
of XG), we obtain

e−ν∆βmKg/2 XGEr (ar;g)

XGEr−1
(ar ;g)

≤
XGEr

XGEr−1

≤ eν∆βmKg/2 XGEr (ar;g)

XGEr−1
(ar ;g)

.

Lemma 1 implies thatXG = ZG when G is a tree.
Therefore, sinceGEr (ar; g), GEr−1(ar; g) are trees we can

replace
XGEr

(ar ;g)

XGEr−1
(ar ;g)

with
ZGEr

(ar ;g)

ZGEr−1
(ar ;g)

and subsequently

using Lemma 6 to replace
ZGEr

(ar ;g)

ZGEr−1
(ar ;g)

with
ZGEr

ZGEr−1

, we

complete the proof of Lemma 7.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we show the validity of the cavity method for
the problem of counting the number of matchings for graphs
with large girth. The girth condition we have in this paper is
quite restrictive and several graphs of practical relevance do
not meet this condition. However we hope that the methods
presented here can be extended in a straightforward manner
to random regular graphs and Erdös-Rényi graphs. This
would lead to, as observed in [21], tighter estimates for
counting the number of matchings in such graphs.

We also demonstrate the convergence and uniqueness of
the iterative equations for arbitrary graphs. The techniques
used in this paper do not heavily depend on the nature of
the problem and therefore there is a good possibility of these
techniques having a wider interest and applicability to other
important problems were cavity method has been applied.
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