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Abstract—In this paper we rigorously prove the validity of problem of counting matchings, the equations generated us-
the cavity method for the problem of counting the number ing the cavity method resemble the naive belief propagation
of matchings in graphs with large girth. Cavity method s aqyations. In this paper we show the convergence of the

an important heuristic developed by statistical physicis$ that . . . - .
has lead to the development of faster distributed algorithrs cavity equations and the uniqueness of the fixed points for

for problems in various combinatorial optimization problems. ~ arbitrary graphg=. In general such convergence results are
The validity of the approach has been supported mostly by not known except for trees or graphs with exactly one cycle
numerical simulations. In this paper we prove the validity o [19].

cavity method for the problem of counting matchings using
rigorous techniques. We hope that these rigorous approaclse
will finally help us establish the validity of the cavity method

in general. Counting the number and size of matchings on various

types of random graphs has been a classical problem in graph
. INTRODUCTION theory. This problem has been intensively studied for a long
time by mathematicians and computer scientists [13]. Very
recently Zdebrova and Mézard [21] used the cavity method
Distributed message passing algorithms like belief prop&e solve this problem. They believed that the results olethin
gation have been around for over a decade now [14], [20dy this heuristic are exact for the matching problem andgisin
[18], [1]. Recently some important problems in combinatbri this approach: a) they derived an algorithm that computes th
optimization have seen faster distributed algorithms -imotentropy for arbitrary graphs with girth that diverges in the
vated using a heuristic technique in statistical physid¢eda large size limit and b) derived analytical results for regul
the cavity method - that seem to solve problem instancesd Erdds-Rényi random graph ensembles.
much larger than what was previously feasible. This method We first define the problem of finding the number of
has also led to analytical predictions about some threshoperfect matchings in a simple graph and then describe the
phenomenon in various problems of cross-disciplinaryrintecavity equations for solving it.
est. Some examples of its application include the sati$fiabi 1) Problem setup and notationConsider a grapl; =
threshold for random constraint satisfaction [11], [12Han (V, E) with n verticesV, and edge-set. Throughout this
the corresponding survey-propagation algorithm , iteeati paper we will always assume that is simple (i.e. G has
decoding algorithms in multi-user CDMA [9], etc. no multi-edge or self-loops) and undirected. Tdigh of a
However, very few rigorous results are known concerningraph G is defined as the length of the shortest cycle. A
the validity of the cavity method and the convergence ofnatchingis a subset of edge3d/ C E such that no two
the algorithms. In this paper we wish to add to the bodgdges ofM have a common endpoint. Lgd/| denote the
of rigorous results [2], [3], [6], [15], [16] supporting the size of matching\/ and letM* be a matching of maximum
predictions of the cavity method by showing its correctnessize. If |M*| = n/2 then M* is called aperfectmatching.
for the problem of counting matchings in large sparse graphs Counting the number of perfect matchings in a graph
We borrow some of the techniques from Gamarnik et.al7 is shown to be #-P complete [17], (i.e. in general no
[6] but we hope that some newer lines of the argumergolynomial-time algorithm can find the exact number of
(e.g. showing validity of the free energy shifts) could leagerfect matchings of unlessP = N P). Since it is widely
to useful insights into the validity of the method for otherbelieved thatP # N P, many approaches have been focused
instances in which the method was applied. on finding polynomial-time algorithms for approximately
The algorithms generated using this method in someounting the number of perfect matchings [7], [8], [5], [4].
instances resemble the naive believe propagation eqsation Leta, b, ... denote the vertices @f andi, j, . .. denote the
whereas in some other instances they resemble two-layeredges. For every vertex € G let N(a) denote the vertex-
belief propagation (or survey propagation) equations, amkighborhood of vertex, i.e. N(a) = {b: (a,b) € E}, and
in few other cases are significantly more involved. In théet F(a) denote the edge-neighborhood of vertex.e. the
set of edges i’ that have the vertex as an endpoint.
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Since M is a matching, it follows that for any vertexe C. The cavity-claims for the matching problem

& Let hi7® . E x V — R be the ‘message’ that edge=

Z Sap <1 (a,b) conveys to vertex:, one of its end-points. Note that

bEN (a) there are2| E| messages as there are two messages for each
For every matchingV/ C E define its energy to be its edge.
number of unmatched vertices: The following two claims form the algorithmic and ana-
Ea(M) = Z Eo(M) = n — 2|M| Iyticallcrux of the ca’vity,method for .this problem.. _
= Claim 1 (Zdeboro&-Mézard): Consider the iterative

where B, (M) =1~ 3¢ n(,) Sab- equation defined by

This induces a probability distribution (called ti&bb’s . 1 -
distribution) on the set of all matchings4(G), of the graph ~ h"™*(t+1) = ——log [e P+ Y ™70} (1)

G, defined by: b JEE(b)\i
__ 1 B These iterative equations converge to a unique fixed point
Pa,p(M) € 9% 0 . :
Za(B) for a large sparse graph whose girth diverges with the size
where 3 is a positive number and is callédverse temper- of the graph.
ature The normalizing termZg(3) = >_,, e #Fc(M) js Let »*~% be the unique fixed points of the system of
called partition function equations in the above claim, i.e.
The partition function of an empty graph is definedlas
To simplify notation we will omit the dependence gnand ima 1 5 Bhi—B
write P instead ofP; s and Z¢ instead ofZ¢(3). Wt =—glog lemm + Z € : @

JEE(D)\i
Let a configuration denote a collection of edges” F.

Observe thatP; can also be represented on the set of all ¢laim 2 (Zdeboro&-Mézard): The free energy for a sin-

configurations, as below. Let for alle V/ gle large sparse graph is given by
ValS) = Lo sasiye RN 0, Fo=) AF.—) AR
Then it follows that ¢ ’
1 where
Note thatEg (M) is minimized when)/ is a maximum size i€E(a)

AF, is often called thefree energy shifcorresponding
to the removal of a vertex and its associated edges, and
Z&Fi the free energy shiftorresponding to the removal of

matching and for large values @ the partition function
is dominated by the terms corresponding to maximum si
matchings ofG. Hence forg > 0

the edgei.
Fe a_1 log Z¢; ~ — log(Ne) + Eq(M*) Remark 2: Our outline of the proof is as follows: first we
B B will prove the cavity-claims for the case whénis a tree,

where Ng is number of maximum size matchings . and then we will proceed to establish this for a large sparse
Fg(p) is defined as the free-energy of the system. Obserggaph. Validity of Claim 1 is well-known for the case of a

that for larges, we have tree and the main result in the next section is to show that
. 9 Claim 2 is exact as well.
Eg(M*) =~ 8_5(5FG)
9 Il. THE VALIDITY OF THE CAVITY -CLAIMS ON A TREE
log(Ng) =~ p (8_5(5FG) - FG) ; In this section, we shall assume that the grépis a tree.

Note that removing any edge= (a,b) from G splits the

with the approximation becoming exact ds— co. raph into two subgraph&i** containing the vertex, and

The cavity method of statistical physics is a heuristic thaty.» containing the vertex.
is used to evaluate the partition function. In the next secti  ramark 3: For any graphG = (V, E) with a € V and

we will state the equations derived in [21] qsing the cavity € E, letG; denote the graph with edgeemoved. Further,
approach and then prove that these equations compute FB?GG denote the graplr with vertexa and with all edges

partition function exactly for sparse graphs. adjacent toa removed. In Figure 1, observe that:c is
Remark 1:In the first few sections the term sparse grap rmed fromG-@ by removing vertex: and all its adjacent
is used loosely to mean graphs that have no short loops. T §

precise dependence needed between the length of the $horte§i§érve that

loop and the size of the graphs (measured in terms of the ’

number of vertices and number of edges) will be spelt out 26 _ ZaiaZgib

in the final section. Za  ZgiaZgiv + ZGZ"IZG;'Z’




Fig. 1.

The graphG and the various sub-graphs

Defining
= Zgia i—a Z ib
eﬁh b = Aa eﬁh = i’ (3)
ZGi,a ZGi,b
we see that
Z i—a i—
e PAF: 4 Z_G =1+ BTk b). @
G;
Note that
ZGa o HiEE(a) ZGi!bi,
Zg Zgii
HiGE(a) Zgivi(e”f+ ZiGE(a) TT%)
Thus,
fﬁAF A ZG 75 hTHa .
Zc. + ) e (5)
i€E(a)

Lemma 1:Free energyfs, can be expressed as the sum

of free energy shifts when G is a tree, i.e.

FG_ZAF ZAF

Proof: Observe that

Z
H —BAF, H sar _ TT 4¢
e e
acV icE aGV ¢ el
o ZG ZG%,aZGz,b
aov i@ Zaiv jop - Za
v
O/ SRR
P

G

(6)

Here (a) follows form the fact that

I II Zew =] ZceeZg

a€V icE(a) icE

and (b) follows form the fact that in a tregf| = |V| — 1.
[ |

To complete the proof of Claim 2 for the case that G is a
tree we need to show the following:

(i) The variableshi— defined in (3) satisfy equation (2).
(17) The equations (2) have a unique fixed point.

Remark 4:The fact that the equations (2) have a unique
fixed point is a well-known fact for the case whéfis a tree.
For general graphé&:, the convergence and the uniqueness
is not known. One of the main technical ingredients in this
paper is to establish the convergence and the unigqueness for
general graphs as well.

Lemma 2: The variables:*—¢ defined in (3) satisfy equa-
tion (2).

Proof: We need to show that

S — 1og e P+ PP
3 >
JEE(b)\i

This is equivalent to showing that
eiﬁhiﬂa + eﬁhiab _ eiﬁ + Z eﬁhj*)b'
JEE(b)

Now using the equations (5), (3) we see that this reduces to

showing
ZGi,,b Zvaa o ZG

Zaw " Zave  Za,




Observe that this follows from the followingZg
ZaivLgia + ZGi,bZGi,a andZg, = ZGi,aZGi,b.
b a b

IIl. CONVERGENCE OF THE ITERATIVE EQUATIONS

Consider any simple grap& and consider the iterative

Proof: Consider an arbitrary initial condition
{hi=2(0)}. The iterative equations in (1) states that

1 _
—Blog e P+ Z

J€E(®)\i

ho(t+1) O]

equations defined on it according to (1). The proof for Define F(x) to be the multi-valued function frorf? !
the convergence of the iterative equations is based on tteR?1Fl such that

following lemma:
Lemma 3:Let f :
defined as follows:

-1 a 1

—log (e # + . 7
7l L ) O
then for anyx,y € R"*:

700 = I < =5 Ix = Vil (®)
Proof: Since f(x) is differentiable, multi-variable ver-
sion of the mean value theorem implies that for any €
R"* there exist a poing on the line-segment connecting
andy in R™® such that:

fO) = fly)=Vf(2) (x-y)

From Holder’s inequality it follows that

[FO) = FI < IVF@alx = Yoo

R"™ — R be a real valued function

fx)

In order to show (8) it suffices to show thi¥’ f(z)||; <
++.—=7- Note that,

ePzre
(e=FP4>5_ eP%ka)2
IVF@Ih =312 =y e
e P+ 1 TShrss  Pepg
k.l p=l e=P+370_, ePFpa
DIy eP7ke
= Z (P43 szq)
e P+ emzs—ﬁzpq
For simp_licity of notation letd; = m then
one obtains
(1 — e PA) A
V(@ = 2=
+ Zk:l Ap
_ e P e Py | A
e P + 22:1 Ay
Now using0 < A;, < eP:
-8
e T
Vf(z < 1- =
” f( )Hl = e—B + reb r+ e 28
This completes the proof of Lemma 3. ]

{Pe(t+ 1)} = F{R™ (1))

Consider the two-iterate of functiof, i.e. let F2 = F o
F. Let F? = (f1(x),..., f2/p(X)) Where eachf; is a real
valued function oriR2/Zl,

Observe that each functiorf;(x) can be written in
the form (7) wherer,s < max,cv(dega)). Let A
maxgev (dega)), the maximum degree of a vertex .
Now using Lemma 3 for any > 2, we have:

IR +2)} = (A ()} e

= PR} (0) = FA{R"( = 2}
= max (F({h " (0h) = Sl (=2}

A (©)

m”‘[hiﬁa(t)} — {0t - 2)}

A t/2 ‘
< [ 1—a _ 1—a )
<(=reg) @) - ol

Thus the sequencfh’—%(¢)} is Cauchy and hence con-
verges to a poin{hi—?} € R2ZI. This shows that the
equations (1) converge for any graph

To show uniqueness consider two different initial condi-
tions {hi~2(0)} and {g*~(0)}. Using the same argument
as in equation (9) one has:

{0} = {g"™" ()}l

A t/2 _ _
(=rrs) 00 - a0l
(10)
so both sequence#®—¢(t)} and{g'~(¢)} converge to the
same point and this contradicts the existence of multipkfix
points.

This completes the proof of the Theorem 1 and shows that
the equations (1) converge to a unique fixed point for any
graph. ]

In the next section we show that validity of the cavity-
claims when the grapt¥ has a large girth.

IV. VALIDITY OF THE CAVITY-CLAIMS FOR GRAPHS
WITH LARGE GIRTH

Theorem 1 proves the validity of the Claim 1 for arbitrary

Next we will use Lemma 3 to prove convergence of th@raphs and in particular for graphs with large girth. Theref

cavity equations (1) for any graph.

it suffices to show the validity of Claim 2 for graphs with

Theorem 1:For any graphG the set of cavity equations large girth. Before starting the proof, we note the follogvin
(1) converges to a unique fixed point independent of itsahiti bounds on the values of the fixed points of the equation (1).

conditions.

The proof of this lemma is straightforward and is omitted.



Lemma 4:Let {hi—%} be the the unique fixed points of For simplicity of notation let us denote
the iterative equations on any graghwith maximum degree

A. Then u:%log [1+(A—1)625], K= A

e~28 + A’

1 i—a
3 log [e™” + (A —-1)e”] <h™* < 1. It is easy to see that < 3 for large enoughs.

Consider a fixed grapliz of size n. Let r, denote the Let i be an edge that is connected to the verte¥e will
maximum distance such that the subgra@ly; r,), formed show that the free-energy shift F; for the graphG can be
using the vertices that are within a distance from the approximated by the free energy shift corresponding to the
vertexa is a tree. Let the vertices i6/(a;r,) be denoted tree G(a,r,).
by V(a;r,). Consider the set of edges;, that connect |Lemma 6:Let§ = vK("a=1/2 Then,

V(a;rq) andV(a;ry)¢. Further let the subgraph formed by
the verticesV (a;r,)¢ be denoted as$f (a;r,). =280 2(G(a;7a)) < Z(G) < 6266M

This decomposes the original gragh into three parts: Z2(Gilasra)) = Z(Gi) — Z(Gia;ra))
the subgraplti(a;r,), the set of edge€’, and the subgraph Proof: Observe that
H(a;r,). Pick any subset of the edgésc C. Let Mp C
M(G) denote the set of matchings @& that use precisely Z(G) = Z Z(Gv,(a;710))Z(Hyp (a;74))
the subset of edgeB in C. Let Vo C V(a;r,) denote the D
set of vertices inG(a;r,) that are the endpoints of the edge
C. Let Vp C V¢ denote the set of vertices ifi(a;r,) that
are the endpoints of the edgés Further, letU, denote the

set of vertices irH (a; r, ) that are the endpoints of the edges 2(Gy) = Z Z(Gvy.i(a;1a)) Z(Hyp (a;74))
D

%imilarly for G,, obtained by removing edgein G, we
obtain

D.

DenoteG(a;r, — 1) as the sub-graph formed using the

vertices that are within distaneg—1 from vertexa. Observe  Lethj;~® be the converged values of the iterative equations
that for the case whe = (). Combining the result for trees and

Gla;ra) O Gy, (a;1a) D Glaire — 1) our bounds on the converged valuestsf e for different
ne A v initial conditions in Lemma 5 we know that
Lemma 5:Let D; and D, be two different subsets of e i Z(Co(a:r
C. Let {h"=} {g7—"} be the unique fixed points of the 14 ePtho " Thy™"=20) < M
Z(Gvp.i(a;ra))

iterative equations on the grapis,, andGy,,,. Then <14 PR 20)

|hi—>a _ gi—>a|

A (ra—1)/2 1 2
< <m> Blog[l—l—(A—l)e ]

Therefore for all choices ab the following holds

Z2(G(@ra)) aps — ZGryp(@1a)) _ Z(G(ai1a)) s

Proof: SinceGv,, (a;7a), Gy, (a;7a) D Gla;ra —1) Z(Gi(a;ra))_e = Z(Gyy a(aima)) = Z(Gi(a;a))
we can sef{h/~%(0)} = {g’~t(0)} for the messages in the '
sub-graphG(a; rq — 2). Using this result and the decompositions B{G) and

To bound the difference in the messages at the bounda#(G:) presented above we obtain that
depending on choice oD, observe the following: Let ) )
be any vertex at distance, — 1 from a« and letu be Me*m‘S 2(G) < Z(G(aira)) 2P0
any neighbor ofv that is at distancer, — 2. Let 0 < Z(Gi(a;ra)) Z2(Gi) = Z(Gi(a;ra))

<

01,92 < A denote the degree of the vertexin the graphs n
Gvp, (a;7a), Gvp, (a;74) respectively. Let denote the edge  Opserving that the boundary conditions do not influence
joining v to u. Then from Lemma 4 we see that the value ofhi~¢, the fixed points of the iterative equations

1 A 2 for the graphG, we can infer that
he™" — g% < =log [1 4+ (A —1)e*?].
| 9 5108 [1+( )e*]

We can use Lemma 3 to determine the propagation of thi€1 + eﬁ(hiﬂwhiﬂb)) e 200 < @

difference to the messageseaatlt is not difficult to see from Z(G;)
repeated use of Lemma 3 that < (1 + eﬁ(hi~a+hi—>b)) 289

[ = g™ S In a very similar manner to the removal of an edge, we can
A rem /2 also show that for somé < log(A) + §
(7ra)  plsbra-ne = loa(&)
e . ~ . ~

2(Glaira)) s - 2(G) _ Z(Glaira) 5y

B Z(Guwra) T Z(Ga) ~ Z(Galaira))



Similar to the case of the removal of the edge, the above Observe that,
equation implies that

Zay, %6p,_,
e S A P Z(G) XGu [Lev Zop, o [acv Zom 1m
i€E(a) Z(Ga) Xep . 11 Zop, Z6p,_,
Tt i€E\E, Zag HieE\Er,l Zoy .
i—a H -1
< _ﬁ—i- eﬁh e 5. ZGp, ZGp,. o
zega) - HaGV ZGET,l ZGET,l,a
H ZGET ZGET,'L -
A. Proof of Claim 2 for graphs with large girth i€E\Er Zoy |\ Zep,_, .
(14)
o ) N Let a,. be an endpoint of the edge. We will estimate the
Let G be a graph that satisfies tlgérth condition product
8(logv + log 3 + 2logm + log A + 10g =—77=) _
girth(G) > D Zow, ( Zoma \
10g b7d HaGV ZGE ZGE‘ .
(12) r—1 r—1- —
wherem = |V| + |E| H Zcg, ( ZGg, )
Theorem 2:For anye, 3 > 0. Let G be a graph satisfying €E\E: Zap, _, \ Zop, .
the girth condition. Then the free energy shifts approxesat
Zg within factor1 + ¢, i.e. by partitioning the vertices and edges into two groups;ehos
I1, 2= that are inG(a,, g) and those that are outsid&(a,, g).
Zg(l+e) ' <Xg2 —2 %0 < Za(1+e). (13) Using equation (11) whenever¢ Gg, . (a,; g), we have

L 75~
Note that whenE = (), then X = 1 and so (13) holds. 7 7 -1
. —v / GE, GEra v /
Let E = {i1,is,...,i } be an ordering of edges and= ¢ ABKIE < = < = ) < eVAPKYE(15)

: . . ! A Z,
|girth(G)/4 — 1]. The following lemma is crucial to prove Gepoy \ 70810
Theorem 2.

Lemma 7:For all1 <r < |E|: Similarly whenevet ¢ Gg._, (ar; g) then from Lemma 6

we have
ZGEr equﬁng/z < XGEr < ZGE’I‘ el/Aﬁng/z
ZGET—I XGE,_l ZGET,1 1
. . A equﬁKg/z ZGET ZGET,'L < e,,AﬁKyﬂ (16)

where £, = {i1,...,i,}, K = x72=5 andm =n + |E|. = Zaw . \Zaw, . = -

Before proving Lemma 7 we will show how it can be used
to prove Theorem 2.
Now we consider the case wheni € G(a,, g).
SinceGg, ,(ar;9) C Gg,_,(ar;2g) and both graphs are
ees, we can use (11) fare Gg,_, (a,; g) to obtain

Proof: [Proof of Theorem 2]
Assuming Lemma 7 and taking the telescopic product of
r =1 to |E|, we obtain B

|E| ||
equﬁmng/z H ZGET < H XGET equgKW ZGET < ZGEr(ar:,g) < ZGET euAﬁKW
e ZGE7‘71 N r—1 *GE,_, ZCpra ZGET,Q(GT;.(J) " Zcg,.
E
BN § P Z Z z
e L Zs, . o VABKY/? GE,_, < GE,_,(ar;g) < Gp,_, SV ABK2
and hence N Zapse ZGET?IYQ(MQ) Bt a7
e*l/Aﬁmz(ﬁy?/zZG < X < euAﬁmz(ﬁymZG. Similarly, fori € Gg,_, (a,;g) using Lemma 6 we have
The as;u@gt;gns on the glrth.of the graph in (12) implies —onpro Zan, _ 261, (ang) _ N I
that ev29m < 1+ ¢ and this completes the proof.m € = = €
G, LGp,ilarg)  L0g.
Therefore, all that remains is to prove Lemma 7.
Proof: [Proof of Lemma 7] N ZGp,_, < Zép,_, (ar.9) < ZGe,_, vABK9/?
We need to show that Zey .. Zaw  iarg  Zos :
r—1: r— 1,807l r—1,%
ZGEr e*l/Aﬂng/z < XGEr < ZGE’I‘ vABmMmK9I/? (18)

Zay = Zag ' Note that,

r—1



(7]

g

H 26, Z6p,.a
agGlarig) Zap | \ Zag

XGEr _ r—1:@
X = — X [8]
Ge,_, 1—[ ZGET ZGET,i
i#G(ari9) Zap, | \ Zon, )
Z _1
Zay, e,
HaGG(ar;g) ZGE,,:G. HaGG(ar;g) ZGE, . [20]
Zap, Zag
o1
HZEG(GMQ) Zay, HiEG(aM!]) 26, . (11]

(19)
Using equations (15), (16), in the first product and equ
tions (17), (18) in the second product (and from the definitio
of X¢), we obtain

(13]
e*l/Aﬁng/z XGET(U«M.(]) XGET
Xep, \(ar9) ~ Xép,, [14]
< rABmKI/? Xap, (arg) [15]
N XGET,I(IIT;!])
Lemma 1 implies thatXy; = Zg when G is a tree. [16]
Therefore, sincé7g, (ar;9), Gg,_,(ar; g) are trees we can
ar;g H ar;g 17
replacew with ZZGET# and subsequently (7]
Gp,_,(arig) GET (ar;g) 18]
. Ey(arig) GE,
using Lemma 6 to replacm with —E,\fl' we
complete the proof of Lemma 7. B 19
V. CONCLUSIONS AND FUTURE WORKS [20]

In this paper we show the validity of the cavity method for
the problem of counting the number of matchings for graphsy;
with large girth. The girth condition we have in this paper is
quite restrictive and several graphs of practical relegate
not meet this condition. However we hope that the methods
presented here can be extended in a straightforward manner
to random regular graphs and Erdds-Rényi graphs. This
would lead to, as observed in [21], tighter estimates for
counting the number of matchings in such graphs.

We also demonstrate the convergence and uniqueness of
the iterative equations for arbitrary graphs. The techesqu
used in this paper do not heavily depend on the nature of
the problem and therefore there is a good possibility ofeéhes
techniques having a wider interest and applicability toeoth
important problems were cavity method has been applied.
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