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This paper provides evidence that the arrival of an additional low-acuity patient substantially increases the

wait time to start of treatment for high-acuity patients, contradicting the long-standing prior conclusion in

the medical literature that the effect is “negligible.” Whereas the medical literature underestimates the effect

by neglecting how delay propagates in a queuing system, this paper develops and validates a new estimation

method based on queuing theory, machine learning and causal inference. Wait time information displayed to

low-acuity patients provides a quasi-randomized instrumental variable. This paper shows that a low-acuity

patient increases wait times for high-acuity patients through: pre-triage delay; delay of lab tests ordered

for high-acuity patients; and transition delay when an ED interrupts treatment of a low-acuity patient in

order to treat a high-acuity patient. Hence high-acuity patients’ wait times could be reduced by: reducing

the standard deviation or mean of those transition delays, particularly in bed-changeover; providing vertical

or “fast track” treatment for more low-acuity patients, especially ESI 3 patients; standardizing providers’

test-ordering for low-acuity patients; and designing wait time information systems to divert (especially when

the ED is highly congested) low-acuity patients that do not need ED treatment.

Key words : Health Care Management, Causal Inference, Empirical Research, Queueing Theory,

Randomized Experiments

1. Introduction

Emergency Departments (EDs) operate according to the principle that high-acuity patients (HAPs)

are treated before low-acuity patients (LAPs) because one or two minutes of additional wait time

(time elapsed from arrival in the ED to start of treatment) for a HAP can increase the risk of adverse

health outcomes, length of stay in hospital and associated costs. Hence operations management

literature commonly models an ED as a preemptive-priority queuing system wherein LAPs have

zero effect on HAPs’ wait time. A long-standing conclusion in the empirical medical literature is

that LAPs have “negligible” effect on HAPs’ wait time (Schull et al. 2007, Zane 2007).
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This paper contradicts that long-standing conclusion. §5 and §7 show that the prior approach

in the medical literature systematically underestimates the effect of an additional LAP on wait

time for HAPs by neglecting how delays propagate in a queuing system. §4 proposes a new esti-

mation approach; §7 validates the new approach through simulation, and shows that it corrects a

substantial underestimation inherent in the prior approach. Using the new approach and observa-

tional data from five hospitals’ EDs, §4.3 shows that the effect of an additional LAP on wait time

for HAPs is substantial- more than an order of magnitude greater than estimated via the prior

method. Moreover, for our partner hospital, San Mateo Medical Center (SMMC), §5 incorporates

a quasi-randomized instrumental variable (wait time information displayed to LAPs) to correct for

unobserved variable bias, which more than doubles the estimated effect size. We conclude that an

additional LAP has a substantial effect on HAPs’ wait time.

Through empirical and queueing theoretic analyses in §4.3-5 and §6, we characterize three mech-

anisms by which a LAP increases HAP wait time: (1) Delay before triage, i.e., before a HAP is

prioritized; (2) Delay in lab tests for HAPs; (3) Transition delay when an ED interrupts treatment

of a LAP in order to treat an HAP. In a queueing model with such transition delays, §6 shows that

increasing the LAP arrival rate more greatly increases the expected wait time for HAPs when the

ED is busy and crowded. Variability in transition delays and service times also exacerbates the

impact of LAPs on HAP waiting. This sensitivity analysis guides the design of our estimator by

indicating important interaction terms to include.
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§8 describes a variety of ways to reduce wait time for HAPs, including vertical (in chairs rather

than beds) treatment of some ESI 3 LAPs as piloted in the San Mateo Medical Center ED.

2. Related Literature

Carlin and Park (1970) were the first to empirically estimate the externality- total additional

waiting for other users- caused by arrival of one additional user to a queuing system. Considering

the queue of planes waiting to land at an airport, they observed that arrival of an additional plane

”shoves those following it one space back in the queue for a runway” and thereby causes a delay

for every following plane that propagates until the end of the busy period, i.e., until the system

empties. Hence to maximize the social welfare generated by a queuing system, one must quantify

the externality and deter users from waiting for service when the externality exceeds the user’s

private benefit, e.g., by charging a fee that reflects the externality (Naor 1969, Carlin and Park

1970). A rich literature quantifies the externality in various models of queueing systems and shows

how to maximize social welfare accordingly, through sequencing priority rules, pricing, subscription,

forecasting, admission control/diversion and providing wait time information; see, for example,

Mendelson and Whang (1990), Haviv and Ritov (1998), Plambeck and Wang (2013), Xu and Chan

(2016), Haviv and Oz (2016), Hassin and Haviv (2003) and literature surveyed therein.

The validity of standard causal inference methods, such as the method of Schull et al. (2007),

relies on a “no interference” condition (Imbens and Rubin 2015) that is violated by delay propaga-

tion in a busy queuing system such as an ED. To the best of our knowledge, this paper is the first

to provide a validated estimator for the expected externality for HAPs - total additional waiting

for HAPs- caused by the arrival of one additional LAP to an ED.

A rich literature provides motivation for reducing HAPs’ wait to start treatment in the ED. For

some HAPs, one or two additional minutes of waiting for treatment can be fatal (Herlitz et al. 2005,

Cardosos et al. 2011). Additional minutes of waiting increase HAPs’ subsequent lengths-of-stay

in the hospital (Chan et al. 2016), which in turn drives up the cost of treatment (Kaiser 2014,

Dasta et al. 2005) and increases the risk of acquiring secondary infections (Dulworth and Pyenson

2004, Donowitz et al. 1982). Additional minutes of waiting prolong pain, increase psychological

suffering, and decrease patients’ satisfaction (NQMC 2016). A wide range of evidence, in turn, links

low satisfaction with poor compliance with provider-recommended care and poor health outcomes

(Doyle et al. 2013). All patients suffer from waiting, but the costs and risks of waiting are far

greatest for HAPs, as a matter of definition of their high-acuity triage category (NQMC 2016).

Crowding in an ED increases HAPs’ wait time, associated mortality, and other adverse clinical

outcomes (McCarthy et al. 2009, Bernstein et al. 2009); Hoot and Aronsky (2008) and Morley et al.

(2018) survey the literature on causes and consequences of ED crowding and potential solutions.
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To develop operational insight to mitigate crowding and waiting, researchers model the ED

as a priority queuing system (HAPs are sequenced for treatment before LAPs). Xu and Chan

(2016) recommend using information about future arrivals to decide when to divert LAPs to

primary or urgent-care facilities and divert HAPs to another ED. Baron et al. (2019) consider joint

policies for ambulance diversion and/or reservation of beds and other resources in case HAPs arrive

(keeping beds empty while LAPs wait for a bed). Huang et al. (2015) characterize an asymptotically

(in heavy traffic) optimal sequencing rule for doctors to provide initial and ongoing treatments

to heterogeneous ED patients, to minimize congestion costs and satisfy constraints on HAPs’

wait times for initial treatment. Saghafian et al. (2012, 2014) study segmentation of patients for

treatment by separate teams of providers, and provide an extensive review of literature on triage,

sequencing and segmentation in EDs.

EDs are commonly modeled as preemptive priority queues because, as explained in Chisholm

et al. (2000) and Green (2006), EDs interrupt treatment of a LAP when necessary to treat an HAP.

For example, Lin et al. (2014) uses a preempt-resume multi-priority M/G/c1/∞ queue to estimate

patients’ wait time to access the ED; Siddharthan et al. (1996) model an ED as a preemptive

priority queue with a Poisson arrival process and exponential service times; and Fiems et al. (2007)

use a preemptive priority queue to model an ED’s radiology facilities. In these models, LAPs

have no effect on the wait time for HAPs. Other papers incorporate both preemptive and non-

preemptive customer classes to account for a range of acuity levels and represent preemptible and

nonpreemptible stages of treatment (Gupta 2013, Laskowski et al. 2009).

The empirical healthcare operations literature shows that interrupting a provider’s workflow

decreases efficiency and quality of care. Gurvich et al. (2020) survey that literature and report that

interrupting a physician’s charting to switch to another task requires substantial changeover time.

This paper describes how interrupting treatment of a LAP in order to treat a HAP causes

transition delays in an ED, and contributes to the queuing literature by analyzing a preemptive-

priority queue with such transition delays. In the most closely-related queuing literature, Cho and

Un (1993) and Drekic and Stanford (2000) characterize the optimal policy in an M/G/1 queue for

a decision about whether and when to preempt, depending on the progress of a customer’s service.

Koole (1997) characterizes the optimal dynamic policy in an M/M/1 preemptive priority queue

with two priority classes and switching costs.

Transition delays caused by interrupting treatment of a LAP in order to treat a HAP may help

to explain empirical observations (Ardagh et al. 2002, Arya et al. 2013, Soremekun et al. 2014)

that Fast Tracking LAPs (dedicating some providers to serve only LAPs, without interruption)

does not increase the wait time for HAPs. Whereas most EDs Fast Track only the LAPs with

minimal treatment requirements (ESI 4 and 5), Arya et al. (2013) and Soremekun et al. (2014)
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suggest extending Fast Track service to ESI 3 LAPs, especially ones that could thus be treated

“vertically” without occupying a bed. This paper provides empirical evidence that doing so could

potentially reduce waiting for HAPs.

The empirical medical literature argues that LAPs should not be diverted from EDs, because

they have negligible effect on HAPs wait times. An important nuance in this literature arises from

the fact that the ESI and the Canadian Triage and Acuity Scale (CTAS) differ for LAPs: Whereas

ESI levels 3, 4, and 5 sort LAPs by descending treatment resource requirements, CTAS levels 3, 4

and 5 sort LAPs by descending acuity. Vertesi (2004) argues that patients should not be sent home

based upon the CTAS triage level alone, for two reasons. The first is that a fraction of patients at

even the lowest-acuity triage levels CTAS 4 and 5 need ED and hospital treatment, even though

they are able to safely wait for that treatment. Second, the other CTAS 4 and 5 patients require

minimal ED resources for treatment, so if they were sent home without treatment, HAPs’ wait

times would be “essentially unaffected”. Reinforcing that second reason, Schull et al. (2007) focus

on CTAS level 4 and 5 patients who did not arrive by ambulance and were discharged home and

conclude that these LAPs have a “negligible” effect on wait times for HAPs. Though Schull et al.

examined the effect only of a subset of LAPs, the New England Journal of Medicine disseminated

their conclusion as: “Low-acuity patients had a clinically negligible effect on time to treatment for

higher-acuity patients” (Zane 2007). To the best of our knowledge, this is the first empirical paper

to challenge that long-standing conclusion, perhaps because the analysis of Schull et al. (2007) is

based on an impressive data set from 110 EDs. Unlike Vertesi (2004) and Schull et al. (2007), this

paper considers all LAPs, and shows that an additional ESI 4 or 5 LAP causes substantial delay

for HAPs (Table EC.4) and the effect of an ESI 3 LAP is greater.

The instrumental variable (IV) approach described in this paper is motivated by empirical service

operations management literature. Chan et al. (2016) and KC and Terwiesch (2012) use ICU

congestion as an IV to estimate, respectively, the effect of patients’ wait for admission to the ICU

on their length of stay in the ICU, and the effect of patients’ length of stay in the ICU on their

likelihood of readmission. We similarly use wait time information displayed to LAPs as an IV to

estimate the effect of an additional LAP that waits to start treatment on HAPs’ wait time for

high-acuity patients. Wait time information provided to customers influences whether or not they

choose to wait for service, as demonstrated by empirical studies in call centers (Qiu et al. 2017, Yu

et al. 2017a,b), a ride sharing system (Yu et al. 2020), and an ED (Ang et al. 2015). In EDs that do

not provide wait time information, patients may nevertheless infer wait time information from the

number of patients waiting, the flow rate, and the actual wait time, and accordingly decide whether

or not to wait for treatment (Batt and Terwiesch 2015). ED wait time information published on

the internet influences patients’ choice of which ED to visit (Dong et al. 2019).
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Medical literature calls for reducing the number of patients that Leave an ED Without Being

Seen (LWBS) (Carter et al. 2014). Relatedly, we find that inflating the wait time displayed to

LAPs reduces the number that LWBS. The drawback is that, especially when the ED is busy and

crowded, reducing the number of LAPs that LWBS causes HAPs to wait longer.

3. Data

We employ data from five hospitals. Hospitals 1, 2 and 3 are private teaching hospitals located

in New York City and Hospital 4 is a private teaching hospital located in California. The fifth

hospital, San Mateo Medical Center (SMMC), is a non-teaching, public hospital located in San

Mateo County, California. Figure 1 shows the process flow at all five hospitals’ EDs. For each

patient visit, we have timestamps for events in squares in Figure 1 and use the timestamps to derive

information such as the hour of the day in which a patient arrived, how many other patients were in

the ED when that patient arrived, and the patient’s wait time, defined as the time elapsed between

registration in the ED and provider sign-up to start treating the patient. The data includes the

Figure 1 ED process flow diagram. Squares are events recorded in patient-visit data.

ESI index assigned to each patient at triage. Recall from page 1 that ESI 1 and 2 are the HAPs

who should not wait, whereas ESI 3, 4 and 5 are LAPs.

Table 1 summarizes the time period, total number of patient visits, high- and low-acuity mean

wait time, and high-and low-acuity mean arrival count in the data from each hospital. For SMMC

we have data from three distinct time periods. The 2015 SMMC data is for the time period in

which we partnered with SMMC to provide quasi-randomized wait time information to LAPs at

triage, which serves as an instrumental variable in §5. Therefore all results in the body of this

paper are based on 2015 SMMC data, with 2012-13 SMMC data for variable selection. (Appendix

A reports similar results in 2019 SMMC data; during 2019 SMMC provided wait time information

at registration, which creates estimation issues discussed in Appendix A.)
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Table 1 Time period, number of patient visits, and summary statistics

SMMC Hospital 1 Hospital 2 Hospital 3 Hospital 4

Start Date 21/6/12 13/8/15 1/4/19 15/11/09 1/1/09 1/1/09 20/8/11
End Date 26/9/13 15/10/15 31/12/19 31/3/12 31/12/11 31/12/11 18/8/16
Patient visits 52,167 7,057 28,879 176,497 324,076 186,833 182,555

Mean Wait Time HAP 25.3 23.7 24.6 23.5 20.5 19.4 30.7
(Minutes) LAP 55.6 57.8 56.7 60.8 35.1 27.0 73.5

Mean Arrival Rate HAP 11 12 10 14 28 17 9
(Patients/Day) LAP 102 100 95 191 268 154 91

4. Estimating the Effect of an Additional LAP on HAP Wait Time

§4.1 explains how prior medical literature under-estimates the effect of an additional LAP on the

wait time for HAPs, then §4.2 proposes our estimation approach, and §4.3 reports our estimates

as well as estimates derived from Schull et al. (2007) based on the observational data.

4.1. Under-Estimation in the Emergency Medicine Literature

The approach taken in the emergency medicine literature (McCarthy et al. 2009, Schull et al.

2007) aggregates data by time interval and does not directly account for the effect of an additional

arrival during the time interval on crowding and wait time during subsequent time intervals. In

particular, Schull et al. (2007) aggregate data into 8-hour time intervals, regress the mean wait

time for HAPs arriving in an 8-hour-interval on the number NL of LAPs that arrive during that

same 8-hour-interval, and interpret the coefficient of NL as the effect of one additional LAP arrival

per 8 hours on the mean wait time for HAPs.

A fundamental insight from queueing theory is that delay caused by an additional arrival prop-

agates throughout a busy period for the queueing system. EDs operate continuously, 24 hours per

day, and rarely empty. Hence in an ED, an arriving LAP could delay the treatment of subsequently-

arriving LAP or HAPs, which in turn could delay the treatment of subsequently-arriving LAP or

HAPs, and so on, causing delay for subsequent arrivals for long afterwards.

Therefore Schull et al.’s approach underestimates the effect of a LAP arrival on HAP waiting by

failing to account for HAP waiting in a subsequent 8-hour-interval. Think, for example, of a LAP

that arrives at the end of an 8-hour-interval; all the HAP waiting caused by that LAP occurs in a

subsequent 8-hour-interval. The effect of a LAP arrival on HAP waiting in subsequent time intervals

violates the no interference requirement in the Stable Unit Treatment Value Assumption (Imbens

and Rubin 2015), invalidating Schull et al.’s estimation method and all causal inference methods

that rely on SUTVA (Sobel 2006). Not only do Schull et al. underestimate the effect of a LAP

arrival on HAP waiting, Schull et al.’s use of standard regression confidence intervals is incorrect

because interference between adjacent 8 hour intervals (due to delay propagation) increases the

correlation of outcomes in these intervals. Hence we propose a new approach that accounts for the

temporal causal relationship between a LAP arrival and subsequent waiting for HAPs.
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4.2. Proposed Estimation Approach

Consider the waiting externality for HAPs caused by arrival of a LAP (called “Mary”). The wait

time for any HAP who arrives after Mary may change because of Mary’s visit to the ED (Hassin

and Haviv 2003). Let ξi denote the change in the wait time for HAP i caused by Mary’s visit. Let

N(τ) denote the set of all HAPs who arrive during the next τ > 0 units of time after Mary does.

The truncated externality caused by Mary is

Xτ =
∑
i∈Nτ

ξi . (1)

To estimate the expected truncated externality Xτ for an additional LAP arriving at a randomly-

chosen time, we propose a temporal causal framework. We associate the number of LAPs arriving

within a short time interval of length ε > 0 with wait time for HAPs during the next τ units of

time. Specifically, for a given time point t, we define predictor variable NL
ε to be the count of

any LAPs that arrive within the time period [t− ε, t) and remain in the ED to start treatment.

We define ητ to be the sum of wait time taken over all HAPs who arrive during the time period

[t, t+ τ ]. We divide each day into three 8-hour intervals (12:00 AM-7:59 AM, 8 AM-3:59 PM, and

4:00 PM-11:59 PM), randomly select one time point t within each 8-hour-interval, and calculate

the variables NL
ε and ητ for each of those randomly-sampled time points. Thus, each day of data

contributes three samples for the regression analysis. Due to the right-skewed distribution of ητ ,

we use its log transform in the regression:

log(ητ ) = β0 +β1N
L
ε +β2N

H
τ +β3N

L
τ + Interaction Terms +β8

~Cτ + noise , (2)

wherein NH
τ and NL

τ denote the count of HAP and LAP arrivals during [t, t+ τ ], respectively, ~Cτ

is the set of control variables for [t, t+ τ ], and

Interaction Terms = β4N
L
ε N

H
τ +β5N

L
ε N

L
τ +β6N

L
τ N

H
τ +β7N

L
ε N

L
τ N

H
τ . (3)

Motivating those interaction terms, §6 proves in a queueing model of an ED that, insofar as the

system is busy with high arrival rates of HAPs and LAPs, additional LAP arrivals will more greatly

increase HAP waiting. For samples with ητ = 0, to address the log(0) =−∞ issue, we apply the

two-part model approach from Section 19.3.4 of Greene (2012). The average relative change

Aτ ≡
∂

∂NL
ε

E
[
log(ητ )|NL

ε ,N
H
τ ,N

L
τ

]
= β1 +β4N

H
τ +β5N

L
τ +β7N

L
τ N

H
τ (4)

represents the multiplicative factor by which an arriving LAP increases the aggregate wait time

for HAPs during the subsequent period of length τ . Our estimator for the expected truncated

externality Xτ is

X̂τ ≡
1

n

n∑
i=1

[η̂τ (N
L
ε,i + 1)− ητ (NL

ε,i)] =
1

n

n∑
i=1

ητ (N
L
ε,i)[e

Âτ,i − 1] , (5)
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where n is the number of observations in the regression analysis, ητ (N
L
ε,i) is the observed value for

the i-th sample, and the estimate Âτ,i is obtained by using the estimated coefficients β̂0, · · · , β̂7,

observed values of NL
ε,i,N

L
τ,i,N

H
τ,i, and Eq. (4).

Dozens of variables are candidates for ~C in (2) but including them all could obscure any effect

of LAP arrivals NL
ε due to high correlation between NL

ε and other variables. To create a sparse

and informative ~C, we applied Lasso for variable selection on a holdout dataset. Hospital 1, 2, and

3 provided data spanning 2 years, so we use the first year for variable selection and the second

year for analysis. Hospital 4 data spans 5 years, so we used the first year for variable selection

and the remaining 4 years for analysis. For variable selection for SMMC, we used historical data

spanning the 15 months starting in January 2013. §EC.3 lists the selected control variables ~C

for each hospital. Each includes the time of day and season in which the sample time t occurs,

and patient counts at time t: number of LAPs waiting to begin treatment, number of LAPs in

treatment, and number of HAPs in treatment.

To generate confidence intervals, we use a bootstrap technique to calculate a 95% confidence

interval for the expected truncated externality at a particular τ . Moreover, as we consider multiple

levels of τ (multiple regressions) we apply a Bonferroni correction to generate larger confidence

intervals that reliably contain the true 95% confidence intervals for all those levels of τ . §EC.2

provides more detail and validation for these Bootstrap and Bonferroni techniques.

4.3. Results in Observational Data

For each of the five hospitals, our estimate of the expected truncated externality X̂τ initially

increases with τ and then converges. For SMMC and Hospital 4, X̂τ increases over the entire range

of τ from 0.5 to 12 hours, demonstrating that the effect of an additional LAP arrival on HAP

waiting can persist for longer than 12 hours; see Figure 2, top panels. For Hospitals 1, 2 and 3, X̂τ

converges within τ of 8 hours, as shown in Figure 5 in Appendix A.

Table 2, top row, reports the expected externality truncated at τ = 8 hours, X̂8, for each of the

five hospitals. Table 2 focuses on that 8 hour time interval for purposes of comparing estimates by

our approach and that of (Schull et al. 2007). Readers should keep in mind that X̂8 excludes any

effect of an additional LAP arrival on wait time for HAPs that arrive more than 8 hours later and

so, particularly for SMMC and Hospital 4, underestimates the total effect of the additional LAP

on HAP waiting. Increasing τ from 8 hours to 12 hours increases our estimate of X̂τ by 15% to 11

minutes at SMMC, and by 38% to 3.6 minutes for Hospital 4, respectively.

Table 2, second row, reports the estimate by Schull et al.’s method for the effect of one additional

LAP arrival in an 8 hour interval on the expected wait time per HAP that arrives in the 8 hour

interval. For comparison with Schull et al.’s per HAP estimate in Table 2, we estimate the effect of
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one additional LAP arrival on the expected wait time per HAP arriving in the next τ = 8 hours,

by dividing X̂τ from (5) by the number of HAPs that arrive during the interval of length τ

1

n

n∑
i=1

η̂τ (N
L
ε,i + 1)− ητ (NL

ε,i)

NH
τ,i

=
1

n

n∑
i=1

ητ (N
L
ε,i)[e

Âτ,i − 1]

NH
τ,i

(6)

Our per HAP estimate- and also that of Schull et al. depend on the choice of focal time interval

(8 hours for the results reported in Table 2). For Hospital 1, our per HAP estimate decreases from

0.6 (±0.1) at τ = 2 hours to the 0.3 (±0.2) at τ = 8 hours reported in Table 2, apparently because

the effect of an additional LAP arrival on HAP wait time largely occurs within 2 hours after the

LAP arrival; see Figure 5 in Appendix A. Similarly, for Hospital 2, our per HAP estimate decreases

from 0.6 (±0.1) at τ = 3 hours to the 0.4 (±0.2) at τ = 8 hours in Table 2. Figure 2 shows how

our per HAP estimate varies with the length of the interval τ at SMMC and Hospital 4; analogous

figures for Hospitals 1, 2, 3, and SMMC (using 2019 data) are in EC.1 with per HAP estimates

summarized in the ‘per HAP’ row in Table 2 and 0.3 (±0.2) for SMMC using 2019 data.

Figure 2 Estimated expected truncated externality X̂τ (dot) with bootstrap 95% confidence interval (inner

error bars) and Bonferroni-corrected 95% confidence interval (outer error bars).
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Table 2 Estimated effect (and 95% confidence interval) of one additional LAP arrival in an 8

hour interval on expected wait time per HAP and total for all HAPs arriving in 8 hour interval.

SMMC Hospital 1 Hospital 2 Hospital 3 Hospital 4

total Ours 9.6(±1.4) 2.4(±0.6) 2.8(±0.5) 1.9(±0.7) 2.6(±0.5)

per HAP
Ours 1.1(±0.4) 0.3(±0.2) 0.4(±0.2) 0.5(±0.2) 1.2(±0.3)

Schull et al.’s -0.03(±0.08) -0.19(±0.09) -0.08(±0.10) 0.05(±0.02) 0.07(±0.02)

Our estimates in Figure 2 and Table 2 show that in all five hospitals, an additional LAP arrival

substantially increases the expected wait time for HAPs, contradicting (Schull et al. 2007). Schull

et al.’s approach incorrectly suggests that an additional LAP reduces HAP wait time in Hospital

1 and has negligible effect in the other hospitals. (Recall from §4.1 that Schull et al.’s method of

generating confidence intervals, replicated with the Schull et al. estimates in Figure 2 and Table

2, also is incorrect.) The effect is clinically significant because, as documented in §2, an additional

minute or two of wait time can increase risk of mortality, adverse health outcomes and length of

hospital stay for a HAP. Moreover, our estimates show the effect of one additional LAP arrival

on HAP wait time. In Hospital 3, with smallest estimated total effect of 1.9(0.7) minutes of extra

HAP wait time per LAP arrival, 268 LAPs arrive per day, so if 5 or 10% of those LAPs could be

safely diverted, the benefit for HAPs could scale up accordingly.

Why is the total effect of an additional LAP arrival on expected wait time for HAPs higher at

SMMC than Hospital 4, whereas the per HAP effect is similar at SMMC and Hospital 4? One

reason apparent in Table 1 is that the HAP arrival rate is higher in the SMMC 2015 data than in

Hospital 4. Intuitively, the effect of an additional LAP arrival on wait time for HAPs that arrive in

the next τ units of time would tend to increase with the number of HAPs NH
τ,i that arrive, whereas

our per HAP estimate (6) decreases with that NH
τ,i.

To shed light on when and how LAPs delay HAPs, we study each of the three stages of waiting

depicted in Figure 1: pre-triage wait (time elapsed from registration to start of triage), post-triage

wait (time elapsed from start of triage to start of treatment) and wait for test results (time elapsed

from when a test is ordered until the lab returns the results) shown in Figure 1. We find that

LAPs substantially increase all three stages of waiting for HAPs. Furthermore, we examine how

the post-triage externality differs during hours that an ED operates a Fast Track, in comparison

with hours with no Fast Track, and by subcategory of LAP. Schull et al. (2007) did not consider

these three stages of waiting, nor account for Fast Track, likely due to data limitations. Our partner

hospital SMMC provided the additional data required for these analyses, so we focus on SMMC

in the remainder of this section.

Regarding pre-triage delay, SMMC nurses explain that the ED is forewarned of the arrival of

some HAPs so can prepare to expedite them through triage to treatment, but many other HAPs
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must wait before a triage nurse determines that they are of high-acuity. LAPs ahead in the queue

for triage cause those HAPs to wait longer to be triaged and prioritized. To estimate the pre-triage

expected truncated externality, we calculate X̂τ using the pre-triage wait time for HAPs and letting

NL
ε be the count of LAPs that arrive within the ε interval and stay to start triage. See the left

panel of Figure 3. The expected pre-triage externality truncated at τ of 12 hours is 4.5 minutes

(bootstrap 95% confidence interval [3.4,5.7]).

To estimate the post-triage expected truncated externality, we calculate X̂τ using the post-triage

wait time for HAPs, in NL
ε the count of LAPs that start triage within the ε interval and stay

to start treatment, NL
τ the number of LAPs that start triage during [t, t+ τ ] and wait to start

treatment, and NH
τ the number of HAPs that start triage during [t, t+ τ ]. See the right panel of

Figure 3. The expected post-triage externality truncated at τ of 12 hours is 5.8 minutes.

Figure 3 In left panel, the estimated expected pre-triage truncated externality X̂τ (dot) with bootstrap 95%

confidence interval (inner error bars) and Bonferroni-corrected 95% confidence interval (outer error bars). In right

panel, the post-triage analog.

Between 12 pm and 10 pm on weekdays, to mitigate LAPs’ long wait times while the ED is

most busy and crowded, SMMC operates a Fast Track : rather than prioritize HAPs, a dedicated

set of providers treat only LAPs. This post-triage change in sequencing during “Fast Track Hours”

(weekdays from 12 - 10 pm) raises the question: Is the post-triage expected truncated externality

different during Fast Track Hours than at another time? To estimate the post-triage expected

externality during Fast Track Hours, we adapt our estimation approach by randomly selecting t

from Fast Track Hours. Similarly, we estimate the externality during “Not Fast Track Hours” by

randomly selecting t from the intervals of time that are not Fast Track Hours. Having limited

capacity, the Fast Track providers do not treat any ESI 3 LAPs and treat only 80% of the ESI

4 and 5 LAPs triaged during Fast Track Hours. Therefore we adapt our estimation approach to

focus on categories of LAP, by ESI and whether the LAP is routed to the Fast Track.
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Table 3 SMMC estimated post-triage expected externality truncated to 12 hours caused by a

LAP that is triaged during Fast Track Hours versus at another time, and contingent on the

category of LAP. Bootstrap 95% confidence intervals are provided in parenthesis.

Category of LAP

All ESI 3 ESI 4&5 ESI 4&5 Routed to
Fast Track

Fast Track Hours 5.6(±1.3) 6.6(±1.5) 4.5(±1.4) 4.1(±1.5)
Not Fast Track Hours 5.9(±1.4) 7.3(±1.6) 4.6(±1.5) not applied

The effect of an ESI 3 LAP is statistically different - larger - than the effect of an ESI 4 or 5 LAP.

A likely reason is that, by definition, an ESI 3 LAP requires more treatment time and resources

than does an ESI 4 or 5 LAP.

During Fast Track Hours, the effect of one additional ESI 4 or 5 LAP routed to Fast Track may

be smaller than of one not routed to Fast Track, but is not statistically different. One explanation

is that Fast Track providers are capacity-constrained, so routing an additional LAP to the Fast

Track would cause a subsequently-arriving LAP to be routed to the non-Fast Track providers, and

thereby increase the expected wait time for HAPs.

Together, our results Table 3 and Theorem 1 in §6 suggest that perhaps Fast Track mitigates

LAPs’ effect on HAPs’ post-triage wait times. According to Theorem 1, without a Fast Track,

additional LAP arrivals would have a larger effect on HAP wait time while the ED is most busy

and crowded, i.e., during Fast Track Hours. Yet the effect of an additional LAP arrival during Fast

Track Hours does not statistically differ from the effect of an additional LAP arrival at another

time, according to the results in the first, ”All” column of Table 3. Perhaps operating the Fast

Track reduces the effect of an additional LAP arrival on HAP wait time, cancelling out the increase

in the effect of a LAP on HAP wait time because the ED is busy and crowded during Fast Track

Hours. We conclude that a controlled trial- expanding Fast Track capacity to serve some ESI 3

LAPs - is warranted to evaluate the potential benefit for HAPs and ESI 3 LAPs.

At SMMC, HAPs and LAPs (routed to Fast Track or not) rely on the same laboratory staff

and resources to process diagnostic tests. By causing a HAP to wait longer for test results, a LAP

could delay the start of treatment needed by a HAP. Waiting for a test result can delay the start

of treatment urgently needed by a HAP, as described in (Nørgaard and Mogensen 2012). Yet a

typical HAP’s wait time for a test result is not captured in that patient’s wait time to provider

sign-up 1, the imperfect metric for a patient’s wait time to start of treatment used elsewhere in

1At SMMC, for 86% of HAPs, a provider first signs up to treat the patient, then orders one or more tests, then
waits for test results to make decisions regarding treatment. For 12% of HAPs the triage nurse orders urgent tests,
but for only 4% of those HAPs are the test results returned before the provider signs up to treat the patient.
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this paper, in (Schull et al. 2007) and related literature. Therefore we estimate the effect of an

additional test-order for a LAP on the expected wait time for a test result for a HAP, on tests

for HAPs ordered within the next τ hours. We calculate X̂τ using the wait time for a test result

for a HAP, in NL
ε the count of orders placed for a test for a LAP within the ε interval, and NL

τ

and NH
τ the number of orders placed for tests for LAPs and HAPs, respectively, during [t, t+ τ ].

Truncated at τ of 12 hours, this is 34 minutes (bootstrap 95% confidence interval [19,49]). The

effect remains substantial when distributed per HAP. The effect of an additional test-order for a

LAP on the expected wait time per test for a HAP ordered within the next 12 hours is 5 minutes.

We conclude that an additional LAP substantially increases HAPs’ expected wait time from

registration to triage, wait time from triage to start of treatment, and wait time for a test result.

Moreover, any omitted variable that increases both the LAP arrival rate and HAP wait time

would bias all the result in this section (for our approach and that of Schull et al.) toward under-

estimation. §5 corrects for omitted variable bias in our estimate of the post-triage externality at

SMMC and finds a substantially larger effect than estimated above.

5. Quasi-Randomized Instrument in Wait Time Information

At SMMC during August 13 to October 15, 2015, we displayed for 5,265 LAPs at triage their

estimated remaining wait time to start treatment. We used the Q-Lasso method of Ang et al.

(2015) to predict that wait time, inflated that prediction to the nearest multiple of 15 minutes, and

displayed the inflated prediction on a screen in the triage room. For example, a Q-Lasso prediction

of 14 minutes resulted in a display of 15 minutes, while a Q-Lasso prediction of 16 minutes resulted

in a display of 30 minutes. Q-Lasso predicts the wait time based on the current state of the ED.

Hence this approach introduced quasi-randomness in that patients with Q-Lasso predictions of a

few minutes smaller or larger than 15k for k in {1,2, . . .} arrived to an ED in a similar state but

experienced different amounts of inflation.

We measure the effect of inflation in the displayed wait time on the number of LAPs that wait

to start treatment, as follows. Let ∆ denote the inflation: “displayed wait time” minus “Q-Lasso

predicted wait time.” SMMC updates the predicted wait time at intervals of 10 minutes. Therefore,

building on the setting of (2), we choose ε of 10 minutes, sample t randomly from the set of time

points at which an update occurs, let NL
ε be the number of LAPs that arrive at triage during

(t− ε, t) and wait to start treatment, and fit regression

NL
ε = α0 +α1∆ + ~α2 ·

−−−−−→
Controls + noise (7)

for the inflation ∆ in the displayed wait time during (t− ε, t) and the time-related control variables

listed in §EC.3. By design, all the LAPs that arrive at triage during (t− ε, t) experience the same
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inflation ∆ in the displayed wait time that remains constant throughout the interval (t − ε, t).

(Moreover, §EC.6 shows that for more than 95% of LAPs, the displayed wait time remains constant

throughout their entire triage service.)

A natural experiment occurred during our data collection period of August 13 to October 15,

2015 in that, due to a faulty internet connection, the screen displaying wait time information

occasionally went off. We separately fit (7) for the time periods in which the screen was On versus

Off because, in the latter case, the LAPs did not see the displayed wait time information and

inflation therein. The wait time inflation yields a (almost statistically significant) positive effect in

each of the bootstrapped data sets when the screen is On but no significant effect when the screen

is Off. For one representative bootstrapped dataset, the first row of Table 4 reports the coefficient

α1 of ∆ and p-value for the two regressions. This suggests that greater inflation ∆ in the displayed

wait time increases the number of LAPs that wait to start treatment.

Table 4 Coefficient and p-value of inflation ∆ from regression (7) on a representative

bootstrapped SMMC 2015 data when Screen is On versus Off (first row). The same quantities

when ∆ in regression (7) is replaced with the nonlinear function of inflation f∗(∆) generated by

the Machine Learning IV algorithm (Singh et al. 2020)(second row).

Screen On Screen Off

Coefficient p-value Coefficient p-value

∆ 0.03 0.12 −0.005 0.31
f∗(∆) via MLIV 0.05 0.03 −0.004 0.15

How could greater inflation ∆ in the displayed wait time increase the number of patients that

wait to start treatment? Prospect theory (Tversky and Kahneman 1991) helps to explain this

phenomenon. The displayed wait time is a reference point. Patients that wait longer than the

reference point suffer loss and intensified disutility from ongoing waiting that discourages them

waiting beyond the reference point. In contrast, waiting for less than the reference point is a gain, so

patients are encouraged to wait up until the reference point. Therefore an increase in the reference

point (larger inflation ∆ in the displayed wait time) increases the number of patients who wait for

long enough to start treatment.

Providing empirical support for that explanation, §EC.6 shows that inflation ∆ in the wait time

displayed to a LAP decreases the probability that the LAP leaves the ED prior to start of their

treatment, i.e., reduces the LWBS rate, a statistically significant effect.

We use the method of Singh et al. (2020) to convert ∆ into a strong instrument to improve our

estimate of the post-triage externality. As in the regression discontinuity design of Thistlethwaite
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and Campbell (1960), ∆ (the amount by which our wait time prediction is inflated by rounding

up to the nearest 15 minute interval) is a quasi-random instrument. Moreover, inflation ∆ is not

associated with the post-triage externality for HAPs except through the number of LAPs that wait

to start treatment. However, the inflation ∆ is a weak instrument, as is evident from the p-value

of 0.12 in the first row of Table 4. This weakness arises from the small size of our dataset: it spans

only 63 days and we randomly sample one t within each 8 hour interval (excluding intervals when

the wait time display was down due to the faulty internet connection) so have only 142 units of

observation in each bootstrapped dataset. We apply the Machine Learning IV (MLIV) algorithm

(Singh et al. 2020) to construct a stronger instrument, as explained in detail in §EC.6.2. Our

resulting IV is a non-linear function of the inflation, which we denote f∗(∆). The second row of

Table 4 shows that this IV has a statistically significant effect on NL
ε .

We incorporate the strong IV f∗(∆) into our regressions for the expected truncated post-triage

externality in total (2) and per HAP (6). Recall that the post-triage externality is the effect of one

additional LAP who arrives at triage and waits to start treatment on the post-triage wait time for

HAPs that arrive at triage during the next τ hours. We fit both the regression for the total effect

(2) and the regression for the per HAP effect (6) with the ε, t, NL
ε defined exactly as for the above

regression (7), with X̂τ calculated using the post-triage wait time for HAPs and with NL
τ and NH

τ

the number of LAPs and HAPs, respectively, that start triage during [t, t+τ ] respectively and wait

to start treatment. Complete output of the 2SLS is reported in §EC.6.3.

Figure 4 shows the resulting estimate of the expected post-triage externality truncated to interval

τ , in total and per HAP that arrives at triage during interval τ , as τ ranges from 1 to 12 hours.

Figure 4 Mean externality (dot); mean 95% bootstrap confidence interval (inner error bars);

mean 95% Bonferroni-corrected confidence interval (outer error bars).

By comparing the left panel of Figure 4 with the right panel of Figure 5, one can see that

incorporating the IV more than doubles the estimated effect size. For example, truncated at τ
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of 12 hours, the IV-based estimate of the expected post-triage externality is 14.0 minutes (with

bootstrap 95% confidence interval of [11.5,16.5]) whereas with only the observational data the

estimate was 5.8 minutes (with bootstrap 95% confidence interval [4.5,7.1]).

The true post-triage truncated externality may be higher than depicted in Figure 4. LAPs who

are contemplating whether or not to wait to start treatment and have that decision influenced by the

instrument (inflation in the displayed wait time) are presumably the LAPs least in need of services

in the ED, and hence cause the least waiting for other patients. Insofar as the LAPs influenced by

the instrument impose a lower externality than other LAPs, our IV approach underestimates the

externality caused by a LAP.

The 2019 IV analysis (using quasi-randomized wait time information provided at registration) in

Appendix A also shows that the total and per HAP effect size is substantially higher than estimated

based on observational data. The estimated post-triage per HAP externality is 1.5 minutes with

95% bootstrap confidence interval [1.1, 1.9].

6. Queuing Theory

According to SMMC nurses, LAPs increase the post-triage wait time for HAPs due to the transition

delays that occur when the ED interrupts treatment of a LAP in order to treat a HAP, i.e., the

time required to transition staff, beds, or other resources from treating a LAP to treating a HAP.

For example, from our direct observation at SMMC, moving a LAP out of a bed in order to put an

HAP into that bed to start treatment can take more than 10 minutes. In the Toronto ED studied

in Chartier et al. (2016), such a bed changeover takes more than 23 minutes on average, including

9 minutes for cleaning. When the treatment of a LAP is interrupted, the LAP typically continues

to wait in the ED for ongoing treatment, and may be moved to a hallway bed or a chair.

We analyze a stylized model of an ED that features such transition delays. Consider a two-class

single server queue in which LAPs and HAPs arrive by Poisson processes with rates λL and λH ,

respectively, and HAPs have preemptive priority, albeit with a transition delay. When a LAP is in

service and an HAP arrives, a delay D occurs and then the HAP begins service. Work is conserved

in that when service resumes for the LAP, only the residual service time is required. LAPs are

served in FIFO order when no HAPs are in the system. LAPs may renege while waiting to begin

service, but after starting service, a LAP remains in the system until the service is completed.

Service times have a general distribution with mean and standard deviation of E[SL] and σ[SL] for

LAPs and of E[SH ] and σ[SH ] for HAPs, respectively. Transition delays have a general distribution

with mean E[D] and standard deviation σ[D]. Inter-arrival times, service times, and transition

delays all are independent random variables.

Theorem 1 provides an expression for HAPs’ limiting average wait time wH ≡
limn→∞

∑n

i=1W
(i)
H /n with W

(i)
H denoting the wait time to start service for the ith HAP. We impose
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no requirement on LAP reneging, except that the resulting long run average utilization of the

treatment server by LAPs ρL and wH exist, ρL > 0 and wH is finite w.p.1.; the limits ρL and wH

may be sample path dependent. Utilization ρL, which is the long run average fraction of time that a

LAP occupies the server, may differ with and without preemption, which we indicate by appending

p or n to ρL to denote utilization in the system with preemption vs. non-preemption.

Theorem 1. With preemptive priority, HAPs’ limiting average wait time is, w. p. 1,

λH(E[SH ]2 +σ[SH ]2)/2 + ρLpE[D] + ρLpλH(E[D]2 +σ[D]2)/2

1−λHE[SH ]
. (8)

With non-preemptive priority, the limiting average wait time of HAPs is, w. p. 1,

λH(E[SH ]2 +σ[SH ]2)/2 + (ρLn/E[SL])(E[SL]2 +σ[SL]2)/2

1−λHE[SH ]
. (9)

Hence preemption strictly increases HAPs’ limiting average wait time if and only if

ρLn

[
E[SL](1 +

σ[SL]2

E[SL]2
)/2

]
<ρLp

[
E[D] +λH

(
E[D]2 +σ[D]2

)
/2
]
. (10)

The proof of Theorem 1, which employs PASTA and a generalization of Little’s law, is in §B.

Though (9) is known for an M/G/1 non-preemptive priority queue (Example 10-1 in (Wolff 1989)),

proof is provided to establish (9) for this more general setting.

Theorem 1 shows that reducing LAPs’ utilization of ED resources reduces HAP waiting. Further-

more, to the extent that an ED is busy (high utilization by LAPs ρL or high utilization by HAPs

λHE[SH ]) reduction in the LAP arrival rate or utilization of ED resources would more greatly

reduce HAP waiting.

Moreover, reducing the mean E[D] or standard deviation σ[D] of the transition delay associated

with preemption reduces the effect of LAPs on HAP waiting, and thereby reduces HAP waiting.

In reality, a way to reduce the mean and standard deviation of bed-changeover delays is to provide

walkie-talkies to the triage nurse and staff that clean beds and move patients (Chartier et al. 2016).

Theorem 1 shows that HAP average wait time increases with both the mean E[SH ] and standard

deviation σ[SH ] of the time required to treat a HAP. Though our model does not explicitly incor-

porate testing, according to (Nørgaard and Mogensen, 2012), increasing a HAP’s wait time for test

results can increase the time that a provider spends treating a HAP, which would translate to an

increase in E[SH ] and σ[SH ]. Recall from §4.3 that an additional LAP test increases the expected

HAP wait time for test results. Together, these analytic and empirical insights suggest that LAPs

can indirectly increase HAPs wait time to start of treatment, by increasing other HAPs’ wait for

test results, and thereby increasing those HAPs’ mean and standard deviation in treatment time.

Theorem 1 shows that preemption increases HAPs’ wait time if the arrival rate of HAPs is large

or if the transition delay has a large standard deviation or large mean, relative to the expected
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residual service time for a LAP (the term in brackets in the left hand side of (10)). On the other

hand, preemption increases LAP waiting, which could increase LAP reneging, and thereby reduce

LAP utilization to ρLp <ρLn, which would tend to reduce HAP waiting.

Is preemption possibly increasing HAP waiting at SMMC? We fit the model to match SMMC’s

mean arrival rates and mean wait times for HAPs and LAPs, and LAP reneging rate of 3% with

preemptive priority. We assume that with no preemption, the LAP reneging rate would drop to 0-

the reneging rate that maximizes HAP waiting with no preemption. Adding the assumption that

service times and transition delays are exponential, we see that preemption increases HAP mean

wait time ((10) holds) when the mean transition delay exceeds 3.4 minutes, as supported by our

observation and the medical literature. With a mean transition delay of 23 minutes, corresponding

to the minimum bed changeover time in Chartier et al. (2016), the long run average wait for HAPs

of 19.7 minutes with preemption is reduced by eliminating preemption, to only 6.1 minutes. This

suggests that preemption might indeed be increasing HAP waiting at SMMC ED. §EC.9 reports

other examples wherein preemption increases HAP waiting.

7. Validating our Estimator via Simulation

To validate our estimator, we simulate a two-class tandem queue model of an ED in which LAPs

cause pre-triage waiting and post-triage waiting (transition delay in preemption) for HAPs. We

extend the model formulated above to incorporate triage. Arriving HAPs and LAPs are served

in First In First Out (FIFO) order on a single “triage” server, with independent exponentially

distributed service times. Then they proceed to the “treatment” server with preemptive priority and

transition delays as formulated above. Using simulation, we generate synthetic data and evaluate

the performance of our approach and that of Schull et al. (2007) in estimating the mean truncated

externality and the per HAP outcome measure proposed by Schull et al.

To do so we fit the model to observational data from five hospitals, as described below and

summarized in Table 5. SMMC and Hospital 1 are similar in mean wait times, so our first simulation

setup is motivated by both SMMC and Hospital 1. Arrival rates for HAPs and for LAPs are set

to the average of the rates at SMMC and Hospital 1. Utilization at the triage server is set so

that the mean wait for triage matches the mean in SMMC data: 8.5 minutes. Mean treatment

times for HAPs and LAPs are set so as to match the mean post-triage wait times for HAPs and

LAPs in SMMC data. In doing so, we assume that the transition delay D is a deterministic 5

minutes, service times are exponentially distributed, and no patients renege. We make those same

assumptions in constructing each of the five parameter settings. We set utilization at the treatment

server by HAPs and LAPs, respectively, to match the mean wait time for HAPs and mean wait

time for LAPs at SMMC and Hospital 1. For hospitals 2, 3 and 4 we do not have triage time stamp
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data, so we assume utilization at triage is the same as at SMMC. To model each of the hospitals

2, 3, and 4, we use the observational mean arrival rates for HAPs and LAPs and set the utilization

at the treatment server by HAPs and by LAPs in the model (ρL = λLE[SL] and ρH = λHE[SH ]) so

as to match the mean wait times for HAPs and LAPs in observational data. Our fifth parameter

setting is motivated by the SMMC peak period between 10 am and noon. We match the parameter

setting to the observational mean arrival rates for HAPs and LAPs, the observational mean wait

time from registration to triage, and the observational mean wait time from triage to start of

treatment for HAPs and LAPs in that peak period.

Table 5 Five parameter settings based on observational data from five hospitals.

H1/SMMC Hospital 2 Hospital 3 Hospital 4 SMMC peak

Arrival rate LAP λL 96.0 48.0 48.0 96.0 68.6
(patients/day) HAP λH 24.0 26.2 24.0 26.2 48.0

Utilization at Triage 0.67 0.41 0.40 0.68 0.81

Utilization at Treatment
LAP ρL 0.40 0.20 0.20 0.40 0.29
HAP ρH 0.30 0.33 0.30 0.33 0.60

Transition Delay D (minutes) 5 5 5 5 5

Mean Wait Time (minutes)
LAP 57.2 37.4 32.5 73.4 1047.0
HAP 25.2 20.4 19.1 27.5 51.0

To calculate the true truncated externality Xτ , we simulate a base scenario and a counterfactual

scenario, between which the only difference is that in the counterfactual scenario, one LAP (called

Mary) is randomly added to the arrival process after a burn-in period to allow the system to reach

its steady-state distribution. The true truncated externality is

Xτ ≡
∑

i∈NH (τ)

W counterfactual
i −W base

i ,

where NH(τ) is the set of HAPs that arrive within the next τ units of time after Mary. For

comparability with Schull et al.’s approach, we truncate the externality at τ = 8 hours.

For each of the five model parameter settings, 200 runs of the base and counterfactual simulation

were performed and the results are presented in Table 6. We report the true mean truncated

externality Xτ and its 95% confidence interval in the row of “Oracle”.

For each of the five model parameter settings, we ran the base simulation for a much longer time

to collect the time stamp data from 300,000 patient visits after the initial burn-in period. We use

that time stamp data in exactly the same manner that we used the observational data, as reported

in §4.3, to calculate our estimate of the expected truncated externality (total increase in wait time

for HAPs in an 8 hour time interval caused by one additional LAP arrival), our estimate of the

expected increase in wait time per HAP arriving in the 8 hour time interval, Schull et al.’s estimate
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of that expected increase in wait per HAP from one additional LAP arrival per 8 hour interval, and

a corresponding extrapolated estimate of the total effect from multiplying by the mean number of

HAP arrivals per 8 hour interval. These estimates for the total and per HAP effect by our approach

and that of Schull et al. are reported in Table 6.

The final row of Table 6, labeled “Theorem 1” reports the true increase in mean wait time

per HAP caused by increasing the LAP arrival rate by one per 8 hours (the metric that Schull

et al. purport to estimate). We add expression (8) in Theorem 1 for HAPs’ mean wait time for

treatment to the well-known expression for mean wait time for triage (an M/M/1 queue) to obtain

an expression for HAP’s total mean wait time, and how this changes as λL increases by one LAP

per 8 hours. Details of this derivation are in §EC.7. This is a different metric than the expected

truncated externality per HAP that we calculate with the Oracle simulation method and estimate

by (6), which depend on the truncation interval τ .

Our estimates closely approximate the true mean truncated externality (in total and per HAP)

from the Oracle simulation method. In contrast, Schull et al.’s approach underestimates the effect

size. The magnitude of underestimation is greatest for the busiest system “Peak SMMC”, which

makes sense in that the underestimation inherent in Schull et al is due to LAP arrivals in one

time interval creating delays that propagate to increase the wait times for HAPs that arrive in

subsequent time intervals within the same busy period. In the busiest system, busy periods are

long-lasting, so that each LAP causes delay for more HAPs.

Table 6 Estimated effect (and 95% confidence interval) of one additional LAP arrival in an 8

hour interval on expected wait time per HAP and total for all HAPs arriving in the 8 hour

interval, from the Oracle, our approach and Schull et al.’s approach. From Theorem 1, increase in

mean HAP wait time from increasing the arrival rate λL by one LAP per 8 hours.

H1/SMMC Hospital 2 Hospital 3 Hospital 4 SMMC peak

total
Oracle 5.0(±1.3) 3.1(±1.0) 2.5(±0.5) 6.7(±1.8) 44.7(±12.1)
Ours 5.0(±0.3) 3.4(±0.2) 2.5(±0.2) 6.1(±0.2) 32.6(±0.6)

per HAP

Oracle 1.1(±0.2) 0.3(±0.1) 0.3(±0.1) 1.2(±0.1) 7.1(±1.4)
Ours 0.9(±0.1) 0.4(±0.1) 0.3(±0.1) 0.9(±0.1) 6.5(±0.5)

Schull et al.’s 0.4(±0.01) 0.2(±0.01) 0.2(±0.01) 0.5(±0.01) 0.4(±0.02)

Theorem 1 1.4 0.5 0.5 1.5 6.6

We repeated this simulation analysis under the alternative assumptions that the transition delay

has an exponential distribution and that the SMMC LAP and HAP arrival rates vary diurnally.

Specifically, the arrival rate for each hour of the day is set equal to the mean number of arrivals

during that hour of the day in the SMMC observational data. The results, reported in §EC.7, Table
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EC.8, remain qualitatively the same. Our estimation approach performs well, whereas the approach

of Schull et al. underestimates the effect size, especially in the busiest system “Peak SMMC”.

8. Managerial Implications

The empirical evidence that LAPs substantially increase HAPs’ wait times (to be triaged, to

start treatment, and for test results) implies that ED managers can reduce HAPs’ wait times by

reducing unnecessary use of ED resources by LAPs. For example, to reduce HAPs’ wait times

for test results, ED managers could reduce unnecessary diagnostic testing for LAPs. Doctor et al.

(2020) document large inconsistency among providers in the number of tests ordered per LAP, and

recommend training providers to standardize their test-ordering and reduce unnecessary testing

for LAPs. SMMC exhibits similarly large inconsistencies and opportunities to reduce unnecessary

testing for LAPs. For each of the 21 MDs that work at SMMC ED during non-Fast Track hours, we

computed the average number of tests for a LAP under the age of 21 treated by that MD during

non-Fast Track hours between April 1, 2019, and April 1, 2020. The minimum among the 21 MDs

was 1.6 tests per LAP, and the maximum was 6.3 tests per LAP. Reducing a HAP’s wait time for

test results could reduce the HAP’s length of stay in a bed, reduce the amount of time a provider

spends on treating the HAP, and thereby reduce other HAPs’ wait times for a bed or provider.

Another way to reduce HAP waiting would be to design wait time information systems so as

to reduce the number of LAPs that choose to seek treatment in an ED when the ED is busy and

crowded. Our queuing theoretic analysis shows that reducing the LAP arrival rate would more

greatly reduce the expected wait time for HAPs to the extent that an ED is crowded and busy. Our

experimental evidence from SMMC and literature surveyed in §2 shows that wait time information

systems influence LAPs’ choices regarding whether or not to wait to be treated in an ED and which

ED to visit.

Similarly, HAP waiting could be reduced by offering LAPs in the ED the option for telemedicine

(consultation with a physician located elsewhere) and using wait time information systems to

encourage LAPs to opt for that telemedicine when the ED is busy and crowded.

To reduce LAP bed use (and reduce HAP waiting that occurs when staff moves a LAP out of

bed to put the HAP into the bed to start treatment), an ED could treat more LAPs “vertically,”

in chairs rather than beds. For example, SMMC piloted “Fast Task” (distinct from Fast Track):

for any ESI 3 LAP that has waited for at least 30 minutes, a provider performs an initial exam

and orders tests- while the patient remains seated in a chair. Fast Task eliminates bed use by some

ESI 3 LAPs and reduces the time spent in a bed for other ESI 3 LAPs. By comparing HAPs wait

time during June-July 2015 (pre-Fast Task) and June-July 2016 (post-Fast Task), we find a 26%

reduction in HAP mean wait time to start treatment, from 25 minutes to 18 minutes, associated
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with Fast Task. This association persists when controlling for time-of-day, day-of-week, and the

number of patients in the ED of each ESI level. We recommend that bed-constrained EDs conduct

a randomized experiment with Fast Task or other protocol to treat more LAPS “vertically” to

evaluate the effect on HAP wait time.

Whereas Fast Task reduces ESI 3 LAPs’ bed utilization and associated bed-changeover delays for

HAPs, the ESI 3 LAPs would still share providers with HAPs and cause provider transition delay

for HAPs. To avoid both bed-changeover and provider transition delays that occur when treatment

of a LAP is interrupted to prioritize treatment of a HAP, an ED could expand Fast Track service

to some ESI 3 patients, especially ones that can thus be treated vertically. Many EDs operate a

Fast Track during the busy period of the day, but only for LAPs of ESI level 4 and 5. Among

all LAPs, the ESI 3’s tend to have the longest treatment times and impose the highest waiting

externality on HAPs, suggesting that expanding Fast Track service to ESI 3 LAPs could reduce

HAP waiting. The caveat is that in an ED with shortages of space and providers, allocating more

space and more providers to a Fast Track for LAPs might increase HAP waiting by reducing the

number of providers that prioritize treatment of HAPs and their treatment space.

Beyond EDs, we hope that service operations managers and researchers will apply our approach

to estimate waiting externalities in order to improve the management of other complex queuing

systems. Moreover, in any service operations that provide wait time information to customers, a

round-up in the estimated wait time could serve as a quasi-randomized instrument for arrivals or

reneging for purposes of causal inference, as demonstrated in this paper.
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Appendix A: Estimation Results for Hospitals 1, 3, 4 and, in 2019 data, SMMC

Figure 5 shows our estimate of the expected truncated externality Xτ for Hospitals 1, 2, 3 and, using the

2019 data set at SMMC. This reinforces the insight from Figure 2 that an additional LAP arrival has a

substantial effect on HAP waiting. The effect size is smaller in the SMMC 2019 data than the SMMC 2015

data, consistent with the smaller HAP arrival rate in 2019 than 2016.

For SMMC in 2019, correcting for omitted variable bias (using quasi-randomized wait time information

as an instrumental variable) triples the estimated effect size. In partnership with SMMC, we displayed

information about the LAP wait time (from registration to start of treatment) on a screen at registration,
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Figure 5 Estimated expected truncated externality X̂τ (dot) with bootstrap 95% confidence interval (inner error

bars) and Bonferroni-corrected 95% confidence interval (outer error bars).

and while doing so collected data for 7,258 patient visits. We displayed the Q-Lasso estimate of the LAP

wait time rounded to the nearest multiple of 10 minutes. For example, a Q-Lasso estimate of 16 minutes

would be rounded to 20 minutes, and a Q-Lasso estimate of 22 minutes also would be rounded to 20 minutes.

With ∆ denoting the displayed LAP wait time minus the Q-Lasso estimated LAP wait time, we replicated

the IV analysis of §5 . The coefficient of ∆ in regression model (7) is 0.03 (0.05), and we again leverage

the machine learning algorithm of Singh et al. (2020) to strengthen the IV based on ∆. Adopting 2SLS,

Figure 6 shows how an additional LAP arrival increases expected post-traige waiting for HAPs that arrive

in time interval τ ranging from 1 to 12 hours thereafter. In particular, the expected externality truncated

to τ of 12 hours is 9.6 minutes with mean 95% bootstrap confidence interval [8.9,10.3]. Without using the

IV to correct for omitted variable bias, the estimate would be substantially lower, only 3.5 minutes with

mean 95% bootstrap confidence interval [2.7,4.3] in the same limited data set with 7,258 patient visits in

2019, or, as reported above, 3.2 minutes with bootstrap 95% confidence interval [2.7,3.7] using the full 2019

data set. An important caveat is that inflation ∆ in the wait time for LAPs displayed at registration might

influence a patient’s decision to leave the ED without registering and thereby (because a patient that leaves

without registering is not represented in our data set) introduce sample selection bias in the 2019 IV results.

Fortunately, our 2015 data does not have this problem because, in 2015, wait time information was provided

to patients only after they had registered and started triage. Our main conclusion from IV analysis in the
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Figure 6 Mean externality (dot); mean 95% bootstrap confidence interval (inner error bars); mean 95%

Bonferroni-corrected confidence interval (outer error bars)

2019 data is the same as in the 2015 data: the effect size is substantially larger than estimated based on

observational data alone.

Appendix B: Proof of Theorem 1

First, we introduce the following random variables:

• t(i)j , W
(i)
j , and S

(i)
j are (respectively) the arrival time, wait time before start of service, and service time

of the ith class j customer (i∈ {1,2, . . .} and j ∈ {1,2}).

• RSj
(t) is the residual service time for the class j customer being served, at time t. If no class j customer

is being served at time t then RSj
(t) = 0.

• Similarly, RD(t) is the residual transition delay if the server is in transition at time t. If the server is

not in transition at time t, then RD(t) = 0.

• If a class 1 customer arrives at time t and a class 2 customer is in service, the amount of transition delay

faced by the class 1 customer is denoted D(t). Otherwise, D(t) is equal to 0. Note that RD(t) +D(t)

captures the transition delay of a class 1 customer that arrives at time t. The two terms RD(t) and

D(t) cover mutually exclusive events. RD(t) is positive only when the server is in transition. D(t) is

positive only when a class 2 customer is served.

• Qj(t) is the set of class j customers in queue at time t, excluding the customer in service.

• Vj(t) is the total class j work in the system at time t, i.e., Vj(t) =RSj
(t) +

∑
i∈Qj(t)

S
(i)
j .

Note: In most of the following analysis j = 1 so we drop the subscript j when j = 1.

Our goal is to find an expression for the long run average wait time of class 1 customers, w ≡

limn→∞ n
−1∑n

i=1W
(i). First, we note that

W (i) = V (t(i)) +RD(t(i)) +D(t(i)) . (11)

Therefore,

w= lim
n→∞

n−1
n∑
i=1

V (t(i)) + lim
n→∞

n−1
n∑
i=1

RD(t(i)) + lim
n→∞

n−1
n∑
i=1

D(t(i)) , (12)
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if each limit on the right hand side exists. For each in turn, we will show that the limit exist w. p. 1 and

derive an expression for it.

Class 1 customers arrive according to a Poisson process, regarding which the system has no anticipation,

so Theorem 7 on page 295 of (Wolff 1989) (PASTA) implies that w.p. 1,

lim
n→∞

n−1
n∑
i=1

V (t(i)) = lim
t→∞

t−1
∫ t

0

V (u)du and lim
n→∞

n−1
n∑
i=1

RD(t(i)) = lim
t→∞

t−1
∫ t

0

RD(u)du , (13)

if each time average limit exists and is finite. Though Theorem 7 on page 295 of (Wolff 1989) applies to

indicator functions, those can be used to approximate any measurable function such as RD(t) or V (t).

Theorem 1 of (Heyman and Stidham 1980) (a generalization of Little’s law) implies that w.p. 1

lim
t→∞

t−1
∫ t

0

V (u)du= λ1E[S1]w+λ1E[S2
1 ]/2 . (14)

Remark 1. Example 5-21 on page 291 of (Wolff 1989) applies that theorem to to obtain (14) for a single

server queue with an arbitrary arrival process and service rule. We can map our two-class queue into that

setting by completely ignoring details associated with class 2 customers or transition delays, given that

Theorem 1 of Heyman and Stidham (1980) allows for an arbitrary service rule and wait time for class 1

customers. In other words, when a class 1 customer’s wait time is impacted by a transition delay we can just

assume that the customer’s wait before service is impacted by an arbitrary random fluctuation. Theorem 1

of (Heyman and Stidham 1980) applies to every sample path ω of the probability space and requires only

these assumptions: (a) once a job starts service it is not interrupted, (b) service times S(i) are independent of

wait time W (i) for each i as well as the arrival process, (c) service times S(i) are i.i.d, (d) limn→∞ n/t
(n) = λ1

for sample path ω, and (e) as n→∞, n−1
∑n

i=1Gi converges to a finite limit for sample path ω, where

Gi = S(i)W (i) + [S(i)]2/2. In light of the assumptions we made in §6 and Example 5-21 on page 291 of (Wolff

1989), conditions (a)-(e) hold w. p. 1.

Next, we state a lemma for the time average of RD(t), I[RD(t)> 0], and the customer average of D(t(i)).

Lemma 1. With the above definitions, we have, w. p. 1,

(a) limt→∞ t
−1
∫ t
0
RD(u)du= λ1ρ2pE[D2]/2,

(b) limn→∞ n
−1∑n

i=1D(t(i)) = ρ2pE[D], and

(c) limt→∞ t
−1
∫ t
0
I[RD(u)> 0]du= λ1ρ2pE[D].

Combining (12), (14), and parts (a)-(b) of Lemma 1, we obtain

w= λ1E[S1]w+λ1E[S2
1 ]/2 + ρ2pE[D] +λ1ρ2pE[D2]/2 .

Solving for w gives,

w=
λ1

E[S2
1 ]

2
+ ρ2pE[D] +λ1ρ2p

E[D2]

2

1−λ1E[S1]
=
λ1

E[S1]
2+σ[S1]

2

2
+ ρ2pE[D] +λ1ρ2p

E[D]2+σ[D]2

2

1−λ1E[S1]
.

Next, we prove(9). First, recall that the subscript j serves to differentiate between class 1 and

class 2 customers. In the non-preemptive setting, W
(i)
1 = RS2

(t
(i)
1 ) + V1(t

(i)
1 ) , and therefore w1 =
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limn→∞ n
−1∑n

i=1RS2
(t

(i)
1 ) + limn→∞ n

−1V1(t
(i)
1 ), if each limit on the right hand side exists. For each in turn,

we will show that the limit exist w. p. 1 and derive an expression for it. PASTA implies that w. p. 1,

lim
n→∞

n−1
n∑
i=1

RS2
(t

(i)
1 ) = lim

t→∞
t−1
∫ t

0

RS2
(u)du and lim

n→∞
n−1

n∑
i=1

V1(t
(i)
1 ) = lim

t→∞
t−1
∫ t

0

V1(u)du ,

if the time average limits exist. Given that (14) holds for an arbitrary service rule, it applies here as well (the

extra wait of class 1 for class 2 customers in service can be assumed to be part of their waiting requirement).

Thus, w. p. 1,

lim
t→∞

t−1
∫ t

0

V1(u)du= λ1E[S1]w+λ1E[S2
1 ]/2 . (15)

For, limt→∞ t
−1
∫ t
0
RS2

(u)du, we can use the following variant of Lemma 1(a).

Lemma 2. With probability 1, limt→∞ t
−1
∫ t
0
RS2

(u)du= ρ2n
E[S2

2 ]

2E[S2]
.

Combining (15) and Lemma 2, we obtain w1 = λ1E[S1]w1 +λ1E[S2
1 ]/2 + ρ2n

E[S2
2 ]

2E[S2]
, that gives,

w1 =
λ1E[S2

1 ]/2 + ρ2n
E[S2

2 ]

2E[S2]

1−λ1E[S1]
=
λ1 (E[S1]2 +σ[S1]2)/2 + ρ2n

E[S2]
(E[S2] +σ[S2]2)/2

1−λ1E[S1]
. �

Proof of Lemma 1. Parts (a) and (b) of Lemma 1 are established by application of PASTA and Theorem

1 of (Heyman and Stidham 1980).

Denote the subset of class 1 customers that arrive while a class 2 customer is in service by I1→2 ⊂ {1,2, . . .}.

Observe that D(t(i)) > 0 if and only if i ∈ I1→2. Furthermore, the time average of I[D(t) > 0] equals the

fraction of time that a class 2 customer is in service. Using PASTA and our assumptions on ρ2p, the long

run average fraction of time that a class 2 customer is in service,

lim
n→∞

n∑
i=1

I[i∈ I1→2]/n= lim
t→∞

∫ t

0

I[D(u)> 0]/tdu= ρ2p w. p. 1. (16)

For i= 1,2, . . . define the function

fi(t) =

{
D(t(i))− (t− t(i)) if t(i) ≤ t < t(i) +D(t(i)) ,

0 otherwise.

Hence, Gi =
∫∞
0
fi(t)dt=D(t(i))2/2. Since each D(t(i)) is an independent copy of transition delay, we can

use the SLLN and (16) to obtain, w. p. 1,

Ḡ≡ lim
n→∞

n∑
i=1

Gi

n
= lim
n→∞

(∑n

i=1 I[i∈ I1→2]

n
×
∑n

i=1D(t(i))2/2∑n

i=1 I[i∈ I1→2]

)
= ρ2pE[D2]/2 . (17)

Note that,
∑n

i=1 I[i∈ I1→2] is a random variable but we can use SLLN as stated in proof of equation (14) in

page 58 of (Wolff 1989). Therefore, condition (e) from Remark 1 is satisfied. On the other hand, for t≥ 0,

H(t) =
∑∞

i=1 fi(t) is exactly equal to RD(t). Therefore,

H̄ ≡ lim
t→∞

t−1
∫ t

0

H(u)du= lim
t→∞

t−1
∫ t

0

RD(u)du , (18)

assuming the limits in (18) exist.

Combining (17), (18), and Theorem 1 of (Heyman and Stidham 1980), we obtain that, w. p. 1, the limit

H̄ in (18) exist and is equal to λ1Ḡ which proves part (a) of Lemma 1.
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The proof of part (b) is similar to the steps in (17), i.e., w. p. 1,

lim
n→∞

n∑
i=1

D(t(i))

n
= lim
n→∞

(∑n

i=1 I[i∈ I1→2]

n
×

∑n

i=1D(t(i))∑n

i=1 I[i∈ I1→2]

)
= ρ2pE[D].

Finally, the proof of (c) is similar to (a) by redefining fi(t) to be the indicator function on [t(i), t(i)+D(t(i))).

This gives, w. p. 1, Ḡ= ρ2pE[D], and H̄ = limt→∞
∫ t
0
I[RD(u)> 0]du/t. Therefore, the identity H̄ = λ1Ḡ holds

w. p. 1, proving (c). �

Proof of Lemma 2. This time we apply Theorem 1 of Heyman and Stidham (1980) to the set of class 2

customers that are served. First recall that we have assumed that w.p. 1, ρ2n ≡ limt→∞ t
−1
∫ t
0
I[RS2

(u)> 0]du

exists on each sample path and is strictly positive (it may be sample path dependent). Therefore, defining

N2(t) to be the number of class 2 customers that start service up to time t, we must have limt→∞N2(t) =∞

w. p. 1 because ρ2n > 0 and {Si2}i≥1 is an i.i.d. sequence of random variables with a finite expectation. On

the other hand,

lim
t→∞

t−1
∫ t

0

I[RS2
(u)> 0]du= lim

t→∞
t−1

[
N2(t)∑
i=1

S
(i)
2 −RS2

(t)

]
= lim
t→∞

t−1
N2(t)∑
i=1

S
(i)
2 ,

where the last step follows from the fact that RS2
(t)≤ Si2 for some i and that {Si2}i≥1 is an i.i.d. sequence

of random variables with a finite expectation. Writing the right hand side as limt→∞

[∑N2(t)
i=1

S
(i)
2

N2(t)

]
N2(t)

t
and

applying SLLN establishes that w.p. 1 limt→∞
∑N2(t)

i=1 S
(i)
2 /N2(t) = E[S2] so limt→∞ t

−1N2(t) exists and is

equal to ρ2n/E[S2], which is a finite, strictly positive number. This fulfills one of the conditions of Heyman

and Stidham (1980).

Next, if t̃
(i)
2 is the start time of service for the ith class 2 customer, we define the function

fi(t) =

{
t− t̃(i)2 if t̃

(i)
2 ≤ t < t̃

(i)
2 +S

(i)
2 ,

0 otherwise.

Hence, Gi =
∫∞
0
fi(t)dt= (S

(i)
2 )2/2 and we can use SLLN to obtain, w. p. 1,

Ḡ≡ lim
n→∞

n−1
n∑
i=1

Gi = lim
n→∞

n−1
n∑
i=1

(S
(i)
2 )2/2 = E[S2

2 ]/2 . (19)

On the other hand, for t≥ 0, H(t) =
∑∞

i=1 fi(t) is exactly equal to RS2
(t). Therefore,

H̄ ≡ lim
t→∞

t−1
∫ t

0

H(u)du= lim
t→∞

t−1
∫ t

0

RS2
(u)du . (20)

Finally, we note that since S
(i)
2 are i.i.d. with finite extenuation the “technical assumption” required to use

Theorem 1 of Heyman and Stidham (1980) is also satisfied. Combining that result with (19) and (20), we

have H̄ = (ρ2n/E[S2])Ḡ w. p. 1. That finishes the proof. �
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Electronic Companion for
“LAPs Delay HAPs in an Emergency Department”

Appendix EC.1: Per HAP Externality Estimation for Hospital 1, 2, 3,
and SMMC in 2019

Figure EC.1 Estimated expected truncated externality X̂τ (dot) with bootstrap 95% confidence interval (inner

error bars) and Bonferroni-corrected 95% confidence interval (outer error bars).

Appendix EC.2: Robustness Check for the Bootstrap Confidence
Intervals

We performed a robustness check for the bootstrapped confidence interval generation method

explained in §4.2. We created 50 independently generated data sets via the simulation set up (with

non-stationary arrivals) introduced in §7. Specifically, we created 50 simulation data and for each

of them, we draw a time point t from every eight hour interval. This led to 50 independent data
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Figure EC.2 Estimated average effect from the bootstrapped approach (black dashed line with solid round

dots); 95% bootstrapped confidence interval (error bars in solid black lines); Average effect from the 50 dataset

(green dashed line with solid round dots); mean 95% true confidence interval (error bars in solid green lines);

sets to be used as inputs to our estimator. We refer to these 50 data sets as D1, . . . ,D50. Then, we

calculated two different sets of confidence intervals:

• True confidence intervals: We applied our estimator to each one of D1, . . . ,D50 independently

and obtained the corresponding estimates forXτ . Then we calculated a 95% confidence interval

from the 50 estimated values. This is the true 95% confidence interval since the 50 data sets

are by design independent and identically distributed.

• Bootstrapped confidence intervals: We applied our bootstrapped confidence interval method

from §4.2 to D1 to obtain 95% confidence intervals for the Xτ .

Figure EC.2 demonstrates both of these confidence intervals for different values of τ . The difference

between the bootstrapped confidence intervals (shaded in black) vs. the true confidence intervals

(shaded in green) is very small. While this is not a formal statistical test, but it is a rigorous visual

inspection that the bootstrapped confidence intervals are valid.

Appendix EC.3: Explanatory Variables ~C in each Hospitals

The complete list of explanatory variables for hospitals includes

• Time related variables includes the period of day (pod) indicators: pod24, pod12, pod8, pod6,

pod4, pod3, pod2, the numerical number following “pod” indicates the number of sub-intervals

a day breaks into; e.g., pod24 is a categorical variables with 24 levels indicating whether a

patient’s arrival time (equivalent to the registration time) falls either during 00:00 - 01:00, 01:00

- 02:00, . . ., or 23:00 - 00:00. Another variable is a binary variable for Fast Track indicating

whether a patient’s arrival time falls into the time period when Fast Track is on. In SMMC,
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the Fast Track is in effect during the weekdays between 12 : 00 noon - 10 : 00 PM, and in

Hospital 1, 2, and 3, the Fast Track is in effect during the weekdays between 8 : 00 AM -

11 : 00 PM. Other variables are month, season and weekend indicators, which indicate whether

a patient’s arrival time falls into the corresponding month, season (4 levels, January - March,

April - June, July - September, or October - December), and whether the patient arrives

during weekend.

• Average number of nurses and physicians at the time of a patient’s arrival.

• Number of LAPs and HAPs currently in the ED (the sum of those that are currently in queue

and those that are currently in service) at the time of a patient’s arrival.

• Indicator variables for weather information: is.rainy, is.foggy, and temperature at the moment

of patient’s arrival.

The goodness of fit of the model on majority of the bootstrapped datasets is of R2 ≈ 0.85. Table

EC.2 shows the final set of selected controls for each hospital. We provide summary of statistics the

these controls for the SMMC 2015 experiment data in Table EC.1. In each bootstrapped dataset,

we have a total of 142 observations.

Table EC.1 Summary of statistics for selected variables for the regression data using SMMC 2015 experiment

with ε= 10 minutes and τ = 8 hours.

Variable Definition Mean (Standard Deviation)

ητ sum of HAPs wait time in τ 48.6 (72.4)

NL
ε # of LAP arrivals in ε interval 0.74 (1,.2)

NL
τ # of LAP arrivals in τ interval 23.8 (19.4)

NH
τ # of HAP arrivals in τ interval 2.1 (2.5)

NL
ε ·NH

τ cross term 2.8 (5.2)
NL
ε ·NL

τ cross term 29.4 (48.3)
NL
τ ·NH

τ cross term 87.5 (127.3)
NL
ε ·NL

τ ·NH
τ cross term 119.4 (244.4)

pod3 period of the day 0: 45 (6) 1: 49(5) 2: 48(5)
SHt # of HAPs in the system at time t 2.3 (2.1)
SLt # of HAPs in the system at time t 15.6 (9.7)

is weekend indicating if the observation falls in the weekend True: 36 , False: 106

Inflation the average inflation as defined in §5 10.3 (7.7)

Appendix EC.4: Robustness Check for the Approach Estimating the
Effect of Fast Track in §4.3

In San Mateo Medical Center (SMMC), we know that the Fast Track is in effect from 12 - 10

pm. For the Table EC.3 Fast Track results, we randomly select t from 12-10 pm and excluding

observations if LAPs arrived to triage between 11:50-12:00 but started treatment before 12:00.



ec4 e-companion to : Low-Acuity Patients Delay High-Acuity Patients

Table EC.2 The selected explanatory variables ~C for each hospitals: all selected explanatory variables are

time-related categorical variables

Hospitals ~C

SMMC pod3, SHt , SLt , weekend
Hospital 1 pod3, SHt , weekend, season, Fast Track
Hospital 2 pod3, SHt , SLt , weekend, season
Hospital 3 pod3, SHt , weekend, season
Hospital 4 pod4, SHt , SLt , weekend, season

We also exclude LAPs that arrived to triage before 10 pm but started treatment after 10 pm .

Whereas for the no Fast Track results, we randomly select t from the remaining time interval of

10 pm to 12 pm and excluding observations if LAPs arrived to triage between 9:50 - 10:00 pm

but started treatment before 10 pm and also excluding LAPs arrived to triage before 12 pm but

started treatment after 12 pm.

Table EC.3 Estimated effect of additional LAP that arrives during 12-10 pm (Fast Track) vs.

10-12 pm (No Fast Track) on HAPs’ expected pre- and post-triage wait time X̂8 at SMMC.

Pre-triage No FT Pre-triage FT Post-triage No FT Post-triage FT

4.3(±1.8) 4.4(±1.5) 5.6(±1.8) 5.1(±1.7)

Appendix EC.5: Replicating Schull et al. (2007)’s analysis using
SMMC, Hospital 1, 2, 3, and 4 Data

In this section, we replicate Schull et al.’s analysis using SMMC, Hospital 1, 2, 3 and 4 data, and

present the results in Table EC.4. We redefine LAP, exactly as how Schull et al. do, their notion

of low-complexity patients, which is according to 3 factors: a Canadian Triage Acuity Score of less

urgent (level 4) or non-urgent (level 5) (Murray and Grafstein 2014), ED arrival not by ambulance,

and discharged to home. SMMC data has information on ways of patient’s arrival and disposition;

however hospital 1, 2, 3, and 4 do have them. Thus in hospital 1, 2, 3 and 4, we label ESI 4 and 5

patients as LAPs.
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Table EC.4 The estimated effect of a low-complexity patient (with ESI 4 and 5) arriving per 8

hour interval on the total wait time to treatment (Total) for medium- and high- complexity

patients (with ESI 1, 2 and 3), and on their mean wait time to treatment (Per HAP), using

Schull et al.’s method, and our method; the (Total) effect focusing on the portion of the

estimated effect on the pre-triage delay vs. the post-triage delay when the Fast Track is

implemented or not.

Estimated Externality Caused by a LAP in 8 Hour
SMMC 2015 SMMC 2019 Hospital 1 Hospital 2 Hospital 3 Hospital 4

Total

Ours 29.4(±5.9) 6.2(±2.1) 66.2(±4.6) 24.6(±2.2) 5.4(±0.4) 10.2(±1.1)
Pre-triage No FT 23.7 (±6.7) 4.9 (±1.7) no info no info no info no info

Pre-triage FT 19.7 (±4.2) 3.4 (±1.2) no info no info no info no info
Post-triage No FT 5.6 (±1.2) 1.2 (±0.5) no info no info no info no info

Post-triage FT 4.1 (±1.2) 1.1 (±0.5) no info no info no info no info
Schull -1.8 0.7 -35.1 -0.5 1.1 0.2

Per HAP
Ours 1.5(±0.5) 0.7(±0.2) 0.6(±0.2) 1.5(±0.1) 0.7(±0.2) 1.4(±0.3)
Schull -0.10(±0.02) 0.07(±0.02) -0.67(±0.06) -0.01(±0.03) 0.03(±0.02) 0.01(±0.02)

Appendix EC.6: Supplements for the Experiment Results from §5
In this section we present supporting material for the pseudo-randomized experiment from §5.

In §EC.6.1 we provide empirical evidence for the mechanism behind the effect of inflation ∆ on

number of low-acuity patients NL
ε . Details of the MLIV procedure for strengthening the IV and

obtaining f∗(∆) is presented in §EC.6.2 and complete output of the 2SLS using this stronger IV is

shown in §EC.6.3.

Here we supply a discussion on the percentage of LAPs might see a different displayed wait time

in triage. We define patients’ triage time to be the time interval between triage time-stamps. The

mean of patients’ triage time in SMMC is 8 minutes. Our displayed wait time is refreshed every

10 minutes. We investigate whether patients experience a wait time update while in triage and

whether the displayed wait time is different. We found that 70% of LAPs indeed experience a wait

time update while in triage; However, among them, only about 7% see a different displayed wait

time, which means that 95% of all LPAs do not see a change in displayed wait time while in triage.

Moreover, the above 95% might be an underestimation. The mean of patient’s triage time may

be less than 8 minutes since the time interval between triage time-staps does not exclude time

spent on patients moving from the triage room to the waiting room and back for the next patient

(changeover time). If we exclude this 1-2 minutes of changeover time, a shorter triage time means

that fewer patients would experience the wait time update.

EC.6.1. Intuition on How ∆ Impacts NL
ε

Here we provide empirical support for the hypothesis (discussed in §5) that a larger inflation ∆

in the displayed wait time increases the number of patients who wait for long enough to start
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treatment. The logistic regression (EC.1), which controls for triage-level indicators and a set of

time-related indicators ~T , yields an inflation effect of β1 = −0.07 (0.03)∗ on probability that a

patient leaves without being seen (LWBS).

P (LWBS) = β0 +β1∆ +β2I{ESI = 4}+β3I{ESI = 5}+ ~β4 · ~T (EC.1)

We fit (EC.1) on data from the 5265 LAPs who arrived while the triage room screen was fully

operational. The treatment variable ∆ denotes the inflation and ~T indicates a set of time related

variables. We selected these control variables following analysis on historical data (before the

experimentation period) of which variables are most predictive of a LAP leaving without being seen.

Table EC.5 reports estimates of coefficients for ∆ obtained via logit, probit and linear regression,

as well as the corresponding estimates obtained when replicating the analysis on low-acuity ED

visits for which the screen was off.

EC.6.2. Details in Adopting the “MLIV” Method

Following the recipe in (Singh et al. 2020), we perform the steps below to strengthen our instrument

to correct our estimate for the externality on each bootstrap dataset S.

1. Outer Loop: split the data S (roughly) equally into a 2-fold partition, such that each partition

Sk (k ∈ {1,2}) has size bn
2
c or bn

2
c+1. For each partition k, define Sck to be the excluded data.

2. Inner Loop: for each partition k, we learn the optimal instrument function fk(·; ζk) to predict

N ε
L using the excluded data Sck. Specifically, f(∆; ζ) is a class of instrumental variable functions

parameterized by ζ, here ∆ is the “Inflation”. The pool of candidate f functions includes

XGBoost2, Lasso, Ridge, and Elastic Net, and the hyperparameters pertinent to f is tuned

through 2-fold cross-validation.

3. Compare prediction accuracy (using RMSE metric) of each of the two instrument functions

fk(∆; ζk) and choose the one that is more accurate. Denote the selected function and hyper-

parameter by f∗(∆; ζ∗).

4. Now, for the entire dataset S, we can obtain the new instrument f∗(∆, ζ∗) that we also denote

by f∗(∆) for simplicity. Thus we can use the standard 2SLS method to get the estimation for

the externality.

Using 2015 experiment data, The left sub-figures in Figures EC.4 and EC.3 show the boxplots

(the median, the 25th percentile, and the 75th percentile) of the p-values of the IV using weak-

instrument test and the Wu-Hausman test, respectively, across all 20 bootstrapped datasets at

τ = 8 hours, before and after the implementation of “MLIV”. The results demonstrate that “MLIV”

method strengthens the IV. Similar boxplots for 2019 experiment (as discussed in §5) are shown

in the right sub-figures of Figures EC.4 and EC.3.

2XGBoost and Elastic Net method performs better in minimizing the RMSE in majority of bootstrapped datasets,
and there no much different between the two. Thus we use XGBoost as our main machine learning method.
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 Experiment Control (Screen Off) 
       

 Logit Probit OLS Logit Probit OLS 
       

 

      

(Intercept) -4.06*** -2.13*** 0.02 -22.35 -6.48 -0.007 
 (1.07) (0.44) (0.018) (3830.85) (526.9) (0.017) 
Forecast Inflation -0.07* -0.03* -0.001* 0 -0.01 0 
 (0.03) (0.01) (0.001) (0.08) (0.03) (0.001) 
 

      

 

      

Triage Level = 4 1.1** 0.46*** 0.016** 1.38*** 0.55*** 0.017*** 
 (0.34) (0.14) (0.005) (0.41) (0.16) (0.005) 
Triage Level = 5 1.9*** 0.8*** 0.042*** 1.67* 0.69* 0.022 . 
 (0.52) (0.24) (0.012) (0.7) (0.3) (0.012) 
 

      

 

      

Arrived during 1am-2am 0.07 0.03 0.002 17.95 4.25 0.026 
 (1.44) (0.6) (0.026) (3830.85) (526.9) (0.025) 
Arrived during 2am-3am 0.48 0.15 0.009 0.09 0.05 0.001 
 (1.44) (0.62) (0.027) (6100.27) (840.03) (0.025) 
Arrived during 3am-4am -16.42 -3.86 -0.016 0.35 0.14 0.004 
 (3615.04) (509.07) (0.032) (6335.17) (872.19) (0.026) 
Arrived during 4am-5am -16.52 -3.91 -0.018 -0.06 -0.01 -0.001 
 (3220.8) (453.59) (0.03) (7443.16) (1025.46) (0.031) 
Arrived during 5am-6am 0.71 0.35 0.016 0.18 0.07 0.002 
 (1.44) (0.6) (0.029) (6389.93) (878.88) (0.026) 
Arrived during 6am-7am -16.3 -3.85 -0.014 -0.05 0 -0.001 
 (2999.83) (420.72) (0.028) (5331.74) (734.02) (0.022) 
Arrived during 7am-8am -16.7 -3.99 -0.02 -0.23 -0.05 -0.003 
 (1973.44) (277.74) (0.023) (5005.23) (690.04) (0.021) 
Arrived during 8am-9am -16.87 -4.07 -0.024 -0.17 -0.04 -0.002 
 (1642.71) (230.84) (0.021) (4536.66) (624.66) (0.019) 
Arrived during 9am-10am -1.44 -0.57 -0.016 16.96 3.86 0.01 
 (1.43) (0.56) (0.02) (3830.85) (526.9) (0.018) 
Arrived during 10am-11am -0.77 -0.33 -0.01 17.77 4.2 0.024 
 (1.24) (0.5) (0.02) (3830.85) (526.9) (0.018) 
Arrived during 11am-12pm -1.7 -0.62 -0.018 17.01 3.87 0.01 
 (1.43) (0.54) (0.019) (3830.85) (526.9) (0.018) 
Arrived during 12pm-1pm 0.31 0.14 0.011 16.49 3.74 0.006 
 (1.1) (0.46) (0.02) (3830.85) (526.9) (0.019) 
Arrived during 1pm-2pm 0.09 0.02 0.003 17.44 4.06 0.017 
 (1.14) (0.47) (0.02) (3830.85) (526.9) (0.018) 
Arrived during 2pm-3pm 0.43 0.18 0.013 -0.06 0 -0.001 
 (1.1) (0.46) (0.02) (4466) (612.34) (0.018) 
Arrived during 3pm-4pm 0.52 0.26 0.016 18.27 4.42 0.039* 
 (1.09) (0.45) (0.02) (3830.85) (526.9) (0.019) 
Arrived during 4pm-5pm -16.77 -4 -0.022 0.02 0.03 0 
 (1369.86) (192.98) (0.02) (4477.88) (616.27) (0.018) 
Arrived during 5pm-6pm 0.7 0.32 0.021 17.89 4.24 0.027 
 (1.1) (0.46) (0.02) (3830.85) (526.9) (0.019) 
Arrived during 6pm-7pm -1.18 -0.45 -0.013 -0.09 -0.02 -0.001 
 (1.43) (0.56) (0.02) (4491.04) (618.15) (0.019) 
Arrived during 7pm-8pm -0.15 -0.08 -0.002 17.86 4.23 0.025 
 (1.17) (0.48) (0.02) (3830.85) (526.9) (0.018) 
Arrived during 8pm-9pm -0.15 -0.04 -0.002 17.86 4.24 0.025 
 (1.17) (0.48) (0.02) (3830.85) (526.9) (0.019) 
Arrived during 9pm-10pm -0.36 -0.1 -0.005 18.32 4.4 0.035. 
 (1.24) (0.5) (0.02) (3830.85) (526.9) (0.019) 
Arrived during 10pm-11pm 0.5 0.26 0.012 16.91 3.81 0.01 
 (1.17) (0.49) (0.022) (3830.85) (526.9) (0.02) 
Arrived during 11pm-12pm -16.66 -4 -0.02 17.31 3.99 0.015 
 (1927.64) (270.64) (0.023) (3830.85) (526.9) (0.021) 
       

 

Table EC.5 Coefficient estimates for regression (EC.1).
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Figure EC.3 Left: boxplots for the p-values of the Wu-Hausman test for the IV using the standard 2SLS

method vs. the MLIV method, across bootstrapped dataset, using 2015 experiment data. Right: same analysis as

in the Left, but using 2019 experiment data.

Figure EC.4 Left: boxplots for the p-values of the weak instrument test for the IV using the standard 2SLS

method vs. the MLIV method, across bootstrapped dataset, using 2015 experiment data. Right: same analysis as

in the Left, but using 2019 experiment data.

EC.6.3. Output of the 2SLS

Table EC.6 presents coefficients of the 2SLS using f∗(∆) as IV. Definition of the controls can be

found in §4 and §EC.3. The standard error for each estimated coefficient is based on estimates

from 20 bootstrapped datasets using SMMC 2015 data. We use N̂L
ε to denote the estimated NL

ε

using f∗(∆) as IV in the first stage (with same controls as in model (7)) of the 2SLS.
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Table EC.6 Estimation Results for 2SLS for regression (2)

Variable Estimated coefficient (SE)

N̂L
ε 2.2 (0.5)

NL
τ 0.008 (0.006)

NH
τ 0.41 (0.13)

NL
τ ×NH

τ 0.001 (0.002)

N̂L
ε ×NL

τ 0.02 (0.02)

N̂L
ε ×NH

τ 0.43 (0.2)

N̂L
ε ×NL

τ ×NH
τ 0.006 (0.002)

SHt 0.21 (0.09)

SLt 0.10 (0.11)

pod31 -0.14 (0.13)

pod32 0.28 (0.11)

is.weekend 0.03 (0.01)

R2 0.76

Appendix EC.7: Additional Theoretical Results and Robustness
Check for our estimator in §7

The triage server itself is a M/M/1 queueing system with arrival rate λT = λH + λL, and service

rate µT . Thus the HAP expected wait time in the triage server, E[W T
H ], is ρT/(µT − λT ), where

ρT = λT/µT (Wolff 1989). Moreover, according to Burke’s theorem (Burke 1956), we know that

the departure process of the triage server is the same as the arrival process. Thus the arrival

processes of HAPs and LAPs to the treatment server are still Poisson with arrival rates λH and

λL, respectively. Thus, we can directly get the closed-form expression for the expected HAP wait

time in the treatment server, E[WM
H ], using expression (8) in Theorem 1, which is derived in a

more generalized setting. Thus we obtain the closed-form expression for the expected HAP wait

time from arrival to treatment, E[W T
H ]+E[WM

H ]. Now, to get the theoretical value for the estimate

in Schull et al. (2007), under each set of parameters, we can calculate a numeric difference in the

expected wait time given by{
E

[
W T
H(λL +

1

8× 60
)

]
+E

[
WM
H (λL +

1

8× 60
)

]}
−
{
E
[
W T
H(λL)

]
+E

[
WM
H (λL)

]}
. (EC.2)

Table EC.7 shows the externality estimation with exponential transition delay time with mean

5 minutes to show the results stay qualitatively the same as reported in Table 6.

To evaluate how our estimator performs with realistic diurnal variation in arrival rates for LAP

and HAP patients, we modify the arrival rates for LAPs and HAPs in the simulation model.

Specifically, within each of the 24 hours in a day, we set λL and λH to the mean number of
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Figure EC.5 Average count of low-acuity arrivals (on the top) and average count of high-acuity arrivals (on the

bottom) vs. arrival period in a day; and the error bar centered around each dot is obtained using mean 95%

bootstrapped confidence interval.

Table EC.7 Estimated effect (and 95% confidence interval) of one additional LAP arrival in an 8

hour interval on expected wait time per HAP and total for all HAPs arriving in the 8 hour

interval, for the Oracle, our approach and Schull et al.’s approach. Parameters are specified in

Table 5 except the transition delay that follows a exponential distribution with a mean of 5

minutes.

Estimated Externality Caused by a LAP in 8 Hour

H1/SMMC H2 H3 H4 SMMC peak

total
Ours 6.5(±0.7) 3.5(±0.6) 2.5(±0.5) 4.8(±0.6) 36.5(±1.8)

Oracle 5.3(±1.5) 2.5(±1.1) 2.2(±0.6) 6.9(±2.1) 46.3(±12.2)

per HAP
Ours 1.1(±0.4) 0.3(±0.2) 0.5(±0.1) 1.4(±0.1) 8.3(±0.2)
Schull 0.34(±0.01) 0.24(±0.01) 0.18(±0.03) 0.38(±0.02) 0.36(±0.02)
Oracle 1.5(±0.6) 0.3(±0.2) 0.4(±0.1) 1.5(±0.3) 9.3(±2.2)

LAPs and of HAPs, respectively, that arrive in that hour of the day, in SMMC observational

data (demonstrated in Figure EC.5). We replicate the analysis described in §7 with that diurnal

variation in arrival rates as well as exponential distributed transition delay time, and summarize

the results in Table EC.8. Our approach reasonably estimates the true externality (Oracle) in the

non-stationary system whereas Schull et al.’s approach yields an underestimate.

Another robustness check that we did for our estimator is to allow LAPs to renege before the

treatment server. Across SMMC, hospital 1, 2, 3, and 4, the left without being seen rate for LAPs

ranges from 1%−3%; among them 99.5% leave after they are triaged. To model this phenomenon,

on top of the non-stationary queue setup discussed for Table EC.8, we let LAPs to renege the
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Table EC.8 Mean true externality truncated to 8 hours (Oracle), our estimate of the mean

externality truncated to 8 hours, and our estimate without using interaction terms (3) in the

regression; estimate of the mean externality truncated to 8 hours by extrapolating the per HAP

estimate from Schull et al.

Mean Service Time (min.) Transition Delay Externality (min.)

Triage Treatment
HAP

Treatment
LAP

Distribution Oracle Ours Ours
without (3)

Schull et al.’s

8 18 6 exponential(5) 30.2 (±12.5) 26.4 35.2 5.3

8 18 6 constant(5) 25.6 (±10.1) 21.3 31.8 5.0

Table EC.9 The true (Orcale) and the estimated externality of a LAP on HAPs wait time

truncated to 8 hours via our estimator for simulation data generated based on the actual high-

and low-acuity arrival patterns in SMMC, which is demonstrated in Figure EC.5, further

assuming LAPs reneging with 3% probability after being triaged but before being treated (leave

without being seen). Externality is in minute, and µT , µH , and µL are in 1/minute. The

transition delay time is set to be an constant at 5 minutes.

(1) Parameters of the Queue (2) externality

µT µH µL LWBS Oracle Ours

SMMC 1
8

1
18

1
6

3% 25.3 (±9.9) 21.2

system with a probability of 3% after being triaged but before entering the treatment server. We

replicate the analysis done for Table EC.8 and summarize the result in Table EC.9.

Appendix EC.8: Numerical Examples Comparing Average Wait Time
for HAPs, Under the Non-preemption Policy Versus
Under the Preemption Policy.

In row 1, 2, and 4 of Table EC.10, we provide numerical examples demonstrating the average HAPs

wait time, under the non-preemption policy, to be smaller than under the preemption policy.

We simulate a M/M/1 queueing system in §6 with the same input parameters as described

in Table 5, mimicking SMMC, hospital 1, 2, 3 and 4. We assume the transition delay time T =

3 + 27 ·G, where G is a random variable following a beta distribution with shape parameters α= 1

and β = 3, so that the time falls in the range [3,30] minutes, mean 9.75, and variance 27.5.
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Table EC.10 The long-term average HAPs wait time with its 95% confidence interval under the

preemption policy (W
P

H) and under the non-preemption policy (W
NP

H ) using simulation data

generated based on actual average ED utilization of SMMC, hospital 1, 2, 3, and 4. The units of

the queueing parameters and the wait times are consistent: W
P

H and W
NP

H are in minutes; λH ,

λL, µH , and µL are in minute−1.

λH λL µH µL W
P
H W

NP
H

H1/SMMC 1
60

1
15

1
18

1
6

14.38(±0.37) 11.16(±0.34)

H2 1
55

1
30

1
18

1
6

12.15(±0.33) 10.38(±0.31)

H3 1
60

1
30

1
18

1
6

11.09(±0.28) 9.46(±0.26)

H4 1
55

1
15

1
18

1
6

15.67(±0.37) 12.17(±0.34)


