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Abstract— The input-queued switch architecture is widely used
in Internet routers due to its ability to run at very high line
speeds. A central problem in designing an input-queued swéh
is the scheduling algorithm that decides which packets to ainsfer
from ingress ports to egress ports in a given timeslot. It is dsir-
able that such algorithms be iterative (so as to be pipelindde),
distributed (allowing flexibility in hardware implementat ion) and
are able to deliver high performance (in terms of throughput
and delay). In practice, implementable algorithms have sodr
had limited success in combining all of the above propertiedor
example, the popular iSLIP [1] algorithm is known to perform
suboptimally, but it is commercially deployed mainly becase it is
iterative and distributed. The main contribution of this paper is
the design and systematic analysis of two algorithms whicho the
best of our knowledge, are the first high-performance iteraive
and distributed scheduling algorithms with possibility of efficient
implementation.

We first present an iterative, distributed and low-delay max
imal throughput algorithm based on the celebrated “Auction
Algorithm” [2], [3]. This algorithm can be seen as a natural
extension of iSLIP when queue-size information is alloweda
be exchanged. The standard auction algorithm can take an
unbounded number of iterations to converge in the worst case
However we show that under admissible Bernoulli i.i.d. trafic,
our algorithm takes O(n?) iterations, where n is the number of
ingress/egress ports in the switch. Moreover for a switch wh
finite buffer-size, the algorithm allows for a graceful trade-off
between running time and performance, which we verify by
representative simulation results.

Next, we propose and analyze a throughput-optimal, iteratie
and distributed scheduling algorithm influenced by Max-Praduct
Belief Propagation [4], [5]. Recently the problem of efficiat
transmission over multi-hop wireless networks has been faonu-
lated as that of finding an appropriate schedule over the grid
graph abstraction of the network. A key feature of the multi-hop
wireless transmission problem is that while the communicabn
subgraph is bipartite, the bi-partition is allowed to change in
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Fig. 1. An input-queued switch, and a matching of inputs ttpots.

A. Input-queued switch

Switching is an integral function in an Internet router that
transfers packets arriving at ingress (input) ports to €gre
(output) ports. There are a variety of possible switch aechi
tures— in this paper we are concerned with input-queued (1Q)
switches and will next describe how an 1Q switch operates.

Figure 1 illustrates & x 3 1Q switch fabric, by which we
mean the switch has 3 input ports and 3 output ports. (Not
all ports need be used, so there is no loss in generality in
assuming an equal number of input and output ports.) Packets
arriving at input; destined for outpuf are stored in the Virtual
Output Queue VOQ, j). In each timeslot, the switch fabric
can transmit a number of packets from input ports to output
ports, subject to the constraints:

i. each input can transmit at most one packet,

ii. each output can receive at most one packet.
Another way to express this is to say that, in each timeslot,
the switch can chooseratchingfrom inputs to outputs. For
example, Figure 1 illustrates a matching in which one packet

each scheduling epoch. We show that our algorithm can be used IS transmitted from input port 1 to output port 3, and one from

to efficiently schedule traffic in multi-hop wireless netwoks.
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input port 2 to output port 1. The figure also shows a match
from input port 3 to output port 2, but since VO@R)2) is
empty no packet is transmitted.

The constraints (i) & (ii) mean that the buffer memory
needs to be accessed only twice per timeslot (once to write an

Scheduling is an essential operational task required in aimgoming packet, once to read a packet for transmission¥. Th
large network in order to allocate resources, like bandwidtow memory bandwidth requirement implies that 1Q switches
and hardware, to various competing entities such as data flavan operate at very high speeds. The constraint (i) meats th
or packets. The main challenge in designing a good schepulimo buffers are required at the output ports. We have assumed
algorithm is in achieving a balance between performance anere and throughout this paper that all packets are of equal

implementability. Motivated by this consideration we pairity

size, and that time is slotted so that at most one packet may

consider the problem of scheduling in an input-queued $witcarrive in any timeslot. In practice, packets are not all thes
and a related problem of scheduling in a multi-hop wirelessze, but they are broken up into equal-sized cells befareggbe

network secondarily.

transmitted across the switch fabric.



As shown in previous work including [6]-[9], a good candi-
date scheduling algorithm is the Maximum Weight Matching
? matching (MWM) algorithm, where the weight of a transmission is the

difference between the queue-size at transmitting nodetand
receiving node (also called back-pressure policy).

In the interest of space, unlike the problem of switch
scheduling we will not go into details of the wireless scHedu
ing problem in this paper and instead point the reader to
the literature cited. However, as we shall shortly see, the
techniques used for both problems will be very similar.

Fig. 2. A 16 node ¢ x 4) grid graph as a model for wireless network.
C. Previous work
The 1Q switch architecture has been studied for more than

Scheduling algorithm. The specific matching of inputs toa decade [10]-[13]. A good deal is now known about the
outputs in each timeslot is chosen bygeheduling algorithm throughput charactersitics of the 1Q switch. MWM has been
It may take into account various kinds of information such ahown to have 100 % throughput, under a ‘friendly’ arrival
gueue sizes, ages of packets, or quality-of-service caingsr  distribution [14]. A generalization of this result in thertext

For the purpose of this paper, one scheduling algorithm @ multi-hop networks (under the same arrival distribujion
of particular interest: thlaximum-Weight MatchingWM) has also been shown earlier [15]. These results have been
algorithm. In every timeslot, this algorithm chooses a himig  generalized to arbitrary arrival distributions [16]. A staof
as follows: LetQ;; be the queue size at V@Qj). Given algorithms akin to MWM have also been shown to have 100 %
a matching that matches inputto outputo(i), define the throughput [17]-[19]. Further, when the appropriate fiorct
weightof that matching to b&_, Q; ;- Among all possible of queue-size is used as the weight, the algorithm has been
matchings choose one with the greatest weight (breakiisg tEhown to possess a certain delay optimality property [20].
arbitrarily). Though MWM and related algorithms provide maximal

The two main metrics for evaluating the performance dhroughput, the network-flow based algorithms such as that o
a scheduling algorithm are throughput and delay. RougHigdmonds and Karp [21] which find the MWM in finite time
speaking, an algorithm is said to ha®@0% throughputf (independent of weight) are too complex to implement since
it can carry as much traffic as an omniscient scheduliigey are centralized and require the maintainenance ofaf lot
algorithm (i.e. one which knows all future packet arrivalsydata structure. This has motivated the design of simplé-hig
This is formalized later in the paper. Delay performance Rerformance scheduling algorithms. The iSLIP [1] algarith
harder to quantify; we discuss it further below. Our obje=ti has been commercially successful as it is distributedatiter
in this paper is the design of scheduling algorithms tha&nd requires simple hardware operations. However, it is not
have 100% throughput, low delay, are simple in terms othroughput optimal. Other notable algorithm [22]-[24] are
data structure and logic requirement, and are iterative agignple to implement and throughput optimal. But they are
distributed. either centralized or provide poor delay performance (or no
guarantees on delay performance at all).

In the context of wireless networks, there has been recent
work [7]-[9] that proposes a variant of iSLIP as the schedyli

A multi-hop wireless network, shared by many users, arisagyorithm. Again, though simple, these algorithms are not
in many situations such as a wireless mesh network. A gotitoughput optimal.
model for network topology is the two-dimensional grid-{ga o
An example of al6 node grid-graph is depicted in Figure 2.D- Contribution

The need to schedule the transmissions between nodes aris@his work is motivated by the desire to design iterative,
due to thanterferencecaused by the signals sharing the broadtistributed and simple algorithms that have maximal thieug
cast wireless medium. In other words, the transmission frgmut and low delay. The auction algorithm of Bertsekas [2] has
one node can adversely affect the transmission of other natene key similarities with the iSLIP algorithm and is theref
in a wireless environment. A popular model for interfereisce very appealing as a starting point. However, its runningtism
the node-exclusivenodel: each node can either transmit to geroportional to the largest weight (or queue-size) whicty ma
receive from at most one other node at any given time. THatd to undesirable performance.
is, simultaneously transmitting nodes and receiving nodest In this paper, we consider a variation of the auction algo-
respectively form the two partitions of a bipartite graphda rithm and show that under ‘friendly’ arrival traffic it takes
be connected via a matching. Hence, a scheduling algorghn(i(n?) iterations to converge to a solution. This has the
required to pick schedule or matching (of transmitter-nere immediate implication that the algorithm has 100% throughp
pairs) at each time, with the objective of maximizing networand has a net average queue-siz&¢fi?). The iterative and
throughput and minimizing the delay. distributed nature of this algorithm allows for a pipelined

B. Wireless Network



architecture and flexibility in hardware implementation ithe cumulative arrival process up to timestoti.e. A;;(7) is
different components. For example, each input/outputgemt the number of packets that have arrived at inpdéstined for
host a logic processor with memory and they communicadeitput; in the time interval0, 7|, with A(0) = 0. The arrivals
with each other to calculate the optimal schedule every tinietimeslotr are thusa(r) = A(7) — A(7 —1). In this paper,
in O(n?) iterations. These results are presented in Section We make the following standard assumption that the arivals
In practice, buffers are finite and our variant of the auctiogij(T), are Bernoulli i.i.d. across time withr(a;; (1) = 1) =
algorithm suggests that in this case, a trade-off betwegn and the arrival rate matrix = [);;] is admissible that is,
performance and computational complexity can be obtaiged b . .
tuning a single parameter. Obtaining a precise quantifioati ‘ . .
of the throughput region for a system with finite buffers is ;/\m <1 Z/\’” <L Vi
known to be a hard theorectical problem. Consequently, we
are unable to provide a justification for the claimed traffe-o>imilarly, let D(7) be the cumulative departure process from
in performance. This discussion is presented in Sectidd. II- the virtual output queues. Then
The auction algorithm requires a bi-partition of the graph _ _ _ _
since it treats the partitions asymmetrically. In case of a Q) = Q)+ A7) =D(r) = A() = D7), (1)
switch, the inputs and outputs form a natural bi-partitibhe since Q(0) = 0. Now we specify the scheduling algorithm.
wireless network when modeled as a grid-graph is bipartiteet S, (7) be the cumulative number of timeslots that the
However, nodes do not know their partition a priori, andcheduling algorithm has devoted to matching= P in the
creating a partition in a distributed manner is essentially time interval [0, 7], with S (0) = 0 for all =. We will use
lot of work. For this reason, we need a 'symmetric’ version dhe convention that departures in timestothappen at the
the auction algorithm. In Section Ill, we present an itagti beginning of the timeslot, and that arrivals happen at thte en
distributed algorithm motivated by the Max-Product (MP3o that
algorithm for MWM. MP is a message-passing algorithm that . (1) = Dyj(r —1) =
has been extremely successful as a heuristic for solving har “ “ )
combinatorial optimization problems [25]-[27]. The roats > 7 (Sx(T) = Sa(T = 1))1g,, (r—1)>0- 2)
MP lie in statistical physics and Al [4], [27]. In recent work weP
[28], [29], we have developed an MP-based algorithm whigBefore proceeding further, we recall the following welldam
solves the MWM problem exactly for bipartite graphs whicland well utilized fact: given an admissible which is a doubly

k=1

have a unique optimum. sub-stochastic matrix, by the Birkhoff-Von Neumann theore
Il. SWITCH SCHEDULING: AUCTION ALGORITHM n?
In this section, we describe the auction algorithm for switc A=) onme, x>0, Y an <1, mEP.

scheduling and establish that it tak@$n?) iterations. For a =t F

switch with finite buffers we discuss the possible trade-oB. Auction Scheduling Algorithm
obtainable between performance and the running time of theFor ease of explanation, we denote inputsdy. .., c,

algorithm. We support our claims using simulation results. and outputs by3, ..., 3,. As noted earlier, at time the

A Notation weight of an edg€w;, 3;) is Q;;(7 — 1) and the weight of
' . . . the matchingr is > | Qix(;) (7 — 1). A Maximum Weight
We first specify our notation. Lek = {z € R: 2z > 0} Matching=*(r) at time is such that

andZ; = {i € Z : i > 0}. Let 1x be the indicator function:

Liue = 1 and lgase = 0. * S
. 7 (T) € argmax in() (T —1).
Let M be the set ofr x n real-valued matrices, anbil , (7) € arg max ;Q o =1

the subset consisting &, -valued matrices. Write matrices as ) ) . )
a = [a;;]. Denote bya-b asy",. a;b;,. Let1 = [1]. LetS C Now we describe the auction algorithm with parameter 0.

M, be the set of matrices whose row sums and column suffisthe description of the algorithm, we drop reference to
g tme 7 for the queue-size. Readers familiar with the iSLIP

are all equal to 1, i.e. the set of doubly stochastic matrice _ _ o e W
P S be the set of matrices for which r;; € {0,1} for all algorithm may notice a striking syntactic similarity betme
\ iISLIP and auction algorithms: both algorithms iterate

1 andj, i.e. the set of permutation matrices. These correspo i , ) ,
to matchings in the switch bipartite graph withinputs and between inputs proposing and outputs accepting/refusimg.
n outputs. similarity suggests that the auction algorithm is likelyhiave

Let timeslots be indexed by € Z, starting atr — 0. Let & Simple implementation.
Q(7) = [Q4j(7)] € M, denote the matrix of the queue sizeg-Auction Algorithm.
at the end of timeslot. We assumeQ(0) = 0. Since work
arrives in discrete packet§,;(7) € Z, for all 7. o Given queue-size matriQ, let Q* = max;; Q;; which
Next we describe the dynamics f(-), which depends on is determined as follows:
the arrival process and the scheduling algorithm. Aét) be — Each output3; computes))”; = max;_; Qx;-




— Each inputa; obtains@”; from all outputs; and We skip the proof of the above lemma. The interested reader
computes)” = max; Q7;. can find an elegant proof in [2], [3].
— Each outputs; contacts inputy; to obtainQ*. In Lemma 2, since we selead = eQ*/n assuming
o Setd = eQ*/n. The algorithm will find a matching in that @ < oo, so the algorithm is well-defined and it
two phases. Initially, the set of matched inputs-outpugways converges iD(n?/¢) iterations. Further, the weight

= (; the set of unassigned inpufs= {a,...,a,}, of the resulting matching is at leagt — e)W*, W* =

and parameterg; = 0 for 1 < j < n. maXrep ) _;r(;) Qin(i), €ach time for the following reason:
o Phase 1: BiddingFor all a; € I, by Lemma 2 the weight of resulting matching is at least
(1) Find the ‘weight’ maximizing outpug;. Let, W* —nd = W* — Q*e; Q* < W* and hence it is at least
. 1—e)W=.

i = argmay{Qi; —ps}, vi = mJaX{Q” —rik @) ( To c)omplete the proof of Theorem, we show that @) <

andu; = n;ax{Qij —pi}. (4) oo with probability 1 under thes-Auction algorithm, and (b)
VRN

the claimed bound on the net average queue-size in statement
of Theorem 1 holds.

For this we will use Lyapunov function based arguments.
Define the Lyapunov function

By = Qi LQ(M) = Q- =3 Q4m). 6
o Phase 2: Assignmenfor each outpug;, i
(3) LetP(j) be the set of inputs from which; received From Foster’s criteria (see [30]-[33]), it follows that

a ‘proposal’. If P(j @, increasep; to the highest
bidp, i.g. w7 ) ’ lim sup E[Q;;(7)] < o0, Vi, j,

T—00

(2) Compute the ‘proposal’ of inputy;, denoted by
ba,—p; as follows:

pj = max. bai—p; if for all 7,

(4) Remove the maximum proposing inpuf, from I E[L(Q(T +1)) — L(Q()|Q(1)] < —7|Q(7)|1 + B,(6)
and adda;,, 8;) to S. If (aw, B;) € S, k # ij, then - )
put o, back inT. where v, B are some positive constants. Now, consider the

following.
C. Analysis L(Q(7 +1)) — L(Q(7))

The auction algorithm described above is slight variant of - Z (r+1) ij 5]
Bertsekas’ auction algorithm. Given a fixed weighted bipart
graph, the behavior of the auction algorithm is well under- = Z Qi (T+1) — Qi (1)][Q4; (T + 1) + Qi;(7)].
stood. However, the algorithm converges only if all the visésg

are finite. In our setup, weights are given@y-). Hence, itis £rom the dynam|cs of the(-), we obtain the following.
not clear if the above described algorithm will maintainténi

queue-sizes)* (-) with probability 1. Specifically, the size of LQ(r+1)) - L(Q(T))

Q*(-) directly affects the number of iterations required by the = Z 2Qi; (1) (a; (T + 1) — Dy (1 + 1))

algorithm to converge. We state the following result. '

Theorem 1 Givene > 0, let A = >, oy, be such that + Z (a; (T +1) — Dy (7 + 1))

> rar < 1—2e. Then, for a switch operating under te i.j

Auction algorithm Now, in a time slot, at most packet arrive and packet depart

from a VOQ. Sa(a;; (7+1)—D;;(7+1)) € {—1,0,1}. Hence,

li E ij = O(n?/e).
mawpE | ) Qur) | = O(*/e) S@r ) - Dyt ) < (@)

iJ
Let 7(-) be the schedule (matching) chosen by the algorithm.
Proof: In [3], Bertsekas studied the auction algorithnThen,
whered was independent of the weights of the bipartite graph. N N A N
In our algorithm we seleci = eQ*/n. Ignoring the specific Qij(r)Dis(r +1) = Qu(7)mis (7 + 1). (®)
selection of§, the standard auction algorithm of BertsekaBrom above, we obtain
with a givend > 0 has the following property. LQ(T+1)) — L(Q(T))

Further, thee-Auction algorithm take€)(n?/¢) iterations.

Lemma 2 ( [3]) Givend > 0, the auction algorithm finds a < 22@ (r+1) = 7 (r +1)) + 2n,
matchingS in O(nQ*/§) iterations. The weight this matching i !

is at Ieast(max,rep Y in(iy Qin(iy —nd). - 2q( y-a(r+1) —2Q(7) - w(1 + 1) + 2n.



Now, taking conditional expectation with respect@qgr), we
obtain

E[L(Q(T +1)) - L(Q(7))|Q(7)]
<2Q(7) - A=2Q(7) -w(t+ 1)+ 2n.

We used the fact that arrival process is Bernoulli i.i.d.rRro
hypothesis of Theorem 1,

n2
Z QETE |,
k=1

where for allk, 7, € P, oy, € Ry and )", ap =1 — 2e. By
the property of thes-Auction algorithm,

Q(7) -

whereW™* (1) = max,cp Q(7) - 7. Putting the above discus-
sion together, we have

L(Q

It is not difficult to see that

Q) 1=~ QM) < W ().

Thus, we have

9)

m(r+1) > (1—e)W*(r), (10)

E[L(Q(T +1)) = LIQ(T))|Q(7)] < —2eW™(7) + 2n.

E[L(Q(r +1)) ~ LQM)IQM) < ~2|Q(r) 1 +2n.

Thus, from Foster’s criteria as stated earlier, we obtaat th

lim sup E[Q;;(7)] < o0, Vi, j.

T—00

the stationary distribution of this Markov chain. Now, the
following completes the proof.
]

lim sup E[|Q(r)[1] <E [nm sup [|Q(r)

Q(c0)|h]
T—1

=E[|
=FE lhm 1nf — Z 1Q(r |1]
<lim inf E lf ;) IIQ(T)Ill

<n?/e.

In the above we have used the ergodic theorem and Fatou’s
lemma. [ |

D. Switch with Finite Buffers

The above sections establish that ¢R8uction algorithm is
almostthroughput maximal, take®(n?/e) iterations to find
a matching and induce®(n?/e) net average queue-size. This
analysis assumed the standard idealized infinite buffeichwi
In practice, a switch always has finite buffers. However, due
technical limitations all the known analysis has been iestl
to the infinite buffer case. While the infinite buffer anafysi
may provide an inkling on how well a finite buffer switch
may behave, it is far from being satisfactory.

For the very same reason discussed above, we are unable to
deal with the precise analysis of finite buffered switcheshe
However, we discuss heuristics based on auction algorithm
that allows for a tradeoff between performance and number
of iterations algorithm needs to run. Specifically, letbe the
buffer size of the switch for any VOQ. Given paramebér
setd = B/N instead ofeQ*/n in the e-Auction algorithm.

Now, we prove the claimed bound on the average queue-sigadl this algorithmN-Auction algorithm.

Consider the following that follows from above.

E[L(Q(r +1))] =E [ [L(Q(7 + 1)) = L(Q(7))|Q(7)]]
E[L(Q(r ))]
<E[L(Q (T))]——E[IIQ( )]+ 2n.

By telescoping the above far =0, ...,
E[L(Q(0))] = 0, we obtain

T — 1 and recalling

1
=K

ZELQM) < -ZE

ZH

By definition E[L(Q(T))] > 0. Hence,

1| +2n.(11)

lim sup E

ZHQ |1] < n%le. (12

As established by Foster’s criteria earlier on, the quéze-s
procesd(7) is positive-Harris recurrent under tleeAuction

algorithm as long as\ satisfies the hypothesis of Theorem

Along the lines of the proof o&-Auction algorithm, it is
clear that the above algorithm will tak@(n V) iterations to
converge. The weight of the matching found by the algorithm
will be no less thannB/N amount. This will naturally
affect the performance of the algorithm: a5 increases, the
algorithm takes longer to converge but quality of solution
is expected to become better and hence the performance of
algorithm is expected to be better.

E. Auction with Memory

In this section we look at the auction algorithm with
memory. Consider the following slight modification of tke
Auction algorithm from section II-B. At any time slat + 1
the parametep; for 1 < j < n instead of being initiated with
zero starts with its final value from the time slot

The intuition behind this modification is the following. At
the end of the time slot the parameterg; are optimal for
the queue size§);;(7 — 1). This means for each input

Qiﬂ'*(i) (T - 1)

—Pr) = rﬁalx Qij(T = 1) —p;

1. ThusQ(-) is an irreducible, aperiodic Markov chain andAt time slot 7 + 1 the queue sizes do not vary much since

hence ergodic. That i€Q(7) — Q(c0) whereQ(oo) follows

each can receive or transmit at most one packet. Hence one
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expects the parameteps to be near optimal for queue sizedess number of iterations but at the expense of greater queue
Q5 (7). From [3] we expect that in time slet}-1 starting with  sizes. Figure 7 shows a comparison between 1-Auction and
values ofp; from the time slotr the number of iterations for iSLIP when both run only three iterations in each time slot.
convergence of the algorithm to be relatively small. Sirtiala In practice sometimes only a few iterations of the iSLIP
results of the next section support this intuition as well.  algorithm are used instead of the full iSLIP. This figure seow
that the 1-Auction algorithm can also be used for a fewer

F. Representative Simulation Results number of iterations and it still outperforms iSLIP.

In this section we provide simulation results for &mx 8
input queued switch with a non-uniform admissible arrival Il. SCHEDULING FORWIRELESSNETWORKS
matrix. The traffic load takes one of the values from the setin this section, we describe a simple, iterative, distelout
{.65,8,.9,.95,.98}. All simulations are done for one million scheduling algorithm for a multi-hop wireless network, efhi
time slots. In this section "auctiog){ denotes the auction is modeled as a grid-graph as mentioned earlier in this paper
algorithm withd = ¢ wherec is a constant. For the-Auction First, we introduce the specific model.
algorithm we uses = 1 and hence denote it by 1-Auction.
When the number of iterations of the iSLIP algorithm is ndt: Setup
mentioned it is understood to have run all the way to the end,Consider a grid-graph om nodes with V' denoting the
i.e. it runsn = 8 iterations. vertex-set and® denoting its edge-set. Le¥'(:) denote the
Figure 3 shows that the 1-Auction algorithm performs muateighbors of the nodé For j € N (i), let Q;;(7) denote the
better than the iSLIP algorithm and is as good as MWM. Tlgueue-size corresponding to the packets waiting at ndde
next plot, Figure 4, shows that 1-Auction with memory hago to nodej at timer. The matching constraints require that
better performance than 1-Auction. at any given time each nodecan either transmit to or receive
Figures 5 and 6 show the trade-off that was referred fmm at most one other node. As before, }gt (7) denote the
in section 1I-D. Here the valué = B/N takes one of the cumulative arrival process corresponding to packets iagiv
valuesl, 10, 50. As mentioned before larger values dfjield ati and going toj till time 7. Again, we assume that arrival



10000 operates very similarly to the auction algorithm.
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o Let @* = max;; Q;;, which can be quickly computed in
a distributed manner.

o Setd =eQ*/n.

o Given queue-size matriQ, define a symmetric weight
matrix W = [W;;] as follows: for all (i,5) ¢ FE,
set W;; = 0 and for all (i,j) € E set W;; =
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o The algorithm variables are message that are exchanged
between neighboring nodes. Leﬂzf_)j € R denote
Fig. 7. Average queue sizes for iSLIP with 3 iterations anfiuttion with message from nodeto nodej in iteration k.

8 lterations o Initialize k = 0 and set the messages as follows:
-0 . a0
m;_,; = Wija my_,; = Wij

process is 'friendly’, i.e. it is a Bernoulli i.i.d. procesSiven
the constraints, theadmissiblearrival rate-matrixA = [\;;] o Fork > 1, iterate as follows:
must belong to the convex hull of the rates induced by the (a) Update messages as follows:
set of matchings of grid graph (an edgej) in matching can

induce unit rate along — j or j — ¢ and we are interested

in the convex hull of all such possibilities). Mg = Wi— max Lo

In this setup, the scheduling algorithm corresponds to first 7
i o e = Wi —maxm/! (13)
finding a matching in the graph and then for each edge Bj—eu U B

in the matching deciding which node transmits and which _ _ o
node will receive data. Again, the result of Tassiulas and (b) The estimated MWM at the end of iteratiéris 7",

Ephremides [15] immediately implies that the following max where 7*(i) = argmaxjen (i) {mf,_q,} for 1 <

weight scheduling algorithm is throughput optimal: (i) ose i < n. But WhenmaxjeN(i){mngai} < 0 then let

maximum weight matching with the weight of an edgej), 7%(i) = "null” which means node chooses not to

denoted byw;;, beingmax{Q;;, @Q;;}; (ii) for an edge(7, j) in connect to any of its neighbors.

the chosen matching, noddransmits to nodg if Q;; > @, (c) Repeat (a)-(b) tillr* (i) converges, i.e. for each<

(ties broken arbitrarily). i <mn, 7%#@F@) =i or 7F(i) = "null” for all &
Thus, it is desirable to find the MWM in the graph with edge large enough.

weights as described above. In case of a switch, the graph

was bipartite. The wireless network, modeled as grid graphWe Wwill show that the above algorithm converges to the
(generally any such 'product graph’ i dimensions) is also MWM with probability one in finite number of iterations.
bipartite, i.e. the graph nodes can be divided into two peots 1) Analysis of thes-Min-Sum Algorithm: The e-min-sum
that edges are only between nodes of the different parsitio@lgorithm described above is a minor variant of the simpli-
This is because these graphs do not have cycles of odd lenfjgl min-sum algorithm described in [29]in fact there are
Thus, this situation is the same as that of switch setup. Thé0 main differences between the two algorithm: i) In the
only difference is as follows: in a switch, the partition afdes simplified min-sum algorithm at every iteration each node is
is known in terms of inputs and outputs. In case of a gridratched, but in thes-min-sum the nodes have the option
graph, it is not known a priori. An ad-hoc fix to this situatien 0f remaining unmatched. ii) In the-Auction algorithm, the
that nodes co-operate and form a bipartition and use thesab@@rametee gives us a trade-off between converging to a good
described auction algorithm for finding an optimal schedélle matching versus a fewer number of iterations to converge.
more natural and scalable approach is to have an algoritatn th Let Q' = [Q;,] be a symmetric matrix of queue seizes
does notequire prior knowledge of the bipartition. That is, wedefined byQ;; = max{Qi;, Q;:}. Also, let 7* denote the
need an algorithm, which is 'symmetric’, unlike the startdarMWM of matrix Q" and letiW* denote weight ofr*. We will
auction, and that does not treat nodes of the two partitiongove the following result.

differently. Next, we describe such an algorithm based en t

. i i tfh 3 Gi , with probabilit the algorith
Max-Product Belief propagation algorithm. eorem lvene > 0, with probability one the algorithm

e-min-sum will converge to a matching with weight at least
B. Symmetric Auction via Max-Product W —eQ".

The following algorithm is an adaption of the Min-Sum 1p |onger version of this paper can be found at
(a version of Max-Product) algorithm described in [29] thatttp://www.stanford.edutbayati/papers/mpmwm.ps



Proof: Consider the set of weight8V. Let # be the

IS
S

MWM of the matrix W and let’V denotes its weight. Note ss| o 1-ameton
that W* < W since for alli, j we haveQ;; < W;;. Hence —o— -min-suny
30
D Qi) = D Wirg) = dizp)
i j gzo
> W —nd g
8 151
* * <
> W eQ”. ol
Now we only need to show that the algoritheamin-sum 5t
converges to the matching with probability one. o ‘ ‘ ; ‘ ‘ ‘
Note that since the numbefs; are chosen randomly from 0o : 8 o : : !

the interval(0, &), with probability onert is unique. Now all we
need is to show that i is unique there-min-sum algorithm
will converge to it. The proof of this fact is very similar to
the proof of Theorem 1 in [29]. Here we summarize the main
steps of the proof: i) Consider the min-sum algorithm defined R
in sections I.A and |.B of [29]. For each vertex add another 40| —o— -minsum
state which corresponds to being unmatched and update the 3|
compatibility functions accordingly. Hence each messagk a
belief vector will be inR™*1) . ii) Apply the same procedure
as in the proof of Lemma 2 in [34] to show that the min-
sum algorithm finds the MWM as long as it is unique. iii)
Similar to the proof of Lemma 2 in [29] each message vector

Fig. 8. Average queue sizes for MWM, 1-Auction and 1-min-sum

N w
a S

Average Iterations
N
o

of the min-sum algorithm still has two distinct values with 1op

the coordinate corresponding to the new state being equal to S. e e
then — 1 remaining coordinates. iv) Subtract the two distinct e
values of each message from each other to obtain equations load

(13) of thee-min-sum algorithm described above. Moreover
by the same argument as in Lemma 2 of [29] this algorithm Fig. 9. Average iterations to converge for 1-Auction and it-sum
will be equivalent to the min-sum algorithm with additional
state. This will finish the proof. ]
Theorem 3 shows that the algorithermin-sum converges, Auction algorithm at the expense of more convergence time.
but it does not provide any bound on the number of iteratiof®r this simulation we assume= 1.
required for convergence. From the main theorem in [34]
we know that thes-min-sum algorithm converges in at most IV. CONCLUSION
O(nWmax/7) iterations whereiV,,.x = max;;{W;;} and~ In this paper we introduced two simple, iterative, distrib-
is the difference between the weight of MWM and seconated algorithms for switch scheduling and wireless network
MWM in the matrixd = [4;;]. Therefore using = eQ*/nthe applications. Iterative algorithms are powerful solusiofor
expected number of iterations for convergence ofdhmin- such problems because their iterative and distributedreatu
sum algorithm is expected to be at mos(tr@/(sp)) iterations allow for many implementational simplifications (such as a
wherep is the maximum expected gap between the weight pfpelined architecture and eliminating centralized scihexs),
the MWM and second MWM of an x n matrix whose entries taking them from the realm of theoretical constructs toward
are i.i.d. random variables from the interyal 1). Simulation possible commercial deployment.
results suggest that =~ nk}gn for the uniform distribution. ~ We introduced the-Auction algorithm and the-min-sum
Hence expected number of iterations for convergence of thkgorithm which are both iterative and very simple. They
e-min-sum algorithm will be at most @¢ log n/¢). are new variations of the auction and the min-sum algorithm
2) Simulation results for thes-Min-Sum Algorithm: In  respectively. We have shown that teeAuction and thee-
section IlI-B.1 it was shown that similar to the-Auction min-sum algorithm solve the problem of finding the MWM
algorithm thee-min-sum algorithm finds matchings that havdéor a switch/network. Therefore, both these algorithms are
weight very close to the weight of the MWM. This means ththroughput and delay optimal which makes them most suited
e-min-sum algorithm is throughput optimal and has very lofior scheduling purposes. We also show (via simulations) tha
delay. We have simulated this algorithm for &nx 8 input these algorithms possess a very attractive feature that eve
gueued switch and compared it with theAuction algorithm when run for a few number of iterations, their throughput and
and MWM. The result as is shown in Figures 8 and 9 indicatéglay properties are better than the current algorithmd irse
that thee-min-sum algorithm gives lower delay than tke practice.




We believe that our algorithms represent an effective and3] P. Giaccone, B. Prabhakar, and D. Shah, “Randomizeddsting
in some aspects, radical line of attack on the traditional
problem of scheduling. Further work is required to est&blis
the auxiliary properties and to better understand this lfaofi
iterative scheduling algorithms.
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