
Iterative Scheduling Algorithms
Mohsen Bayati

EE, Stanford
bayati@stanford.edu

Balaji Prabhakar
EE & CS, Stanford

balaji@stanford.edu

Devavrat Shah
EECS, MIT

devavrat@mit.edu

Mayank Sharma
IBM TJ Watson Research, NY

mxsharma@us.ibm.com

Abstract— The input-queued switch architecture is widely used
in Internet routers due to its ability to run at very high line
speeds. A central problem in designing an input-queued switch
is the scheduling algorithm that decides which packets to transfer
from ingress ports to egress ports in a given timeslot. It is desir-
able that such algorithms be iterative (so as to be pipelineable),
distributed (allowing flexibility in hardware implementat ion) and
are able to deliver high performance (in terms of throughput
and delay). In practice, implementable algorithms have so far
had limited success in combining all of the above properties. For
example, the popular iSLIP [1] algorithm is known to perform
suboptimally, but it is commercially deployed mainly because it is
iterative and distributed. The main contribution of this paper is
the design and systematic analysis of two algorithms which,to the
best of our knowledge, are the first high-performance iterative
and distributed scheduling algorithms with possibility of efficient
implementation.

We first present an iterative, distributed and low-delay max-
imal throughput algorithm based on the celebrated “Auction
Algorithm” [2], [3]. This algorithm can be seen as a natural
extension of iSLIP when queue-size information is allowed to
be exchanged. The standard auction algorithm can take an
unbounded number of iterations to converge in the worst case.
However we show that under admissible Bernoulli i.i.d. traffic,
our algorithm takes O(n2) iterations, where n is the number of
ingress/egress ports in the switch. Moreover for a switch with
finite buffer-size, the algorithm allows for a graceful trade-off
between running time and performance, which we verify by
representative simulation results.

Next, we propose and analyze a throughput-optimal, iterative
and distributed scheduling algorithm influenced by Max-Product
Belief Propagation [4], [5]. Recently the problem of efficient
transmission over multi-hop wireless networks has been formu-
lated as that of finding an appropriate schedule over the grid-
graph abstraction of the network. A key feature of the multi-hop
wireless transmission problem is that while the communication
subgraph is bipartite, the bi-partition is allowed to change in
each scheduling epoch. We show that our algorithm can be used
to efficiently schedule traffic in multi-hop wireless networks.

I. I NTRODUCTION

Scheduling is an essential operational task required in any
large network in order to allocate resources, like bandwidth
and hardware, to various competing entities such as data flows
or packets. The main challenge in designing a good scheduling
algorithm is in achieving a balance between performance and
implementability. Motivated by this consideration we primarily
consider the problem of scheduling in an input-queued switch,
and a related problem of scheduling in a multi-hop wireless
network secondarily.

Input ports

Output portsVOQ(3, 1)

matching

input 1

input 2

input 3

output 1 output 2 output 3

Fig. 1. An input-queued switch, and a matching of inputs to outputs.

A. Input-queued switch

Switching is an integral function in an Internet router that
transfers packets arriving at ingress (input) ports to egress
(output) ports. There are a variety of possible switch architec-
tures− in this paper we are concerned with input-queued (IQ)
switches and will next describe how an IQ switch operates.

Figure 1 illustrates a3 × 3 IQ switch fabric, by which we
mean the switch has 3 input ports and 3 output ports. (Not
all ports need be used, so there is no loss in generality in
assuming an equal number of input and output ports.) Packets
arriving at inputi destined for outputj are stored in the Virtual
Output Queue VOQ(i, j). In each timeslot, the switch fabric
can transmit a number of packets from input ports to output
ports, subject to the constraints:
i. each input can transmit at most one packet,
ii. each output can receive at most one packet.
Another way to express this is to say that, in each timeslot,
the switch can choose amatchingfrom inputs to outputs. For
example, Figure 1 illustrates a matching in which one packet
is transmitted from input port 1 to output port 3, and one from
input port 2 to output port 1. The figure also shows a match
from input port 3 to output port 2, but since VOQ(3, 2) is
empty no packet is transmitted.

The constraints (i) & (ii) mean that the buffer memory
needs to be accessed only twice per timeslot (once to write an
incoming packet, once to read a packet for transmission). This
low memory bandwidth requirement implies that IQ switches
can operate at very high speeds. The constraint (ii) means that
no buffers are required at the output ports. We have assumed
here and throughout this paper that all packets are of equal
size, and that time is slotted so that at most one packet may
arrive in any timeslot. In practice, packets are not all the same
size, but they are broken up into equal-sized cells before being
transmitted across the switch fabric.

matching

Fig. 2. A 16 node (4 × 4) grid graph as a model for wireless network.

Scheduling algorithm. The specific matching of inputs to
outputs in each timeslot is chosen by ascheduling algorithm.
It may take into account various kinds of information such as
queue sizes, ages of packets, or quality-of-service constraints.

For the purpose of this paper, one scheduling algorithm is
of particular interest: theMaximum-Weight Matching(MWM)
algorithm. In every timeslot, this algorithm chooses a matching
as follows: LetQij be the queue size at VOQ(i, j). Given
a matching that matches inputi to output o(i), define the
weightof that matching to be

∑

i Qi o(i). Among all possible
matchings choose one with the greatest weight (breaking ties
arbitrarily).

The two main metrics for evaluating the performance of
a scheduling algorithm are throughput and delay. Roughly
speaking, an algorithm is said to have100% throughputif
it can carry as much traffic as an omniscient scheduling
algorithm (i.e. one which knows all future packet arrivals).
This is formalized later in the paper. Delay performance is
harder to quantify; we discuss it further below. Our objective
in this paper is the design of scheduling algorithms that
have 100% throughput, low delay, are simple in terms of
data structure and logic requirement, and are iterative and
distributed.

B. Wireless Network

A multi-hop wireless network, shared by many users, arises
in many situations such as a wireless mesh network. A good
model for network topology is the two-dimensional grid-graph.
An example of a16 node grid-graph is depicted in Figure 2.

The need to schedule the transmissions between nodes arises
due to theinterferencecaused by the signals sharing the broad-
cast wireless medium. In other words, the transmission from
one node can adversely affect the transmission of other node
in a wireless environment. A popular model for interferenceis
the node-exclusivemodel: each node can either transmit to or
receive from at most one other node at any given time. That
is, simultaneously transmitting nodes and receiving nodesmust
respectively form the two partitions of a bipartite graph, and
be connected via a matching. Hence, a scheduling algorithm is
required to pick schedule or matching (of transmitter-receiver
pairs) at each time, with the objective of maximizing network
throughput and minimizing the delay.

As shown in previous work including [6]–[9], a good candi-
date scheduling algorithm is the Maximum Weight Matching
(MWM) algorithm, where the weight of a transmission is the
difference between the queue-size at transmitting node andthe
receiving node (also called back-pressure policy).

In the interest of space, unlike the problem of switch
scheduling we will not go into details of the wireless schedul-
ing problem in this paper and instead point the reader to
the literature cited. However, as we shall shortly see, the
techniques used for both problems will be very similar.

C. Previous work

The IQ switch architecture has been studied for more than
a decade [10]–[13]. A good deal is now known about the
throughput charactersitics of the IQ switch. MWM has been
shown to have 100 % throughput, under a ‘friendly’ arrival
distribution [14]. A generalization of this result in the context
of multi-hop networks (under the same arrival distribution)
has also been shown earlier [15]. These results have been
generalized to arbitrary arrival distributions [16]. A class of
algorithms akin to MWM have also been shown to have 100 %
throughput [17]–[19]. Further, when the appropriate function
of queue-size is used as the weight, the algorithm has been
shown to possess a certain delay optimality property [20].

Though MWM and related algorithms provide maximal
throughput, the network-flow based algorithms such as that of
Edmonds and Karp [21] which find the MWM in finite time
(independent of weight) are too complex to implement since
they are centralized and require the maintainenance of a lotof
data structure. This has motivated the design of simpler high-
performance scheduling algorithms. The iSLIP [1] algorithm
has been commercially successful as it is distributed, iterative
and requires simple hardware operations. However, it is not
throughput optimal. Other notable algorithm [22]–[24] are
simple to implement and throughput optimal. But they are
either centralized or provide poor delay performance (or no
guarantees on delay performance at all).

In the context of wireless networks, there has been recent
work [7]–[9] that proposes a variant of iSLIP as the scheduling
algorithm. Again, though simple, these algorithms are not
throughput optimal.

D. Contribution

This work is motivated by the desire to design iterative,
distributed and simple algorithms that have maximal through-
put and low delay. The auction algorithm of Bertsekas [2] has
some key similarities with the iSLIP algorithm and is therefore
very appealing as a starting point. However, its running time is
proportional to the largest weight (or queue-size) which may
lead to undesirable performance.

In this paper, we consider a variation of the auction algo-
rithm and show that under ‘friendly’ arrival traffic it takes
O(n2) iterations to converge to a solution. This has the
immediate implication that the algorithm has 100% throughput
and has a net average queue-size ofO(n2). The iterative and
distributed nature of this algorithm allows for a pipelined

architecture and flexibility in hardware implementation in
different components. For example, each input/output portcan
host a logic processor with memory and they communicate
with each other to calculate the optimal schedule every time
in O(n2) iterations. These results are presented in Section II.

In practice, buffers are finite and our variant of the auction
algorithm suggests that in this case, a trade-off between
performance and computational complexity can be obtained by
tuning a single parameter. Obtaining a precise quantification
of the throughput region for a system with finite buffers is
known to be a hard theorectical problem. Consequently, we
are unable to provide a justification for the claimed trade-off
in performance. This discussion is presented in Section II-D.

The auction algorithm requires a bi-partition of the graph
since it treats the partitions asymmetrically. In case of a
switch, the inputs and outputs form a natural bi-partition.The
wireless network when modeled as a grid-graph is bipartite.
However, nodes do not know their partition a priori, and
creating a partition in a distributed manner is essentiallya
lot of work. For this reason, we need a ’symmetric’ version of
the auction algorithm. In Section III, we present an iterative,
distributed algorithm motivated by the Max-Product (MP)
algorithm for MWM. MP is a message-passing algorithm that
has been extremely successful as a heuristic for solving hard
combinatorial optimization problems [25]–[27]. The rootsof
MP lie in statistical physics and AI [4], [27]. In recent work
[28], [29], we have developed an MP-based algorithm which
solves the MWM problem exactly for bipartite graphs which
have a unique optimum.

II. SWITCH SCHEDULING: AUCTION ALGORITHM

In this section, we describe the auction algorithm for switch
scheduling and establish that it takesO(n2) iterations. For a
switch with finite buffers we discuss the possible trade-off
obtainable between performance and the running time of the
algorithm. We support our claims using simulation results.

A. Notation

We first specify our notation. LetR+ = {x ∈ R : x ≥ 0}
andZ+ = {i ∈ Z : i ≥ 0}. Let 1X be the indicator function:
1true = 1 and1false = 0.

Let M be the set ofn × n real-valued matrices, andM+

the subset consisting ofR+-valued matrices. Write matrices as
a = [aij]. Denote bya ·b as

∑

ij aijbij . Let 1 = [1]. Let S ⊂
M+ be the set of matrices whose row sums and column sums
are all equal to 1, i.e. the set of doubly stochastic matrices. Let
P ⊂ S be the set of matricesπ for which πij ∈ {0, 1} for all
i andj, i.e. the set of permutation matrices. These correspond
to matchings in the switch bipartite graph withn inputs and
n outputs.

Let timeslots be indexed byτ ∈ Z+, starting atτ = 0. Let
Q(τ) = [Qij(τ)] ∈ M+ denote the matrix of the queue sizes
at the end of timeslotτ . We assumeQ(0) = 0. Since work
arrives in discrete packets,Qij(τ) ∈ Z+ for all τ .

Next we describe the dynamics ofQ(·), which depends on
the arrival process and the scheduling algorithm. LetA(τ) be

the cumulative arrival process up to timeslotτ , i.e. Aij(τ) is
the number of packets that have arrived at inputi destined for
outputj in the time interval[0, τ], with A(0) = 0. The arrivals

in timeslotτ are thusa(τ)
△
= A(τ)−A(τ − 1). In this paper,

we make the following standard assumption that the arrivals,
aij(τ), are Bernoulli i.i.d. across time withPr(aij(τ) = 1) =
λij and the arrival rate matrixλ = [λij] is admissible, that is,

n
∑

k=1

λik < 1,

n
∑

k=1

λkj < 1, ∀ i, j.

Similarly, let D(τ) be the cumulative departure process from
the virtual output queues. Then

Q(τ) = Q(0) + A(τ) − D(τ) = A(τ) − D(τ), (1)

sinceQ(0) = 0. Now we specify the scheduling algorithm.
Let Sπ(τ) be the cumulative number of timeslots that the
scheduling algorithm has devoted to matchingπ ∈ P in the
time interval [0, τ], with Sπ(0) = 0 for all π. We will use
the convention that departures in timeslotτ happen at the
beginning of the timeslot, and that arrivals happen at the end,
so that

Dij(τ) − Dij(τ − 1) =
∑

π∈P

πij

(

Sπ(τ) − Sπ(τ − 1)
)

1Qij(τ−1)>0.
(2)

Before proceeding further, we recall the following well-known
and well utilized fact: given an admissibleλ, which is a doubly
sub-stochastic matrix, by the Birkhoff-Von Neumann theorem

λ =

n2

∑

k=1

αkπk, αk ≥ 0,
∑

k

αk < 1, πk ∈ P.

B. Auction Scheduling Algorithm

For ease of explanation, we denote inputs byα1, . . . , αn

and outputs byβ1, . . . , βn. As noted earlier, at timeτ the
weight of an edge(αi, βj) is Qij(τ − 1) and the weight of
the matchingπ is

∑n

i=1 Qiπ(i)(τ − 1). A Maximum Weight
Matchingπ∗(τ) at timeτ is such that

π∗(τ) ∈ argmax
π∈P

n
∑

i=1

Qiπ(i)(τ − 1).

Now we describe the auction algorithm with parameterε > 0.
In the description of the algorithm, we drop reference to
time τ for the queue-size. Readers familiar with the iSLIP
algorithm may notice a striking syntactic similarity between
the iSLIP and auction algorithms: both algorithms iterate
between inputs proposing and outputs accepting/refusing.This
similarity suggests that the auction algorithm is likely tohave
a simple implementation.

ε-Auction Algorithm.

◦ Given queue-size matrixQ, let Q∗ = maxij Qij which
is determined as follows:

− Each outputβj computesQ∗
·j = maxn

k=1 Qkj .

− Each inputαi obtainsQ∗
·j from all outputsβj and

computesQ∗ = maxj Q∗
·j.

− Each outputβj contacts inputαj to obtainQ∗.
◦ Set δ = εQ∗/n. The algorithm will find a matching in

two phases. Initially, the set of matched inputs-outputs
S = ∅; the set of unassigned inputsI = {α1, . . . , αn},
and parameterspj = 0 for 1 ≤ j ≤ n.

◦ Phase 1: BiddingFor all αi ∈ I,
(1) Find the ‘weight’ maximizing outputβj . Let,

ji = argmaxj{Qij − pj}, vi = max
j

{Qij − pj}, (3)

andui = max
j 6=ji

{Qij − pj}. (4)

(2) Compute the ‘proposal’ of inputαi, denoted by
bαi→βj

as follows:

bαi→βji
= Qiji

− ui + δ.

◦ Phase 2: Assignment.For each outputβj ,
(3) Let P (j) be the set of inputs from whichβj received

a ‘proposal’. IfP (j) 6= ∅, increasepj to the highest
bid, i.e.

pj = max
αi∈P (j)

bαi→βj
.

(4) Remove the maximum proposing inputαij
from I

and add(αij
, βj) to S. If (αk, βj) ∈ S, k 6= ij , then

put αk back inI.

C. Analysis

The auction algorithm described above is slight variant of
Bertsekas’ auction algorithm. Given a fixed weighted bipartite
graph, the behavior of the auction algorithm is well under-
stood. However, the algorithm converges only if all the weights
are finite. In our setup, weights are given byQ(·). Hence, it is
not clear if the above described algorithm will maintain finite
queue-sizesQ∗(·) with probability 1. Specifically, the size of
Q∗(·) directly affects the number of iterations required by the
algorithm to converge. We state the following result.

Theorem 1 Given ε > 0, let λ =
∑

k αkπk be such that
∑

k αk ≤ 1 − 2ε. Then, for a switch operating under theε-
Auction algorithm

lim sup
τ→∞

E





∑

ij

Qij(τ)



 = O(n2/ε).

Further, theε-Auction algorithm takesO(n2/ε) iterations.

Proof: In [3], Bertsekas studied the auction algorithm
whereδ was independent of the weights of the bipartite graph.
In our algorithm we selectδ = εQ∗/n. Ignoring the specific
selection ofδ, the standard auction algorithm of Bertsekas
with a givenδ > 0 has the following property.

Lemma 2 ([3]) Given δ > 0, the auction algorithm finds a
matchingS in O(nQ∗/δ) iterations. The weight this matching

is at least
(

maxπ∈P

∑

iπ(i) Qiπ(i) − nδ
)

.

We skip the proof of the above lemma. The interested reader
can find an elegant proof in [2], [3].

In Lemma 2, since we selectδ = εQ∗/n assuming
that Q∗ < ∞, so the algorithm is well-defined and it
always converges inO(n2/ε) iterations. Further, the weight
of the resulting matching is at least(1 − ε)W ∗, W ∗ =
maxπ∈P

∑

iπ(i) Qiπ(i), each time for the following reason:
by Lemma 2 the weight of resulting matching is at least
W ∗ − nδ = W ∗ − Q∗ε; Q∗ ≤ W ∗ and hence it is at least
(1 − ε)W ∗.

To complete the proof of Theorem, we show that (a)Q∗ <
∞ with probability 1 under theε-Auction algorithm, and (b)
the claimed bound on the net average queue-size in statement
of Theorem 1 holds.

For this we will use Lyapunov function based arguments.
Define the Lyapunov function

L(Q(τ)) = Q(τ) ·Q(τ) =
∑

ij

Q2
ij(m). (5)

From Foster’s criteria (see [30]–[33]), it follows that

lim sup
τ→∞

E[Qij(τ)] < ∞, ∀i, j,

if for all τ ,

E[L(Q(τ + 1)) − L(Q(τ))|Q(τ)] ≤ −γ‖Q(τ)‖1 + B,(6)

where γ, B are some positive constants. Now, consider the
following.

L(Q(τ + 1)) − L(Q(τ))

=
∑

i,j

[Q2
ij(τ + 1) − Q2

ij(τ)]

=
∑

i,j

[Qij(τ + 1) − Qij(τ)][Qij(τ + 1) + Qij(τ)].

From the dynamics of theQ(·), we obtain the following.

L(Q(τ + 1)) − L(Q(τ))

=
∑

i,j

2Qij(τ) (aij(τ + 1) − Dij(τ + 1))

+
∑

i,j

(aij(τ + 1) − Dij(τ + 1))2.

Now, in a time slot, at most1 packet arrive and1 packet depart
from a VOQ. So(aij(τ+1)−Dij(τ+1)) ∈ {−1, 0, 1}. Hence,

∑

i,j

(aij(τ + 1) − Dij(τ + 1))2 ≤ 2n. (7)

Let π(·) be the schedule (matching) chosen by the algorithm.
Then,

Qij(τ)Dij(τ + 1) = Qij(τ)πij (τ + 1). (8)

From above, we obtain

L(Q(τ + 1)) − L(Q(τ))

≤
∑

i,j

2Qij(τ) (aij(τ + 1) − πij(τ + 1)) + 2n,

= 2Q(τ) · a(τ + 1) − 2Q(τ) · π(τ + 1) + 2n.

Now, taking conditional expectation with respect toQ(τ), we
obtain

E [L(Q(τ + 1)) − L(Q(τ))|Q(τ)]

≤ 2Q(τ) · λ − 2Q(τ) · π(τ + 1) + 2n.

We used the fact that arrival process is Bernoulli i.i.d. From
hypothesis of Theorem 1,

λ ≤





n2

∑

k=1

αkπk



 , (9)

where for allk, πk ∈ P, αk ∈ R+ and
∑

k αk = 1 − 2ε. By
the property of theε-Auction algorithm,

Q(τ) · π(τ + 1) ≥ (1 − ε)W ∗(τ), (10)

whereW ∗(τ) = maxπ∈P Q(τ) · π. Putting the above discus-
sion together, we have

E [L(Q(τ + 1)) − L(Q(τ))|Q(τ)] ≤ −2εW ∗(τ) + 2n.

It is not difficult to see that

Q(τ) ·
1

n
1 =

1

n
‖Q(τ)‖1 ≤ W ∗(τ).

Thus, we have

E [L(Q(τ + 1)) − L(Q(τ))|Q(τ)] ≤ −
2ε

n
‖Q(τ)‖1 + 2n.

Thus, from Foster’s criteria as stated earlier, we obtain that

lim sup
τ→∞

E[Qij(τ)] < ∞, ∀ i, j.

Now, we prove the claimed bound on the average queue-size.
Consider the following that follows from above.

E[L(Q(τ + 1))] = E [E[L(Q(τ + 1)) − L(Q(τ))|Q(τ)]]

+ E[L(Q(τ))]

≤ E[L(Q(τ))] −
2ε

n
E [‖Q(τ)‖1] + 2n.

By telescoping the above forτ = 0, . . . , T − 1 and recalling
E[L(Q(0))] = 0, we obtain

1

T
E[L(Q(T))] ≤ −

2ε

n
E

[

1

T

T−1
∑

τ=0

‖Q(τ)‖1

]

+ 2n.(11)

By definition E[L(Q(T))] ≥ 0. Hence,

lim sup
T→∞

E

[

1

T

T−1
∑

τ=0

‖Q(τ)‖1

]

≤ n2/ε. (12)

As established by Foster’s criteria earlier on, the queue-size
processQ(τ) is positive-Harris recurrent under theε-Auction
algorithm as long asλ satisfies the hypothesis of Theorem
1. ThusQ(·) is an irreducible, aperiodic Markov chain and
hence ergodic. That is,Q(τ) → Q(∞) whereQ(∞) follows

the stationary distribution of this Markov chain. Now, the
following completes the proof.

lim sup
τ→∞

E [‖Q(τ)‖1] ≤ E

[

lim sup
τ→∞

‖Q(τ)‖1

]

= E [‖Q(∞)‖1]

= E

[

lim inf
T→∞

1

T

T−1
∑

τ=0

‖Q(τ)‖1

]

≤ lim inf
T→∞

E

[

1

T

T−1
∑

τ=0

‖Q(τ)‖1

]

≤ n2/ε.

In the above we have used the ergodic theorem and Fatou’s
lemma.

D. Switch with Finite Buffers

The above sections establish that theε-Auction algorithm is
almost throughput maximal, takesO(n2/ε) iterations to find
a matching and inducesO(n2/ε) net average queue-size. This
analysis assumed the standard idealized infinite buffer switch.
In practice, a switch always has finite buffers. However, dueto
technical limitations all the known analysis has been restricted
to the infinite buffer case. While the infinite buffer analysis
may provide an inkling on how well a finite buffer switch
may behave, it is far from being satisfactory.

For the very same reason discussed above, we are unable to
deal with the precise analysis of finite buffered switches here.
However, we discuss heuristics based on auction algorithm
that allows for a tradeoff between performance and number
of iterations algorithm needs to run. Specifically, letB be the
buffer size of the switch for any VOQ. Given parameterN ,
set δ = B/N instead ofεQ∗/n in the ε-Auction algorithm.
Call this algorithmN -Auction algorithm.

Along the lines of the proof ofε-Auction algorithm, it is
clear that the above algorithm will takeO(nN) iterations to
converge. The weight of the matching found by the algorithm
will be no less thannB/N amount. This will naturally
affect the performance of the algorithm: asN increases, the
algorithm takes longer to converge but quality of solution
is expected to become better and hence the performance of
algorithm is expected to be better.

E. Auction with Memory

In this section we look at the auction algorithm with
memory. Consider the following slight modification of theε-
Auction algorithm from section II-B. At any time slotτ + 1
the parameterpj for 1 ≤ j ≤ n instead of being initiated with
zero starts with its final value from the time slotτ .

The intuition behind this modification is the following. At
the end of the time slotτ the parameterspj are optimal for
the queue sizesQij(τ − 1). This means for each inputi:

Qiπ∗(i)(τ − 1) − pπ∗(i) =
n

max
j=1

Qij(τ − 1) − pj

At time slot τ + 1 the queue sizes do not vary much since
each can receive or transmit at most one packet. Hence one

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

MWM
1−auction
iSLIP

Fig. 3. Average queue sizes for MWM, 1-Auction and iSLIP.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

MWM
1−auction
1−auction memory

Fig. 4. Average queue sizes MWM, 1-Auction and 1-Auction with memory.

expects the parameterspj to be near optimal for queue sizes
Qij(τ). From [3] we expect that in time slotτ+1 starting with
values ofpj from the time slotτ the number of iterations for
convergence of the algorithm to be relatively small. Simulation
results of the next section support this intuition as well.

F. Representative Simulation Results

In this section we provide simulation results for an8 × 8
input queued switch with a non-uniform admissible arrival
matrix. The traffic load takes one of the values from the set
{.65, 8, .9, .95, .98}. All simulations are done for one million
time slots. In this section ”auction(c)” denotes the auction
algorithm withδ = c wherec is a constant. For theε-Auction
algorithm we useε = 1 and hence denote it by 1-Auction.
When the number of iterations of the iSLIP algorithm is not
mentioned it is understood to have run all the way to the end,
i.e. it runsn = 8 iterations.

Figure 3 shows that the 1-Auction algorithm performs much
better than the iSLIP algorithm and is as good as MWM. The
next plot, Figure 4, shows that 1-Auction with memory has
better performance than 1-Auction.

Figures 5 and 6 show the trade-off that was referred to
in section II-D. Here the valueδ = B/N takes one of the
values1, 10, 50. As mentioned before larger values ofδ yield

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

auction(1)
auction(10)
auction(50)

Fig. 5. Average queue sizes for auction(1), auction(10), auction (50)

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

load

A
ve

ra
ge

 It
er

at
io

ns

auction(1)
auction(10)
auction(50)

Fig. 6. Average iterations to converge for auction(1), auction(10), auction(50)

less number of iterations but at the expense of greater queue
sizes. Figure 7 shows a comparison between 1-Auction and
iSLIP when both run only three iterations in each time slot.
In practice sometimes only a few iterations of the iSLIP
algorithm are used instead of the full iSLIP. This figure shows
that the 1-Auction algorithm can also be used for a fewer
number of iterations and it still outperforms iSLIP.

III. SCHEDULING FORWIRELESSNETWORKS

In this section, we describe a simple, iterative, distributed
scheduling algorithm for a multi-hop wireless network, which
is modeled as a grid-graph as mentioned earlier in this paper.
First, we introduce the specific model.

A. Setup

Consider a grid-graph onn nodes withV denoting the
vertex-set andE denoting its edge-set. LetN (i) denote the
neighbors of the nodei. For j ∈ N (i), let Qij(τ) denote the
queue-size corresponding to the packets waiting at nodei to
go to nodej at timeτ . The matching constraints require that
at any given time each nodei can either transmit to or receive
from at most one other node. As before, letAij(τ) denote the
cumulative arrival process corresponding to packets arriving
at i and going toj till time τ . Again, we assume that arrival

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

iSLIP 3 it
1−auction 3 it

Fig. 7. Average queue sizes for iSLIP with 3 iterations and 1-Auction with
3 iterations

process is ’friendly’, i.e. it is a Bernoulli i.i.d. process. Given
the constraints, theadmissiblearrival rate-matrixλ = [λij]
must belong to the convex hull of the rates induced by the
set of matchings of grid graph (an edge(i, j) in matching can
induce unit rate alongi → j or j → i and we are interested
in the convex hull of all such possibilities).

In this setup, the scheduling algorithm corresponds to first
finding a matching in the graph and then for each edge
in the matching deciding which node transmits and which
node will receive data. Again, the result of Tassiulas and
Ephremides [15] immediately implies that the following max-
weight scheduling algorithm is throughput optimal: (i) choose
maximum weight matching with the weight of an edge(i, j),
denoted bywij , beingmax{Qij, Qji}; (ii) for an edge(i, j) in
the chosen matching, nodei transmits to nodej if Qij ≥ Qji

(ties broken arbitrarily).
Thus, it is desirable to find the MWM in the graph with edge

weights as described above. In case of a switch, the graph
was bipartite. The wireless network, modeled as grid graph
(generally any such ’product graph’ ind dimensions) is also
bipartite, i.e. the graph nodes can be divided into two partsso
that edges are only between nodes of the different partitions.
This is because these graphs do not have cycles of odd length.
Thus, this situation is the same as that of switch setup. The
only difference is as follows: in a switch, the partition of nodes
is known in terms of inputs and outputs. In case of a grid-
graph, it is not known a priori. An ad-hoc fix to this situationis
that nodes co-operate and form a bipartition and use the above
described auction algorithm for finding an optimal schedule. A
more natural and scalable approach is to have an algorithm that
does notrequire prior knowledge of the bipartition. That is, we
need an algorithm, which is ’symmetric’, unlike the standard
auction, and that does not treat nodes of the two partitions
differently. Next, we describe such an algorithm based on the
Max-Product Belief propagation algorithm.

B. Symmetric Auction via Max-Product

The following algorithm is an adaption of the Min-Sum
(a version of Max-Product) algorithm described in [29] that

operates very similarly to the auction algorithm.

ε-Min-Sum Algorithm

◦ Let Q∗ = maxij Qij , which can be quickly computed in
a distributed manner.

◦ Setδ = εQ∗/n.
◦ Given queue-size matrixQ, define a symmetric weight

matrix W = [Wij] as follows: for all (i, j) /∈ E,
set Wij = 0 and for all (i, j) ∈ E set Wij =
max{Qij , Qji} + δij . Where δij is a randomly chosen
number from the interval(0, δ) and can be selected by
one communication betweeni, j.

◦ The algorithm variables are message that are exchanged
between neighboring nodes. Let̂mk

i→j ∈ R denote
message from nodei to nodej in iterationk.

◦ Initialize k = 0 and set the messages as follows:

m̂0
i→j = Wij ; m̂0

j→i = Wij

◦ For k ≥ 1, iterate as follows:

(a) Update messages as follows:

m̂k
αi→βj

= Wij − max
ℓ 6=j

m̂k−1
βℓ→αi

,

m̂k
βj→αi

= Wij − max
ℓ 6=i

m̂k−1
αℓ→βj

. (13)

(b) The estimated MWM at the end of iterationk is πk,
where πk(i) = arg maxj∈N (i){m̂

k
βj→αi

} for 1 ≤

i ≤ n. But whenmaxj∈N (i){m̂
k
βj→αi

} < 0 then let
πk(i) = ”null” which means nodei chooses not to
connect to any of its neighbors.

(c) Repeat (a)-(b) tillπk(i) converges, i.e. for each1 ≤
i ≤ n, πk(πk(i)) = i or πk(i) = ”null” for all k
large enough.

We will show that the above algorithm converges to the
MWM with probability one in finite number of iterations.

1) Analysis of theε-Min-Sum Algorithm:The ε-min-sum
algorithm described above is a minor variant of the simpli-
fied min-sum algorithm described in [29]1. In fact there are
two main differences between the two algorithm: i) In the
simplified min-sum algorithm at every iteration each node is
matched, but in theε-min-sum the nodes have the option
of remaining unmatched. ii) In theε-Auction algorithm, the
parameterε gives us a trade-off between converging to a good
matching versus a fewer number of iterations to converge.

Let Q′ = [Q′
ij] be a symmetric matrix of queue seizes

defined byQ′
ij = max{Qij , Qji}. Also, let π∗ denote the

MWM of matrix Q′ and letW ∗ denote weight ofπ∗. We will
prove the following result.

Theorem 3 Givenε > 0, with probability one the algorithm
ε-min-sum will converge to a matching with weight at least
W ∗ − εQ∗.

1A longer version of this paper can be found at
http://www.stanford.edu/∼bayati/papers/mpmwm.ps

Proof: Consider the set of weightsW. Let π̂ be the
MWM of the matrix W and letŴ denotes its weight. Note
that W ∗ ≤ Ŵ since for alli, j we haveQ′

ij ≤ Wij . Hence
∑

i

Q′
iπ̂(i) =

∑

i

(

Wiπ̂(i) − δiπ̂(i)

)

≥ Ŵ − nδ

≥ W ∗ − εQ∗.

Now we only need to show that the algorithmε-min-sum
converges to the matchinĝπ with probability one.

Note that since the numbersδij are chosen randomly from
the interval(0, δ), with probability onêπ is unique. Now all we
need is to show that if̂π is unique thenε-min-sum algorithm
will converge to it. The proof of this fact is very similar to
the proof of Theorem 1 in [29]. Here we summarize the main
steps of the proof: i) Consider the min-sum algorithm defined
in sections I.A and I.B of [29]. For each vertex add another
state which corresponds to being unmatched and update the
compatibility functions accordingly. Hence each message and
belief vector will be inR

(n+1). ii) Apply the same procedure
as in the proof of Lemma 2 in [34] to show that the min-
sum algorithm finds the MWM as long as it is unique. iii)
Similar to the proof of Lemma 2 in [29] each message vector
of the min-sum algorithm still has two distinct values with
the coordinate corresponding to the new state being equal to
the n− 1 remaining coordinates. iv) Subtract the two distinct
values of each message from each other to obtain equations
(13) of theε-min-sum algorithm described above. Moreover
by the same argument as in Lemma 2 of [29] this algorithm
will be equivalent to the min-sum algorithm with additional
state. This will finish the proof.

Theorem 3 shows that the algorithmε-min-sum converges,
but it does not provide any bound on the number of iterations
required for convergence. From the main theorem in [34]
we know that theε-min-sum algorithm converges in at most
O(nWmax/γ) iterations whereWmax = maxij{Wij} and γ
is the difference between the weight of MWM and second
MWM in the matrixδ = [δij]. Therefore usingδ = εQ∗/n the
expected number of iterations for convergence of theε-min-
sum algorithm is expected to be at most O

(

n2/(ερ)
)

iterations
whereρ is the maximum expected gap between the weight of
the MWM and second MWM of ann×n matrix whose entries
are i.i.d. random variables from the interval(0, 1). Simulation
results suggest thatρ ≈ 1

n log n
for the uniform distribution.

Hence expected number of iterations for convergence of the
ε-min-sum algorithm will be at most O(n3 log n/ε).

2) Simulation results for theε-Min-Sum Algorithm: In
section III-B.1 it was shown that similar to theε-Auction
algorithm theε-min-sum algorithm finds matchings that have
weight very close to the weight of the MWM. This means the
ε-min-sum algorithm is throughput optimal and has very low
delay. We have simulated this algorithm for an8 × 8 input
queued switch and compared it with theε-Auction algorithm
and MWM. The result as is shown in Figures 8 and 9 indicates
that theε-min-sum algorithm gives lower delay than theε-

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

MWM
1−auction
1−min−sum

Fig. 8. Average queue sizes for MWM, 1-Auction and 1-min-sum

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

45

load

A
ve

ra
ge

 It
er

at
io

ns

1−auction
1−minsum

Fig. 9. Average iterations to converge for 1-Auction and 1-min-sum

Auction algorithm at the expense of more convergence time.
For this simulation we assumeε = 1.

IV. CONCLUSION

In this paper we introduced two simple, iterative, distrib-
uted algorithms for switch scheduling and wireless network
applications. Iterative algorithms are powerful solutions for
such problems because their iterative and distributed nature
allow for many implementational simplifications (such as a
pipelined architecture and eliminating centralized schedulers),
taking them from the realm of theoretical constructs towards
possible commercial deployment.

We introduced theε-Auction algorithm and theε-min-sum
algorithm which are both iterative and very simple. They
are new variations of the auction and the min-sum algorithm
respectively. We have shown that theε-Auction and theε-
min-sum algorithm solve the problem of finding the MWM
for a switch/network. Therefore, both these algorithms are
throughput and delay optimal which makes them most suited
for scheduling purposes. We also show (via simulations) that
these algorithms possess a very attractive feature that even
when run for a few number of iterations, their throughput and
delay properties are better than the current algorithms used in
practice.

We believe that our algorithms represent an effective and,
in some aspects, radical line of attack on the traditional
problem of scheduling. Further work is required to establish
the auxiliary properties and to better understand this family of
iterative scheduling algorithms.

REFERENCES

[1] N. McKeown, “iSLIP: a scheduling algorithm for input-queued
switches,”IEEE Transaction on Networking, vol. 7, no. 2, pp. 188–201,
1999.

[2] D. P. Bertsekas, “The auction algorithm: A distributed relaxation method
for the assignment problem,”Annals of Operations Research, vol. 14,
1988.

[3] ——, “Auction algorithms for network flow problems: A tutorial in-
troduction,” Computational Optimization and Applications, vol. 1, pp.
7–66, 1992.

[4] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networksof
Plausible Inference. San Francisco, CA: Morgan Kaufmann, 1988.

[5] J. Yedidia, W. Freeman, and Y. Weiss, “Generalized belief propagation,”
Mitsubishi Elect. Res. Lab., vol. TR-2000-26, 2000.

[6] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-layer
optimization in wireless networks,”Submitted, available through
csl.uiuc.edu/rsrikant, 2006.

[7] X. Wu, R. Srikant, and J. R. Perkins, “Queue-length stability of maximal
greedy schedules in wireless networks,” inWorkshop on Information
Theory and Applications, UCSD, 2006.

[8] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” in43rd Allerton conference
on Comm. Control and computing, 2005.

[9] X. Lin and N. B. Shroff, “Impact of imperfect scheduling in wireless
networks,” in IEEE INFOCOM, 2005.

[10] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on
a space division packet switch,”IEEE Transactions on Communications,
vol. 35, no. 12, pp. 1347–1356, 1987.

[11] Y. Tamir and H. Chi, “Symmetric crossbar arbiters for vlsi communica-
tion switches,”IEEE Transaction on Parallel and Distributed Systems,
vol. 4, no. 1, pp. 13–27, 1993.

[12] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High speed switch
scheduling for local area networks,”ACM Transactions on Computer
Systems, vol. 11, pp. 319–351, 1993.

[13] M. Karol, K. Eng, and H. Obara, “Improving the performance of input-
queued atm packet switch,” inIEEE INFOCOM, 1992, pp. 110–115.

[14] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” inProceedings of IEEE Infocom,
1996, pp. 296–302.

[15] L. Tassiulas and A. Ephremides, “Stability propertiesof constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,”IEEE Transactions on Automatic Control,
vol. 37, pp. 1936–1948, 1992.

[16] J. Dai and B. Prabhakar, “The throughput of switches with and without
speed-up,” inProceedings of IEEE Infocom, 2000, pp. 556–564.

[17] D. Shah, “Stable algorithms for input queued switches,” in Proceedings
of Allerton Conference on Communication, Control and Computing,
2001. [Online]. Available: http://www.stanford.edu/∼devavrat/ilqf.ps

[18] I. Keslassy and N. McKeown, “Analysis of scheduling algorithms that
provide 100% throughput in input-queued switches,” inProceedings of
Allerton Conference on Communication, Control and Computing, 2001.

[19] D. Shah and M. Kopikare, “Delay bounds for the approximate Maximum
Weight matching algorithm for input queued switches,” inProceedings
of IEEE Infocom, 2002.

[20] D. Shah and D. J. Wischik, “An optimal scheduling algorithm for input
queued switch,” inIEEE INFOCOM, 2006.

[21] J. Edmonds and R. M. Karp, “Theoretical improvements inalgorithmic
efficiency for network flow problems,”Journal of ACM, vol. 18, pp.
264–284, 1972.

[22] L. Tassiulas, “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches,” inIEEE INFOCOM, vol. 2,
1998, pp. 533–539.

[23] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling
algorithms for high-aggregate bandwidth switches,”IEEE Journal
on Selected Areas in Communications High-performance electronic
switches/routers for high-speed internet, vol. 21, no. 4, pp. 546–559,
2003.

[24] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” inACM SIGMETRICS/Performance,
2006.

[25] R. G. Gallager,Low Density Parity Check Codes. Monograph, MIT
Press, 1963.

[26] T. Richardson and R. Urbanke, “The capacity of low-density parity
check codes under message-passing decoding,” vol. 47, pp. 599–618,
2001.

[27] A. Braunstein, M. Mezard, and R. Zecchina, “Survey propagation: an
algorithm for satisfiability,”Random Structures and Algorithms, vol. 27,
pp. 201–226, 2005.

[28] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching
via max-product belief propagation,”Preliminary version appeared
at IEEE ISIT 2005. Longer versionSubmitted and available at
http://www.stanford.edu/∼bayati/papers/mpmwm.ps, 2005.

[29] ——, “A simpler max-product maximum weight matching algorithm and
the auction algorithm,” inIEEE Int. Symp. Information Theory, 2006.

[30] P. R. Kumar and S. P. Meyn, “Stability of queueing networks and
scheduling policies,”IEEE Transactions on Automatic Control, vol. 40,
no. 2, pp. 251–260, 1995.

[31] S. Asmussen,Applied Probability and Queues. New York: Wiley, 1987.
[32] S. P. Meyn and R. L. Tweedie,Markov Chains and Stochastic Stability.

Springer-Verlag, London, 1993.
[33] ——, “Stability of markovian processes ii: Continuous time processes

and sampled chains,”Advances of Applied Probability, vol. 25, pp. 487–
517, 1993.

[34] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching via
max-product belief propagation,” inEEE Int. Symp. Information Theory,
2005.

