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Abstract— The max-product “belief propagation” algorithm BP is known to converge to the correct marginal/MAP

is an iterative, local, message passing algorithm for findi@ probabilities on tree-like graphs [11] or graphs with a &ng
the maximum a posteriori (MAP) assignment of a discrete |4 (2] [16]. For graphical models with arbitrary undeénly
probability distribution specified by a graphical model. Despite raphs, little is known about the correctness of BP. Partial
the spectacular success of the algorithm in many applicatioareas grapns, ) ' ‘
such as iterative decoding and computer vision which involw Progress consists of [17] where correctness of BP for Ganssi
graphs with many cycles, theoretical convergence results@aonly GMs is proved, [5] where an attenuated modification of
known for graphs which are tree-like or have a single cycle. BP is shown to work, and [12] where the iterative turbo
In this paper, we consider a weighted complete bipartite grph decoding algorithm based on BP is shown to work in the

and define a probability distribution on it whose MAP assignmrent . : : —_
corresponds to the maximum weight matching (MWM) in that asymptotic regime with probabilistic guarantees. To thet bé

graph. We analyze the fixed points of the max-product algoribm ~ Our knowledge, little theoretical progress has been inlvesp
when run on this graph and prove the surprising result that exen  the question: Why does BP work on arbitrary graphs?
though the underlying graph has many short cycles, the max-  Motivated by the objective of providing justification foreth
product assignment converges to the correct MAP assignment gy ccess of BP on arbitrary graphs, we focus on the applicatio
\t?)//etlleesglggr)i\t/;]drﬁ.a bound on the number of iterations required of B_P tp the Well-knpwn comb_inatorial optimization pr(_)blem
of finding the Maximum Weight Matching (MWM) in a
| INTRODUCTION !oipartite graph, also known as the ‘Assigr.lm.ent_ProbIem”. It
is standard to represent combinatorial optimization protd,
Graphical models (GM) are a powerful method for reprdike finding the MWM, as calculating the MAP probability on
senting and manipulating joint probability distributiorfhey a suitably defined GM which encodes the data and constraints
have found major applications in several different redearof the optimization problem. Thus, the max-product aldwrit
communities such as artificial intelligence [11], statist[8], can be viewed at least as a heuristic for solving the problem.
error-control coding [6] and neural networks. Two centrdh this paper, we study the performance of the max-product
problems in probabilistic inference over graphical models algorithm as a method for finding the MWM on a weighted
those of evaluating thenarginal and maximum a posteriori complete bipartite graph.
(MAP) probabilities, respectively. In general, calcutatithe Additionally, using the max-product algorithm for problem
marginal or MAP probabilities for an ensemble of randoriike finding the MWM has the potential of being an exciting
variables would require a complete specification of thetjoimpplication of BP in its own right. The assignment problem is
probability distribution. Further, the complexity of a beu extremely well-studied algorithmically. Attempts to findtter
force calculation would be exponential in the size of thRIWM algorithms contributed to the development of the rich
ensemble. GMs assist in exploiting the dependency streictiiheory of network flow algorithms [4], [9]. The assignment
between the random variables, allowing for the design pfoblem has been studied in various contexts such as job-
efficient inference algorithms. assignment in manufacturing systems [4], switch schedulin
The belief propagation (BP) and max-product algorithmedgorithms [10] and auction algorithms [3]. We believe that
[11] were proposed in order to compute, respectively, thbe max-product algorithm can be effectively used in high-
marginal and MAP probabilities efficiently. Comprehensivepeed switch scheduling where the distributed nature of the
surveys of various formulations of BP and its generalizatioalgorithm and its simplicity can be very attractive.
the junction tree algorithm, can be found in [1], [20], [1BP- The main result of this paper is to show that the max-
based message-passing algorithms have been very su¢cegstiduct algorithm for finding the MWM always finds the
in the context of, for example, iterative decoding for turboorrect solution, as long as the solution is unique. Our froo
codes and in computer vision. The simplicity, wide scope @ purely combinatorial and depends on the graph structure.
application and experimental success of belief propag&ias We think that this result may lead to further insights in
attracted a lot of attention recently [1], [7], [12], [19]. understanding how BP algorithms work when applied to other



optimization problems. The rest of the paper is organizedThe following claims are a direct consequence of these
as follows: In Section II, we provide the setup, define théefinitions.

assignment problem and describe the max-product algorithnClaim 1: For the GM as defined above, the joint den-
for finding the MWM. Section Il states and proves the maisity p (Y =(21,...,2),Y = (y1,... ,yn)) is nonzero if
result of this paper. Finally, we discuss some implicatiohs and only if 7,(X) = {(c1,8z), (@2, B2,), -, (0, Be,) }

our results in Section IV. and 73(Y) = {(ay,, 1), (ays, B2), - - -, (g, Bn)} are both

)
Yo vz
matchings andr, (X) = m3(Y). Further, when nonzero, they
Il. SETUP AND PROBLEM STATEMENT are equal toke?X: Wiri,

In this section, we first define the problem of finding Claim 2: Let (X ,Y") be such that
the MWM in a weighted complete bipartite graph and then X7 = Xy
describe the max-product BP algorithm for solving it. (X077 = argmax{p (X, )}

Then, the corresponding, (X ") = 73(Y") is the MWM in
A. MAXIMUM WEIGHT MATCHING K,

Consider an undirected weighted complete bipartite gra?_hc_Iairn 2 implies that finding the MWM is equivalent to
Knn = (Vi,Va,E), where Vi = {a1,...,on}, Vo = inding the maximum a posteriori (MAP) assignment on the

{B1,...,B.} and (o, ;) € E for 1 < i,j < n. Let each GM defined above. Thus, the standard max-product algorithm

edge(w, 3;) have weightw;; € R. can be used as an iterative strategy for finding the MWM. In
If 7 = {x(1),...,7(n)} is a permutation of{1,...,n} factwe show that this strategy yields the correct answext Ne
then the collection ofr edges{(a1, Bz(1)); - -» (@n, Brmy)} W8 describe the max-product algorithm (and the equivalent

is called amatchingof K, ,,. We denote both the permutationMin-sum algorithm) for the GM defined above.
and the corresponding matching By The weight of matching

7, denoted byiv,, is defined as B. MAX-PRODUCT ALGORITHM FOR, ,,
W, = Z Win(i)- We need some definitions and notations before we can
15i%n describe the max-product algorithm. Consider the follgyin

Definition 1: Let D € R™*™ and X,Y, Z € R"*!. Then

Then, the Maximum Weight Matching (MWM)z*, is the the operations.,  are defined as follows:

matching such that
ot = argmax W,. DxX =7+ =z = HlJaXdijZCj, \V/Z, (2)
Note 1.In this paper, we always assume that the weights are XOY =27 = z = zyi, Vi. 3
such that the MWM is unique. In particular, if the weights o nx1
. . ) or Xq,...,X,, € R"*4,
the edges are independent, continuous random variabbss, t
with probability 1, the MWM is unique.

Next, we model the problem of finding MWM as find- P
ing a MAP assignment in a graphical model where the Define the compatibility matrixt, s, € R**™ such that
joint probability distribution can be completely specified its (r,s) entry is ¥q,,(r,s), for 1 < 4,5 < n. Also, let
terms of the product of functions that depend on at most, , 5, € R"*! be the following:
two variables (nodes). For details about GMs, we urge the . .
reader to see [8]. Now, consider the following GM define®o: = [0a: (1), o, (D), gy = [3;(1), ..., P, (n)]".
on K, ,: Let Xy,...,X,,Y1,...,Y, be random variables
corresponding to the vertices ok, , and taking values
from {1,2,...,n}. Let their joint probability distribution,

OXi=X10X0...0X,. (4)

Max-Product Algorithm.

k _ k k k
p (X = (xl, ceey In), Y = (yl, ceey yn)), be of the form: (1) LetMou—»Bj - [maiﬁﬁj (1)7 m(m—»ﬁj (2)7 s 7mo¢i—.>ﬁj (n)]t €
) R™*1 denote the messages passed freyito 3; in the
_ . : s o et
p(X,Y) = = [ ¥ais (@i, v5) [ [ ¢as ()5 (i), (D) iterationk > 0, for 1 < i, j < n. Similarly, M, is the
( ) Z g ! 1:[ message vector passed frginto «; in the iterationk.

o . 2) Initially & = d set th follows. Let
where the pairwise compatibility functions,.(-,-), are de- ) ]C[I()Ia y . OO an 1se (3 messa%es 3;/[00 Owi ©
fined as G i . J i

0 r—jands+i mg._q,(1)...mg, ., (n)]" where
Ya,p,(r,s) =9 0 r#jands =i 0 ] e if r=1
1 Otherwise May—p, () = 1 otherwise )

and the potentials at the nodes(-), are defined as o () = { e if =i ©)
¢ai (T) = ewirv ¢ﬁ] (T) = ewrjv \V/ 1 S ia.jv r,s S n. ﬁiﬂaj 1 0therW|Se



(3) For k > 1, messages in iteratioh are obtained from (c) Replace (8) by the following.

messages of iteratioh — 1 recursively as follows: o (Z Mgﬁal .
Msi"ﬂj = a;p; * ( @Mgzja © (I)O”)
1] b = Z np) + P, (12)
Mki_)aj = \Iﬂ;iﬂj * ((Q M(Ziﬁ ) © ¢/81) (7)
I#5 Note 3. The min-sum algorithm involves only summations

and subtractions compared to max-product which involves
multiplications and divisions. Computationally, this neakhe
min-sum algorithm more efficient and hence very attractive.

k k
b= <@Mbﬁm> © q, IIl. MAIN RESULT
l

(4) Define the beliefs/( x 1 vectors) at nodesy; and j;,
1 <i,j <n, in iterationk as follows.

Now we state and prove Theorem 1, which is the main
bfgj = <@ a—B; ) © ®g, (8) contributiqn of th.is. paper. Before proceeding further, veeah
the following definitions.
Definition 2:; Let ¢ be the difference between the weights

(5) The estimated MWM at the end of iteratiork is 7", ; _ veldl
of the MWM and the second maximum weight matching; i.e.

wherer* (i) = argmaxi<;j<, {b% (j)}, for 1 <i < n.
(6) Repeat (3)-(5) tillr® converges. € = Wy — max(Wy).
TAT*

Note 2.For computational stability, it is often recommende®ue to the uniqueness of the MWM, > 0. Also, define
that messages be normalized at every iteration. Howeve, sw* = max; ;(|wi;]).

normalization does not change the output of the algorithm.Theorem 1:For any weighted complete bipartite graph
Since we are only interested in theoretically analyzing th&»,» With uniqgue maximum weight matching, the max-
algorithm, we will ignore the normalization step. Also, théroduct or min-sum algorithm when applied to the corre-
messages are usually all initialized to one. Although tisailte sponding GM as defined above, converges to the correct MAP
doesn’t depend on the initial values, setting them as defin@gsignment or the MWM withirf 222 iterations.

above makes the analysis and formulas nicer at the end.
A. PROOF OF THEOREM 1

C. MIN-SUM ALGORITHM FORK. We first present some useful notation and definitions. Con-

The max-product and min-sum algorithms can be sesiflera;, 1 <i < n.LetT? be the levelk unrolled tree corre-
to be equivalent by observing that the logarithm functiogponding tow;, defined as followsT is a weighted regular
is monotone and henceax; log(e;) = log(max;a;). In rooted tree of height+1 with every non-leaf having degree

order to describe the min-sum algorithm, we need to redefiddl nodes have labels from the sgtvi, ..., a,,01,..., 5, }
P, P, 1 <i,j <n, as follows: according to the following recursive rule: (a) root has labe
ay; (b) then children of the rootw; have labelss,, ..., 8,;
Do, = [wit, ., win]", Pp, = [wyy, - - s Wnjl". and (c) the children of each non-leaf node whose parent has

. . . label or have labelsay, ..., qp_ or
Now, the min-sum algorithm is exactly the same as mag ar (or 5r) Lo O, Qg1 O

. . ooy Br_1,Bra1,...,0n). The edge between nodes labeled
product with the equations (6), (7) and (8) replaced by: al»’ﬁ- inﬂthle frgel s asﬁsig):lned weig forl<ij<n
iy Mg |m;z] =~ bt ) > Tt

(a) Replace (6) by the following. Examples of such a tree for = 3 are shown in the Figure 1.
mO (r) = Wy if r:_z‘ ) Note 4. T(fi is often called the level- unwrapped graph
@i =P 0  otherwise at node a; corresponding to the GM under consideration.
) ) The unwrapped graph in general is constructed by repligatin
m% (1) = { Wyi if =1 (10) the pairwise compatibility functiong., s, (r, s) and potentials
Y 0 otherwise ¢, (1), d3,(s), while preserving the local connectivity of
(b) Replace (7) by the following. the (possibly loopy) graph. They are constructed so that the
messages received by node after k iterations in the actual
Mﬁi_}ﬁj = ﬁ * ( ZM;;L_{Q ) graph are equivalent to those that would be received by the
145 root «; in the unwrapped graph, if the messages are passed up
Mk — ot Vi &) (11 alo_ng the tree.from the_ leaves to .the_root. Itgit(r) be the
Bi—ay aiBy * ((Z ar—p) ﬁl) (11) weight of maximum weight matching iff¥ which uses the

l . .
# edge(«;, 3,) at the root. Here, we consider only the matchings

INote that, as defineds” need not be a matching. Theorem 1 shows thd" the_ tree under which all non-leaf nodes Ei- are the
for large enoughk, =% is a matching and corresponds to the MWM. endpoints of exactly one edge.



weight is more tham\ and which connectéa;, 3.+ (;)) at the
1 B2 53 root instead of(c, 3.+ (;,)), thus contradicting with (13).

Consider pathd?, ¢ > 0, that contain edges from match-
ings’ 7* andA alternatively on the tre€* defined as follows.
Let oy = root «y;, 39 = ¢ and P, = (ay) be a single vertex
path. Let Py = (Br+ (i), @0, Bx=(iy)), Wherei; is such that
ap = «a; is connected tQ3,+;, underA. Forr > 1, define
Py,.41 and Py, 2 recursively as follows:

Pori1 = (04, Por,0y,),
P2r+2 = (ﬁrr*(i,T)a P27‘+17 ﬁﬂ*(ir+1))

82838283 B163 8183 51826152 whereq;_, is the node at levelr to which the endpoint node
® Br+(i_,,.) Of path Py, is connected to undeA, and i,

is such thatw, at level 2r (part of P, 1) is connected to

Br+(i,,,) underA. Note that, by definition, such pati# for

¢ < k exist since the tre@“k hask +1 levels and can support

a path of length at mostk as defined above.

Now, we state two important lemmas that will lead to the Now consider the pathP, of length 2k. It's edges are
proof of Theorem 1. The first presents an important charagiternately fromA and 7*. Let us refer to the edges of
terization of the min-sum algorithm while the second lemmgs theA-edges ofP,. Replacing theA-edges ofP;, with their
relates the maximum weight matching over the unwrappedmplement inP, produces a new matching’ in Tk this

Fig. 1. Whenn =3 (a) isT2, and (b) isTZ, .

tree-graph and the MWM i, . follows from the way the paths are constructed.

Lemma 1:At the end of thek'" iteration of the min-sum  Lemma 3: The weight of matching\’ is strictly higher than
algorithm, the belief at node; of K, , is preciselyb: = that of A on tree Tk .
[2tf§i(1) . 2tf§i (n)]t. This completes the proof of Lemma 2 since Lemma 3 shows

Lemma 2:If 7* is the MWM of graphX, ,, then fork > thatA is not the maximum weight matching i’ , leading
27”“ we have to a contradiction. [ ]

. X Now, we provide the proof of Lemma 3.
m (i) = arg mﬁx{tm (r)}- Proof: [Lemma 3] It suffices to show that the total weight

Igf the A-edges is less than the total weight of their complement
Pk Consider the projectio®;, of P, in the graphk,, ,,.
. can be decomposed into a union of a set of simple cycles
01,02,...,Cm} and at most one even length path of
length at mosn. Since each simple cycle has at m@st
vertices and the length d?; is 2k,

That is, fork large enough, the maximum weight matching i
T(fi chooses the edge;, 5,-(;)) at the root.

Proof: [Theorem 1] Consider the min-sum algorithm. Le
bh = [bk (1),...,b% (n)]’. Recall thatr* = (z*(i)) where
7*(i) = argmax,{b% (r)}. Then, by Lemmas 1 and 2, for
k> %, 7k = 7>,

Next, we present the proofs of Lemmas 1 and 2 in that order. Qk E (14)

Proof: [Lemma 1] It is known [15] that under the min- h 2n n
sum (or max-product) algorithm, the vectdy correspondsto  Consider one of these simple cycles, €y Construct the
the correct marginals for the roat; of the MAP assignment matchingz’ in K, ,, as follows: (i) Fora; € Cs, select edges
on the GM corresponding t@* . The pairwise compatibility incident on o that belong toA. Such edges exist by the
functions force the MAP assignment on this tree to be property of the pathP, that containsCs. (ii) For «; ¢ Cs,
matching. Now, each edge has two endpoints and hencednect it according ta*, that is, add the edgev;, B-())-
weight is counted twice in the weight of matching. Now #’ # 7* by construction. Since the MWM is unique,

Next consider thg’" entry of b% , b% (j). By definition, it the definition ofe gives us
corresponds to the MAP assignment with the valuexpfat Wor < Wor — ¢
the root beingj. That is, («v;, 3;) edge is chosen in the tree T '
at the root. From the above discussiofy, (j) must be equal But, W.- — W is exactly equal to the total weight of the
to 2tk (). B non-A-edges ofC; minus the total weight of thd-edges of

Proof: [Lemma 2] We prove the Iemzna by contradictionCs. Thus,

Assume to contrary that for somie> %Tw’ weight of A-edges ofCs — weight of rest ofC; =
(i) # argmax s (r) 23, forsomei.  (13) ~(Wee =Wr) < —e. (15)

A . 2The matchingr* is defined onk,, ,, but can be naturally projected to the
s . . . k n,n
Then, lete = 7*(i1) for iy # . Let A be the matching off; tree 7% . Hence, when we refer to ‘edges of matchiny’, we mean edges

whose weight ig* (A') We will modify A and findA’ Whose in Ky, or the treeT  depending on the context.
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Fig. 2.
and (b) cycleC; of length 4.

Projection of the patti, is decomposed to (a): path Q of length 4

are required in the worst case, for finité ande, the algorithm
requiresO(n?) operations at the most. This is comparable with
the best known MWM algorithm. Furthermore, the distributed
nature of the max-product algorithm makes it particularly
suitable for networking applications like switch schedgli
where scalability is a necessary property.

Future work will consist of trying to extend our result to
finding the MWM in a general graph, as our current arguments
do not carry ovet Also, we would like to obtain tighter
bounds on the running time of the algorithm since simulation
studies show that the algorithm runs much faster on average
than the worst case bound obtained in this paper.
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