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Abstract— The max-product “belief propagation” algorithm
has received a lot of attention recently due to its spectacat
success in many application areas such as iterative decodin
computer vision and combinatorial optimization. There is alot
of ongoing work investigating the theoretical properties é the
algorithm. In our previous work (2005) we showed that the max
product algorithm can be used to solve the problem of finding
the Maximum Weight Matching (MWM) in a weighted complete
bipartite graph. However, for a graph with n nodes the max-
product algorithm requwes O(n*) operations to find the MWM
compared to O(n®) for best known algorithms such as those
proposed by Edmonds and Karp (1972) and Bertsekas (1988).

In this paper, we simplify the max-product algorithm to reduce
the number of operations required to O(n?). The simplified
algorithm has very similar dynamics to the well-known aucton
algorithm of Bertsekas (1988). To make this connection prése,
we show that the max-product and auction algorithms, when
slightly modified, are equivalent. We study the correctnessof
this modified algorithm. There is a tantalizing similarity b etween
this connection and a recently observed connection betwedghe
max-product and LP-based algorithms for iterative decodirg by
Vontobel and Koetter.
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Then, the maximum weight matching is a matching such
that 7* = argmax, W.

Next, we transform the problem of finding the MWM in
a bipartite graph into one of finding a MAP assignment in
a related graphical model (GM). Consider the following GM
defined onk, ,: let X1,..., X,,Y1,...,Y, be random vari-
ables corresponding to the vertices6f, ,, and taking values

from {1,2,...,n}. Let their joint probability distribution,

p(X =(21,...,20);Y = (y1,...,9n)), be of the form:
p(y _ Hwalﬁj ZCuyy H¢a7 xz (bﬁ? (yl) (1)

where the pairwise compatibility functions,.(-,-), are de-

fined as

0 r=jands#i

Ya,p;(r,8) =9 0 r#jands =i
1 Otherwise

the potentials at the nodes,(-), are defined as

(bai (’f‘) = ewira (bﬁj (’f‘) = ewTja v S iaja r,s S n,

Finding the MWM in a bipartite graph is an important _ o _ _
problem in many fields e.g. combinatorial optimization an@nd Z is the normalization constant. The following claims

networks (see [4], [5] for references and details).

In thigre a direct consequence of these definitions (see [4] far the

section, we first define the problem of finding the MWM irproofs).
a bipartite graph, then describe the min-sum version of theClaim 1: For the GM as defined above, the joint den-

max-product algorithm and finally present previously knowsity p (7

results.

A. MAXIMUM WEIGHT MATCHING

Consider an undirected Welghted complete bipartite grap

Kn,n = (Vla‘/Qa
{P1,...

E), where 1} {ag,...,an}, Vo =
,Bn} and (o, B;) € E for 1 <i,7 < n. Let each
edge(w;, B;) have weightw;; € R. If 7 = {n(1),...,7(n)}
is a permutation of{1,...,n} then the set ofn edges
{(a1,Br1)); - -+ (an, Br(ny)} is called amatchingof K, .

= (%1, .+, 2n), Y = (y1,...,yn)) is nonzero if
and only if 74(X) = {(a1,Be,), (a2, Baes); - - - (n, Be,)}
and ﬂ-ﬁ( ) - {( Zh_ﬂ) (aywﬂQ) (O‘ynaﬂn)} are both
matchings andr, (X) m3(Y). Further, when nonzero,

wml

p(X.Y)is equalt Le? i
Bh Z°
Claim 2: Let (X ,Y") be such that
(X",Y") = argmax{p (X, Y)}

Then, the corresponding, (X ") is the MWM.

) =ms(Y

We denote both the permutation and the corresponding matgh MIN-SUM ALGORITHM FORK,, .

ing by w. The weight of the matching, denoted byiv, is

defined as
Wﬂ' = Z wzrr(z)

1<i<n

We present the min-sum version of the max-product al-
gorithm for finding the MWM (see [4] for the equivalence
between the standard max-product and min-sum algorithms).



Define the compatibility matrix¥,, s, = [¢a,s,(r,5)] € operations to find the MWM. That is, the algorithm requires
R™*™, Also, let O(n*) operations for fixedv* ande. However, known algo-

B ; B . rithms such as Edmond-Karp’s algorithm [1] or the Auction
Co, = [0, (1) Pa, ()] sy =g, (1), - 03, (0] 5g0rithm [2] have a complexity ab(n?).

Min-Sum Algorithm D. ORGANIZATION AND OUR RESULTS

(1) Let Mi»ﬂa- _ [m’;.ﬁg.(l), ”7mloc(‘*>ﬁ‘(n)]t c Rx1 _In _this paper, we presgnt two results. In Section II_, we
denote }hejmessagés |5assed fmﬂf) ﬁj]in the iteration SIMPIify the min-sum algorithm so that the total comput_aab
k>0, for 1 < ij < n Similarly, Mg. is the c_ost and number of message exchanges of the resulting algo-

i rithm are of ordeiO(n?) for fixed w* ande. Second, we relate
this simplified min-sum algorithm to the auction algorithm.

Specifically, we present slight modifications of the min-sum

message vector passed frginto «; in the iterationk.
(2) Initially & = 0 and set the messages as follows. Let

Mg, g5, = [mo,_p,(1)...mQ, 5 (n)]' and auction algorithms which we show to be equivalent and
0 0 0 . then we establish the correctness property of this modified
Mg, o, = [mp;—a, (1) - mp, g, (0)] algorithm. This is presented in Section Ill. Finally, we gzat
where conclusions and directions for future research in Sectian |
m0 (r) = { Wi if r :.i @) [l. SIMPLIFIED MIN-SUM ALGORITHM FOR K, ,,
ai—B; 0  otherwise

We describe the simplified algorithm, prove its equivalence
0 wji if r=4 to the min-sum algorithm and analyze its computational com-
g 0  otherwise plexity. Unlike the min-sum algorithm where messages are

(3) For k > 1, messages in iteratioh are obtained from vectors, eachy; sends a number tg; and vice-versa.
messages of iteratioh — 1 recursively as follows: for Simplified Min-Sum (SMS) Algorithm

l<ijrsn (1) Let the message from; to 3; in iterationk be denoted
as m{;ﬁﬁj € R. Similarly, the messages fromy; to o

k k—1 . .

Ma;—p; (1) = 22, Yais; (,7) [wl’q + Zmﬁwai(@} ’ in iterationk be denoted am’gﬁai eR.

e (2) Initialize k = 0 and set the messages as follows:
_ 50 e 50 _
Mpy—ai(r) = max s, (rq) [wcu + DM, e (@) (@) Moy = Wigh M, s, = Wi

7 (3) Fork > 1, iterate as follows:

(4) Initerationk, for 1 <4, j,r <n, let mii_}ﬁj = wy— r?ixmgz—iw

J
~k o 5 k—1
b, (r) = [Z My, (1) | + i (1), My = Wij —IAXIRG g 6)
4

(4) The estimated MWM at the end of iteratidnis 7",
+ ¢, (7). (5) wherer* (i) = arg maxlgjgn{mgjéai}, for 1 <i <n.
(5) Repeat (3)-(4) tillxk converges.

i) = [Sokon)
¢
(5) The estimated MWM at the end of iteratidgnis 7",
wheren" (i) = argmax; <<, {b% (j)}, for 1 <i <n.
(6) Repeat (3)-(5) tillrk converges.

Next, we establish equivalence between the two algorithms.

Lemma 1:Modify the min-sum algorithm by adding con-
stantsAj; and Bj; to messagesn, 5 (r) andmyf _, (7)
respectively for alll <r <n andk > 0. Then, the modified

C. PREVIOUS WORK i : ) o :
. _algorithm estimates the same matchirfgas the original min-
In [4], the authors showed that the min-sum algorithrg algorithm for allk.
Proof: Let m”

converges to the MWM whenever its unique. Definé = 5.(r) m’é (r) be the messages of
max; j |w;;| ande = Wr« —maxz .- (Wy). Then, they proved iha modified algorifhmjfor anyj < %,j,r <mn,k > 0. Then

Theorem 1:For any weighted complete bipartite grapfhe proof of the Lemma follows by (5) and establishing the
K, with unigue maximum weight matching, the MIN-SUMqiowing fact inductively:V i, j and k

algorithm converges to the MWM Withilﬁ%} iterations.
X . : . —k _ ok k
In each iteration of the min-sum algorithm every node Me,—p; (r) = Ma,—B; (r) + Cyj,
sendsn messages (numbers) to each of thenodes in the K ok Dk
other partition, and performé&(n) operations per message M, (1) =M, 0, (1) + Dij
computation. Thus, in each iteration a totalfn®) messages and for allr, whereij, ij depend only oA, B. ), 0 <
are exchanged an@(n*) operations are performed; Hence < 1 < 2,y < n. We omit the details of the proof of the
by Theorem 1, the algorithm requires a total @f(%) above fact due to space constraints. ]




Lemma 2:For k > 1, the estimated matching” in both To complete the complexity analysis, we describe an al-
the min-sum and simplified min-sum algorithms are identicajorithm to compute messageﬁa gl S <n using
Proof: Consider the min-sum algorithm. For aky> 0, received messageﬁﬁ L sl < j < n that requires a total
we claim that for alll <i,j <n, m{, _ 5 (r),r # i are the of O(n) operations. By symmetry, the same algorithm will be
same, i.e. for any,rs # i, mf, 5 (r1) =mj, _ 5 (r2). For used ata;,1 < i < n, and;,1 < j < n. Thus, the total
% = 0, this claim holds by definition. Fok > 1, consider the number of operations per iteration will &(n?). Define

definition ofma 8, (r),r # 1. k1

i1 = argma)i<]<nmﬁ —aq?
. A k 1
i ip = argma Dot
Mai—p; (r) = 112;‘i<xn Yaip; (4:7) | Wig + Zmﬂem A k—1 )E<Jinlﬁé“ P
04] Max; = m@ Loy Maxe = MG o (12)
Then, from (6) we obtain
= i+ ) mGa (@) ™
L#£] Thilﬁﬁil W14y — Max27
where (7) follows from property of/,,s,(-,-). Since (7) is m’;ﬁﬁj = wy; —Max,, forj#i;. (13)

independent of(# i) the desired claim is proved.
Equation (7) implies thatM’?éﬁj has only two distinct

values: ma 8, (1) and ma 8, (r), = # 4. Now subtract

mf, 5. (r), v # i from all coordinates ofV/} _ ; . Lemma

1 guarantees that the resulting matchﬂ‘fgfor all & does not

change. This rgsults in an algorithm which is equivalenhto t MWM in O (ﬂ) iterations with a total ofO (n3w*

min-sum algorithm, but where each message veM@g_)ﬁj . €

has all but the'” coordinate equal to zero. Denote the Value%peratlons and message exchanges.

of these non-zero coordinates mgﬁﬁj. From (4), it follows I1l. AUCTION AND MIN-SUM

thatmy;,_ 5 satisfies:

From (12) and (13), it is easy to see that computing all
messageszmaﬁﬁ , 1 < j < n takes O(n) operations.
Summarizing the discussion of the above section, we obtain
the following.

Theorem 2:The simplified min-sum algorithm finds the

In this section, we will first recall the auction algorithm| [2

mk 5, = Wi — max(m’;;l + wig) and then describe its relation to the min-sum algorithm.
Qo — 04 » Z;é] — )
k — -

My, = wy —max(il Ly +wg).  (8) A AUCTION ALGORITHM FOR MWM

The Auction algorithm finds the MWM via an “auction”
all o; become buyers and all; become objects. Let; denote
b (r) = mg o+ Wi, gg_(s) =mk g, Fwsi-(9) the price of/3; andw; be the cost ofy; buying ;. The net
’ no ! s benefit of an assignment or matchings defined as

Similarly, the new beliefs are

To each side of (8), addv;; and divide by 2. Setting

n

mF w;
mk g, = % gives us (6). Furtherma g, as Z (wi,r(i) —p,,(i)).
defmed satisfies the same initial condition as in the smamllfl i=1
min-sum algorithm. Consequently for allj, &, we obtain  Thg goal is to findr* that maximizes this net benefit. It is clear
fnZ._,B, + wy; R that for any set of pricesy, ..., p,, the MWM maximizes the
fnf;ﬁﬁj = + = 2bq,(4). (10) net benefit. The auction algorithm is an iterative method for
e o finding the optimal prices and an assignment that maximizes
Similarly, for all 7, j, k we also have the net benefit (and is therefore the MWM).
mk + w;j _ Aucti i
. B;—a; i _ uction Algorithm.
My = S S0 (). (A1)
Equations (10} (11) and the above discussion prove that the © 'Nitialize the assignmens’ = 0, the set of unassigned
modified min-sum and SMS algorithms produce the same Puyers! ={ai,...,an}, and priceg; = 0 for all j.

- o The algorithm runs in two phases, which are repeated
until S is a complete matching.
A. Complexity of Simplified Min-Sum o Phase 1: Bidding~or all o; € I,

Lemma 2 and Theorem 1 imply that the SMS algorithm (1) Find benefit maximizing;. Let,
converges afte® (nw* /e)ziterations. Also, tr_le SMS algorithm ji = argmax{w,; — ps}, vi = max{w;; —p;}, (14)
exchanges a total aD(n®) messages per iteration. Next, we J
will show that each iteration requir€¥(n?) simple operations.
This will establish that for fixedw* and e, the algorithm
performsO(n?) operations and message exchanges.

matchingz” for all %, thus proving Lemma 2.

andu; = max{w;; — p;}. (15)
J#di



(2) Compute the "bid” of buyery;, denoted byb,, .3, andu; = max{wi; — p;}. (18)
as follows: given a fixed positive constaht 97

ba,—p;, = Wij, — i + 0. (2) Compute the "bid” of buyew;, denoted by, .3,
o Phase 2: AssignmeriFor each objecB;, ba,—p;, = Wij; — Ui, aNAba, g, = wij—vi, J # Ji.

a bid. If P(j) # 0, increasep; to the hlghest bid, (3) Set pricep, to the highest bidp; — maxa, ba, ...

p; = max ba,_g,. 4) ResetS = (. Then, for eacly ao!d the pair(al-j,_ﬁj_-)
i€ P(j) to S if ba, —p; > p;, wherea;; is a buyer attaining
(4) Remove the maximum bidder;, from I and add the maximum in step (3).
(ci;, Bj) t0 S.If (aw, B5) € S, k # ij, then putay
back inI. Theorem 4:The algorithms min-sum auction | and Il are
equivalent.

Theorem 3 ([3]): If 0 < § < ¢/n, then the assignmertt Proof: Let b 3, andp denote the bids and prices at
converges to the MWM irO(nw* /€) iterations with running the end of iterationk: |n algonthm min- sum auction Il. Now,
time O(n®w* /¢) (wheree andw* are as defined earlier). ~ identify by 5 withmg _ 5 andpy withmg ., . Thenitis

|mmed|ate that min-sum auction 1l becomes identical to min-
B. CONNECTING MIN-SUM AND AUCTION sum auction |. This completes the proof of Theorem 4.m

The similarity between equations (12)-(13) and (14)-(15) Next we will prove that if the min-sum auction algorithm
suggests a connection between the min-sum and aucti®fminates (we omit reference to | or Il), it finds the correct
algorithms. Next, we describe modifications to the min-sumiaximum weight matching. As we will see, the proof uses
and auction algorithms, callechin-sum auction land min- standard arguments (see [2] for example).
sum auction |] respectively. We will show that these versions Theorem 5:Let o be the termination matching of the min-
are equivalent and derive some of their key properties. Hegém auction | (or Il). Then it is the MWM, i.er = 7*.

we consider the auction algorithm with= 0 and deal with Proof: The proof follows by establishing that at termi-
the case) > 0 in the next section. nation, the messages of min-sum auction form the optimal
Min-Sum Auction | solution for the dual of the MWM problem and is the

corresponding optimal solution to the primal, i.e. MWM. To

(1) Each «; sends a number toj; and vice-versa. o so, we first state the dual of the MWM problem
Let the messages in iteratiork be denoted as

~ k
M-8, mﬁ, R min i+ Y pj
(2) Initialize k =0 and setmg —a, = 0. ; i Z J
(3) Fork > 1, update messages as follows: subject to ri +p; > ws;. (19)
7k ~ k—1 ] )
Ma;—p; = Wij = I?jj?({ww =G, ot Let (r*,p*) be the optimal solution to the above stated dual

problem and letr* solve the primal MWM problem. Then,

k _ n ~k
Mpjsa, = WX Mg, g, (16)  the standard complimentary slackness conditions are:
(4) The estimated MWM at the end of iteratiénis the set i Piey = Wine(i)- (20)
of edges

Thus, (r*, p*, n*) are the optimal dual-primal solution for the
i; = arg 1rélza<x {ma —8 }1<j<n, MWM problem if and only if (a)x* is a matching, (b}r*, p*)
o1 satisfy (19), and (c) the triple satisfies (20). To compléie t
andimg, g > Mg "a;}  proof we will prove the existence of , p* such thatr*, p*, o)
satisfy (a), (b) and (c).

To this end, first note that is a matching by the termination
Min-Sum Auction 11. condition of the algorithm; thus, condition (a)is satisfigde'll
consider the min-sum auction Il algorithm for the purpose of
the proof Suppose the algorithm terminates at some iterati
k. Letp andp be the prices oB; in iterationsk — 1 and
gdrespectlvely Slnce alp;s are matched at the termination,
from step (4) of the min-sum auction Il, we obtain

= {(4,, 8;)

(5) Repeat (3)-(4) tillr* is a complete matching.

o Initialize the assignment = () and pricesp; = 0 for all
J-

o The algorithm runs in two phases, which are repeat
until S is a complete matching.

o Phase 1: BiddingFor all «;, pkto> Pl v (21)
(1) Find 8; that maximizes the benefit. Let, ! ’

‘ At termination (iterationk) «; is matched with3, ;) or f;
gi = argmay{ws; —p;}, vi =max{wi; —p;}, (7 js matched witha,1(;. By the definition of the min-sum



auction Il algorithm, The conditions (c1) are referred to &CS conditions in [2].
& b1 This modification is reflected in the description of the awiti
pj = Wi T EX [worgpe=pe '] (22) algorithm where we have addedto each bid in step (2).
From (21) and (22), we obtain that We esta_lblished the_ relation _between min-sum and auction for
0 = 0 in the previous section. Here we make a note that
Wo-1(j); — P¥ > max [w,-1(j0 — p}] - (23) for everyé > 0, the similar relation holds. To see this, we
7 consider min-sum auction | and Il where the bid computation
Define, 7} = wi, ;) — pléi andp; = p;?_ Then, from (23) is modified as follows: modify step (3) of min-sum auction |
(r*,p*) satisfy the dual feasibility, that is (19). Further, byaSf 5 = wij —maxez;{wie —mf, ", } + 6, and modify
definition they satisfy the complimentary slackness caonlit Step (2) of min-sum auction Il as
(20). Thus, the triple(r*, p*, o) satisfies (a), (b) and (c) asy
required. Hence, the algorithm min-sum auction Il produces’
the MWM, i.e.o = 7*. m For these modified algorithms, we obtain the following resul
The min-sum auction Il algorithm looks very similar to theusing arguments very similar to the ones used in Theorem 5.
auction algorithm and inherits some of its properties. Hmre  Theorem 7:Foré > 0, leto be the matching obtained from
it also inherits some properties of the min-sum algorithimsT the modified min-sum auction algorithm | (or Il). Then, >
causes it to behave differently from the auction algorithnu.- — nd (i.e. o is within né of the MWM).
The prc_>of of convergence of auction glgqrithm reIies_on two IV. DISCUSSION AND CONCLUSION
properties of the auctioning mechanism: (a) the prices are _ _ N _ _
always non-decreasing and (b) the number of unmatched node¥/e consider the question of finding the MWM in a weighted
always decreases. By design, (a) and (b) can be Sho\,\,ncgmplete blparute graph using the max-product beI!ef prop
hold for the auction algorithm. However, it is not clear i (agation algorithm. In previous work, we had established the
and (b) are true for min-sum auction. In what follows, w&€onvergence property of the max-product (min-sum) algo-
state (without proof) the result that prices are eventuatly- rithm. However, the_complexny of the algorithm s_caled as
decreasing in the min-sum auction algorithm; however irgee O(n") for a graph withn nodes. In this paper, we first pre-

difficult to establish a statement similar to (b) for the nsimn sented a simplification of this algorithm which only reqgire
algorithm as of now. O(n?) operations and thus matching the running time of the

Theorem 6:If 7* is unique then in the min-sum auc-best known algorithms for finding the MWM. The dynamics
tion Il algorithm, prices eventually increase. That ¥ € of the simplified min-sum (SMS) algorithm are very similar to
Zt AT >k st.Vt>T; pt >pk, 1<j<n that of the Auction algorithm. Motivated by this, we pressht

Proof: Due to Sp_ace Iir?ﬂtatiéns we cannot state the promodifications of the min-sum and auction algorithms that are
of Theorem (6) here. Its proof is essentially based on (i) tﬁgui\{alent. We gstablished correctness _of terminationr_ntpoi
equivalence between the min-sum auction algorithms | and @f this modification. Moreover, we applied therelaxation
and (ii) arguments very similar to the ones used in the proBéthod to this modified algorithm and studied its correcines
of Lemma 2 [5], where we relate prices with the computation The similarities mentioned above are very similar to the
tree. m recently observed connection between the max-product algo

Our simulations suggests that in the absence of the conditf@dm and the LP-based dual algorithm for iterative decgdin

"k I from step (4) of min-sum auction |, [6]. This suggests the possibility of there being a conecti

—B;, = Wij; — Ui + 5, andbaiﬁﬁj = Wij — + 5, j }é .]z

~ k—
>m
a; . —B; = Bi—a; _ i i -
the dlgorithm always terminates and finds the MWM as |Or%er;tweefn the max productl ard du?l Lln;zlar programm|hng algo
as it is unique. This along with Theorem 6 leads us to tf&NMs Tor a more general class of problems on grapns.
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