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Abstract— The max-product “belief propagation” algorithm
has received a lot of attention recently due to its spectacular
success in many application areas such as iterative decoding,
computer vision and combinatorial optimization. There is a lot
of ongoing work investigating the theoretical properties of the
algorithm. In our previous work (2005) we showed that the max-
product algorithm can be used to solve the problem of finding
the Maximum Weight Matching (MWM) in a weighted complete
bipartite graph. However, for a graph with n nodes the max-
product algorithm requires O(n4) operations to find the MWM
compared to O(n3) for best known algorithms such as those
proposed by Edmonds and Karp (1972) and Bertsekas (1988).

In this paper, we simplify the max-product algorithm to reduce
the number of operations required to O(n3). The simplified
algorithm has very similar dynamics to the well-known auction
algorithm of Bertsekas (1988). To make this connection precise,
we show that the max-product and auction algorithms, when
slightly modified, are equivalent. We study the correctnessof
this modified algorithm. There is a tantalizing similarity between
this connection and a recently observed connection betweenthe
max-product and LP-based algorithms for iterative decoding by
Vontobel and Koetter.

I. I NTRODUCTION

Finding the MWM in a bipartite graph is an important
problem in many fields e.g. combinatorial optimization and
networks (see [4], [5] for references and details). In this
section, we first define the problem of finding the MWM in
a bipartite graph, then describe the min-sum version of the
max-product algorithm and finally present previously known
results.

A. MAXIMUM WEIGHT MATCHING

Consider an undirected weighted complete bipartite graph
Kn,n = (V1, V2, E), where V1 = {α1, . . . , αn}, V2 =
{β1, . . . , βn} and (αi, βj) ∈ E for 1 ≤ i, j ≤ n. Let each
edge(αi, βj) have weightwij ∈ R. If π = {π(1), . . . , π(n)}
is a permutation of{1, . . . , n} then the set ofn edges
{(α1, βπ(1)), . . . , (αn, βπ(n))} is called amatchingof Kn,n.
We denote both the permutation and the corresponding match-
ing by π. The weight of the matchingπ, denoted byWπ, is
defined as

Wπ =
∑

1≤i≤n

wiπ(i).

Then, the maximum weight matchingπ∗ is a matching such
thatπ∗ = argmaxπ Wπ .

Next, we transform the problem of finding the MWM in
a bipartite graph into one of finding a MAP assignment in
a related graphical model (GM). Consider the following GM
defined onKn,n: let X1, . . . , Xn, Y1, . . . , Yn be random vari-
ables corresponding to the vertices ofKn,n and taking values
from {1, 2, . . . , n}. Let their joint probability distribution,
p

(

X = (x1, . . . , xn);Y = (y1, . . . , yn)
)

, be of the form:

p
(

X,Y
)

=
1

Z

∏

i,j

ψαiβj
(xi, yj)

∏

i

φαi
(xi)φβi

(yi), (1)

where the pairwise compatibility functions,ψ··(·, ·), are de-
fined as

ψαiβj
(r, s) =







0 r = j ands 6= i
0 r 6= j ands = i
1 Otherwise

the potentials at the nodes,φ·(·), are defined as

φαi
(r) = ewir , φβj

(r) = ewrj , ∀ 1 ≤ i, j, r, s ≤ n,

and Z is the normalization constant. The following claims
are a direct consequence of these definitions (see [4] for their
proofs).

Claim 1: For the GM as defined above, the joint den-
sity p

(

X = (x1, . . . , xn), Y = (y1, . . . , yn)
)

is nonzero if
and only if πα(X) = {(α1, βx1

), (α2, βx2
), . . . , (αn, βxn

)}
and πβ(Y ) = {(αy1

, β1), (αy2
, β2), . . . , (αyn

, βn)} are both
matchings andπα(X) = πβ(Y ). Further, when nonzero,
p

(

X,Y
)

is equal to 1
Z
e2
P

i
wixi .

Claim 2: Let (X
∗
, Y

∗
) be such that

(X
∗
, Y

∗
) = arg max{p

(

X,Y
)

}.

Then, the correspondingπα(X
∗
) = πβ(Y

∗
) is the MWM.

B. MIN-SUM ALGORITHM FORKn,n

We present the min-sum version of the max-product al-
gorithm for finding the MWM (see [4] for the equivalence
between the standard max-product and min-sum algorithms).



Define the compatibility matrixΨαiβj
= [ψαiβj

(r, s)] ∈
R

n×n. Also, let

Φαi
= [φαi

(1), . . . , φαi
(n)]t, Φβj

= [φβj
(1), . . . , φβj

(n)]t.

Min-Sum Algorithm

(1) Let Mk
αi→βj

= [mk
αi→βj

(1), . . . ,mk
αi→βj

(n)]t ∈ R
n×1

denote the messages passed fromαi to βj in the iteration
k ≥ 0, for 1 ≤ i, j ≤ n. Similarly, Mk

βj→αi
is the

message vector passed fromβj to αi in the iterationk.
(2) Initially k = 0 and set the messages as follows. Let

M0
αi→βj

= [m0
αi→βj

(1) . . .m0
αi→βj

(n)]t

M0
βj→αi

= [m0
βj→αi

(1) . . .m0
βj→αi

(n)]t

where

m0
αi→βj

(r) =

{

wij if r = i
0 otherwise

(2)

m0
βi→αj

(r) =

{

wji if r = i
0 otherwise

(3)

(3) For k ≥ 1, messages in iterationk are obtained from
messages of iterationk − 1 recursively as follows: for
1 ≤ i, j, r ≤ n

m
k
αi→βj

(r) = max
1≤q≤n

ψαiβj
(q, r)

24wiq +
X
ℓ 6=j

m
k−1

βℓ→αi
(q)

35 ,
m

k
βj→αi

(r) = max
1≤q≤n

ψαiβj
(r, q)

24wqj +
X
ℓ 6=j

m
k−1

βℓ→αi
(q)

35 .(4)

(4) In iterationk, for 1 ≤ i, j, r ≤ n, let

bkαi
(r) =

[

∑

ℓ

mk
βℓ→αi

(r)

]

+ φαi
(r),

bkβj
(r) =

[

∑

ℓ

mk
αℓ→βi

(r)

]

+ φβi
(r). (5)

(5) The estimated MWM at the end of iterationk is πk,
whereπk(i) = argmax1≤j≤n{bkαi

(j)}, for 1 ≤ i ≤ n.
(6) Repeat (3)-(5) tillπk converges.

C. PREVIOUS WORK

In [4], the authors showed that the min-sum algorithm
converges to the MWM whenever its unique. Definew∗ =
maxi,j |wij | andǫ = Wπ∗−maxπ 6=π∗(Wπ). Then, they proved

Theorem 1:For any weighted complete bipartite graph
Kn,n with unique maximum weight matching, the min-sum
algorithm converges to the MWM within⌈ 2nw∗

ǫ
⌉ iterations.

In each iteration of the min-sum algorithm every node
sendsn messages (numbers) to each of then nodes in the
other partition, and performsO(n) operations per message
computation. Thus, in each iteration a total ofO(n3) messages
are exchanged andO(n3) operations are performed. Hence

by Theorem 1, the algorithm requires a total ofO
(

n4w∗

ǫ

)

operations to find the MWM. That is, the algorithm requires
O(n4) operations for fixedw∗ and ǫ. However, known algo-
rithms such as Edmond-Karp’s algorithm [1] or the Auction
algorithm [2] have a complexity ofO(n3).

D. ORGANIZATION AND OUR RESULTS

In this paper, we present two results. In Section II, we
simplify the min-sum algorithm so that the total computational
cost and number of message exchanges of the resulting algo-
rithm are of orderO(n3) for fixedw∗ andǫ. Second, we relate
this simplified min-sum algorithm to the auction algorithm.
Specifically, we present slight modifications of the min-sum
and auction algorithms which we show to be equivalent and
then we establish the correctness property of this modified
algorithm. This is presented in Section III. Finally, we present
conclusions and directions for future research in Section IV.

II. SIMPLIFIED MIN-SUM ALGORITHM FOR Kn,n

We describe the simplified algorithm, prove its equivalence
to the min-sum algorithm and analyze its computational com-
plexity. Unlike the min-sum algorithm where messages are
vectors, eachαi sends a number toβj and vice-versa.

Simplified Min-Sum (SMS) Algorithm

(1) Let the message fromαi to βj in iterationk be denoted
as m̂k

αi→βj
∈ R. Similarly, the messages fromβj to αi

in iterationk be denoted aŝmk
βj→αi

∈ R.
(2) Initialize k = 0 and set the messages as follows:

m̂0
αi→βj

= wij ; m̂0
βj→αi

= wij

(3) For k ≥ 1, iterate as follows:

m̂k
αi→βj

= wij − max
ℓ 6=j

m̂k−1
βℓ→αi

,

m̂k
βj→αi

= wij − max
ℓ 6=i

m̂k−1
αℓ→βj

. (6)

(4) The estimated MWM at the end of iterationk is πk,
whereπk(i) = arg max1≤j≤n{m̂k

βj→αi
}, for 1 ≤ i ≤ n.

(5) Repeat (3)-(4) tillπk converges.

Next, we establish equivalence between the two algorithms.
Lemma 1:Modify the min-sum algorithm by adding con-

stantsAk
ij andBk

ij to messagesmk
αi→βj

(r) andmk
βj→αi

(r)
respectively for all1 ≤ r ≤ n andk ≥ 0. Then, the modified
algorithm estimates the same matchingπk as the original min-
sum algorithm for allk.

Proof: Let m̄k
αi→βj

(r), m̄k
βj→αi

(r) be the messages of
the modified algorithm for any1 ≤ i, j, r ≤ n, k ≥ 0. Then
the proof of the Lemma follows by (5) and establishing the
following fact inductively:∀ i, j andk,

m̄k
αi→βj

(r) = mk
αi→βj

(r) + Ck
ij ,

m̄k
βj→αi

(r) = mk
βj→αi

(r) +Dk
ij ,

and for allr, whereCk
ij , D

k
ij depend only on(Aℓ

xy, B
ℓ
x,y), 0 ≤

ℓ ≤ k, 1 ≤ x, y ≤ n. We omit the details of the proof of the
above fact due to space constraints.



Lemma 2:For k ≥ 1, the estimated matchingπk in both
the min-sum and simplified min-sum algorithms are identical.

Proof: Consider the min-sum algorithm. For anyk ≥ 0,
we claim that for all1 ≤ i, j ≤ n, mk

αi→βj
(r), r 6= i are the

same, i.e. for anyr1, r2 6= i, mk
αi→βj

(r1) = mk
αi→βj

(r2). For
k = 0, this claim holds by definition. Fork ≥ 1, consider the
definition ofmk

αi→βj
(r), r 6= i.

mk
αi→βj

(r) = max
1≤q≤n

ψαiβj
(q, r)



wiq +
∑

ℓ 6=j

mk−1
βℓαi

(q)





= max
q 6=j



wiq +
∑

ℓ 6=j

mk−1
βℓαi

(q)



 , (7)

where (7) follows from property ofψαiβj
(·, ·). Since (7) is

independent ofr(6= i) the desired claim is proved.
Equation (7) implies thatMk

αi→βj
has only two distinct

values:mk
αi→βj

(i) and mk
αi→βj

(r), r 6= i. Now subtract
mk

αi→βj
(r), r 6= i from all coordinates ofMk

αi→βj
. Lemma

1 guarantees that the resulting matchingπk for all k does not
change. This results in an algorithm which is equivalent to the
min-sum algorithm, but where each message vectorMk

αi→βj

has all but theith coordinate equal to zero. Denote the values
of these non-zero coordinates bym̃k

αi→βj
. From (4), it follows

that m̃k
αi→βj

satisfies:

m̃k
αi→βj

= wij − max
ℓ 6=j

(m̃k−1
βℓ→αi

+ wiℓ),

m̃k
βj→αi

= wij − max
ℓ 6=i

(m̃k−1
αℓ→βj

+ wℓj). (8)

Similarly, the new beliefs are

b̃kαi
(r) = m̃k

βr→αi
+ wir , b̃kβj

(s) = m̃k
αs→βj

+ wsj . (9)

To each side of (8), addwij and divide by 2. Setting

m̂k
αi→βj

=
m̃k

αi→βj
+wij

2 gives us (6). Further,̂mk
αi→βj

as
defined satisfies the same initial condition as in the simplified
min-sum algorithm. Consequently for alli, j, k, we obtain

m̂k
αi→βj

=
m̃k

αi→βj
+ wij

2
= 2b̃αi

(j). (10)

Similarly, for all i, j, k we also have

m̂k
βj→αi

=
m̃k

βj→αi
+ wij

2
= 2b̃βj

(i). (11)

Equations (10)−(11) and the above discussion prove that the
modified min-sum and SMS algorithms produce the same
matchingπk for all k, thus proving Lemma 2.

A. Complexity of Simplified Min-Sum

Lemma 2 and Theorem 1 imply that the SMS algorithm
converges afterO(nw∗/ǫ) iterations. Also, the SMS algorithm
exchanges a total ofO(n2) messages per iteration. Next, we
will show that each iteration requiresO(n2) simple operations.
This will establish that for fixedw∗ and ǫ, the algorithm
performsO(n3) operations and message exchanges.

To complete the complexity analysis, we describe an al-
gorithm to compute messageŝmk

α1→βj
, 1 ≤ j ≤ n using

received messageŝmk−1
βj→α1

, 1 ≤ j ≤ n that requires a total
of O(n) operations. By symmetry, the same algorithm will be
used atαi, 1 ≤ i ≤ n, and βj , 1 ≤ j ≤ n. Thus, the total
number of operations per iteration will beO(n2). Define

i1 = argmax1≤j≤nm̂
k−1
βj→α1

,

i2 = argmax1≤j≤n,j 6=i1
m̂k−1

βj→α1
,

Max1 = m̂k−1
βi1

→α1
, Max2 = m̂k−1

βi2
→α1

. (12)

Then, from (6) we obtain

m̂k
α1→βi1

= w1i1 − Max2,

m̂k
α1→βj

= w1j − Max1, for j 6= i1. (13)

From (12) and (13), it is easy to see that computing all
messagesm̂k

α1→βj
, 1 ≤ j ≤ n takes O(n) operations.

Summarizing the discussion of the above section, we obtain
the following.

Theorem 2:The simplified min-sum algorithm finds the
MWM in O

(

nw∗

ǫ

)

iterations with a total ofO
(

n3w∗

ǫ

)

operations and message exchanges.

III. AUCTION AND MIN-SUM

In this section, we will first recall the auction algorithm [2]
and then describe its relation to the min-sum algorithm.

A. AUCTION ALGORITHM FOR MWM

The Auction algorithm finds the MWM via an “auction”:
all αi become buyers and allβj become objects. Letpj denote
the price ofβj andwij be the cost ofαi buyingβj . The net
benefit of an assignment or matchingπ is defined as

n
∑

i=1

(

wiπ(i) − pπ(i)

)

.

The goal is to findπ∗ that maximizes this net benefit. It is clear
that for any set of pricesp1, . . . , pn, the MWM maximizes the
net benefit. The auction algorithm is an iterative method for
finding the optimal prices and an assignment that maximizes
the net benefit (and is therefore the MWM).

Auction Algorithm.

◦ Initialize the assignmentS = ∅, the set of unassigned
buyersI = {α1, . . . , αn}, and pricespj = 0 for all j.

◦ The algorithm runs in two phases, which are repeated
until S is a complete matching.

◦ Phase 1: BiddingFor all αi ∈ I,
(1) Find benefit maximizingβj . Let,

ji = argmaxj{wij − pj}, vi = max
j

{wij − pj}, (14)

andui = max
j 6=ji

{wij − pj}. (15)



(2) Compute the ”bid” of buyerαi, denoted bybαi→βj

as follows: given a fixed positive constantδ,

bαi→βji
= wiji

− ui + δ.

◦ Phase 2: Assignment.For each objectβj ,

(3) LetP (j) be the set of buyers from whichβj received
a bid. If P (j) 6= ∅, increasepj to the highest bid,

pj = max
αi∈P (j)

bαi→βj
.

(4) Remove the maximum bidderαij
from I and add

(αij
, βj) to S. If (αk, βj) ∈ S, k 6= ij, then putαk

back inI.

Theorem 3 ([3]): If 0 < δ < ǫ/n, then the assignmentS
converges to the MWM inO(nw∗/ǫ) iterations with running
time O(n3w∗/ǫ) (whereǫ andw∗ are as defined earlier).

B. CONNECTING MIN-SUM AND AUCTION

The similarity between equations (12)-(13) and (14)-(15)
suggests a connection between the min-sum and auction
algorithms. Next, we describe modifications to the min-sum
and auction algorithms, calledmin-sum auction Iand min-
sum auction II, respectively. We will show that these versions
are equivalent and derive some of their key properties. Here
we consider the auction algorithm withδ = 0 and deal with
the caseδ > 0 in the next section.
Min-Sum Auction I

(1) Each αi sends a number toβj and vice-versa.
Let the messages in iterationk be denoted as
m̃k

αi→βj
, m̃k

βj→αi
∈ R.

(2) Initialize k = 0 and setm̃0
βj→αi

= 0.
(3) For k ≥ 1, update messages as follows:

m̃k
αi→βj

= wij − max
ℓ 6=j

{wiℓ − m̃k−1
βℓ→αi

},

m̃k
βj→αi

=
n

max
ℓ=1

m̃k
αℓ→βj

, (16)

(4) The estimated MWM at the end of iterationk is the set
of edges

πk = {(αij
, βj)| ij = arg max

1≤ℓ≤n
{m̃k

αℓ→βj
} 1 ≤ j ≤ n,

andm̃k
αij

→βj
≥ m̃k−1

βj→αi
}

(5) Repeat (3)-(4) tillπk is a complete matching.

Min-Sum Auction II.

◦ Initialize the assignmentS = ∅ and pricespj = 0 for all
j.

◦ The algorithm runs in two phases, which are repeated
until S is a complete matching.

◦ Phase 1: Bidding.For all αi,
(1) Find βj that maximizes the benefit. Let,

ji = argmaxj{wij − pj}, vi = max
j

{wij − pj}, (17)

andui = max
j 6=ji

{wij − pj}. (18)

(2) Compute the ”bid” of buyerαi, denoted bybαi→βj
:

bαi→βji
= wiji

−ui, andbαi→βj
= wij−vi, j 6= ji.

◦ Phase 2: Assignment.For each objectβj ,

(3) Set pricepj to the highest bid,pj = maxαi
bαi→βj

.
(4) ResetS = ∅. Then, for eachj add the pair(αij

, βj)
to S if bαji

→βj
≥ pj , whereαij

is a buyer attaining
the maximum in step (3).

Theorem 4:The algorithms min-sum auction I and II are
equivalent.

Proof: Let bkαi→βj
andpk

j denote the bids and prices at
the end of iterationk in algorithm min-sum auction II. Now,
identify bkαi→βj

with m̃k
αi→βj

andpk
j with m̃k

βj→αi
. Then it is

immediate that min-sum auction II becomes identical to min-
sum auction I. This completes the proof of Theorem 4.

Next we will prove that if the min-sum auction algorithm
terminates (we omit reference to I or II), it finds the correct
maximum weight matching. As we will see, the proof uses
standard arguments (see [2] for example).

Theorem 5:Let σ be the termination matching of the min-
sum auction I (or II). Then it is the MWM, i.e.σ = π∗.

Proof: The proof follows by establishing that at termi-
nation, the messages of min-sum auction form the optimal
solution for the dual of the MWM problem andσ is the
corresponding optimal solution to the primal, i.e. MWM. To
do so, we first state the dual of the MWM problem

min
n

∑

i=1

ri +
n

∑

j=1

pj

subject to ri + pj ≥ wij . (19)

Let (r∗, p∗) be the optimal solution to the above stated dual
problem and letπ∗ solve the primal MWM problem. Then,
the standard complimentary slackness conditions are:

r∗i + p∗π∗(i) = wiπ∗(i). (20)

Thus,(r∗, p∗, π∗) are the optimal dual-primal solution for the
MWM problem if and only if (a)π∗ is a matching, (b)(r∗, p∗)
satisfy (19), and (c) the triple satisfies (20). To complete the
proof we will prove the existence ofr∗, p∗ such that(r∗, p∗, σ)
satisfy (a), (b) and (c).

To this end, first note thatσ is a matching by the termination
condition of the algorithm; thus, condition (a)is satisfied. We’ll
consider the min-sum auction II algorithm for the purpose of
the proof. Suppose the algorithm terminates at some iteration
k. Let pk−1

j andpk
j be the prices ofβj in iterationsk− 1 and

k respectively. Since allβjs are matched at the termination,
from step (4) of the min-sum auction II, we obtain

pk
j ≥ pk−1

j , ∀j. (21)

At termination (iterationk), αi is matched withβσ(i) or βj

is matched withασ−1(j). By the definition of the min-sum



auction II algorithm,

pk
j = wσ−1(j)j − max

ℓ 6=j

[

wσ−1(j)ℓ − pk−1
ℓ

]

. (22)

From (21) and (22), we obtain that

wσ−1(j)j − pk
j ≥ max

ℓ 6=j

[

wσ−1(j)ℓ − pk
ℓ

]

. (23)

Define, r∗i = wiσ(i) − pk
σ(i) and p∗j = pk

j . Then, from (23)
(r∗, p∗) satisfy the dual feasibility, that is (19). Further, by
definition they satisfy the complimentary slackness condition
(20). Thus, the triple(r∗, p∗, σ) satisfies (a), (b) and (c) as
required. Hence, the algorithm min-sum auction II produces
the MWM, i.e.σ = π∗.

The min-sum auction II algorithm looks very similar to the
auction algorithm and inherits some of its properties. However,
it also inherits some properties of the min-sum algorithm. This
causes it to behave differently from the auction algorithm.
The proof of convergence of auction algorithm relies on two
properties of the auctioning mechanism: (a) the prices are
always non-decreasing and (b) the number of unmatched nodes
always decreases. By design, (a) and (b) can be shown to
hold for the auction algorithm. However, it is not clear if (a)
and (b) are true for min-sum auction. In what follows, we
state (without proof) the result that prices are eventuallynon-
decreasing in the min-sum auction algorithm; however it seems
difficult to establish a statement similar to (b) for the min-sum
algorithm as of now.

Theorem 6:If π∗ is unique then in the min-sum auc-
tion II algorithm, prices eventually increase. That is,∀k ∈
Z

+; ∃ T > k s.t. ∀t ≥ T ; pt
j > pk

j , 1 ≤ j ≤ n
Proof: Due to space limitations we cannot state the proof

of Theorem (6) here. Its proof is essentially based on (i) the
equivalence between the min-sum auction algorithms I and II,
and (ii) arguments very similar to the ones used in the proof
of Lemma 2 [5], where we relate prices with the computation
tree.

Our simulations suggests that in the absence of the condition
”m̃k

αij
→βj

≥ m̃k−1
βj→αi

” from step (4) of min-sum auction I,
the algorithm always terminates and finds the MWM as long
as it is unique. This along with Theorem 6 leads us to the
following conjecture.

Conjecture 1: If π∗ is unique then the min-sum auction
I terminates in a finite number of iterations if condition
”m̃k

αij
→βj

≥ m̃k−1
βj→αi

” is removed from step (4).

C. RELATION TOδ-RELAXATION

In the previous section, we established a relation between
the min-sum and auction (withδ = 0) algorithms. In [2], [3]
the author extends the auction algorithm to obtain guaranteed
convergence in a finite number of iterations via aδ-relaxation
for some δ > 0. At termination theδ-relaxed algorithm
produces a triple(r∗, p∗, π∗) such that (a1)π∗ is a matching,
(b1) (r∗, p∗) satisfy (19) and (c1) the following modified
complimentary slackness conditions are satisfied:

r∗i + p∗π∗(i) ≤ wiπ∗(i) + δ. (24)

The conditions (c1) are referred to asδ-CS conditions in [2].
This modification is reflected in the description of the auction
algorithm where we have addedδ to each bid in step (2).
We established the relation between min-sum and auction for
δ = 0 in the previous section. Here we make a note that
for every δ > 0, the similar relation holds. To see this, we
consider min-sum auction I and II where the bid computation
is modified as follows: modify step (3) of min-sum auction I
asm̃k

αi→βj
= wij −maxℓ 6=j{wiℓ − m̃k−1

βℓ→αi
}+ δ, and modify

step (2) of min-sum auction II as

bαi→βji
= wiji

− ui + δ, andbαi→βj
= wij − vi + δ, j 6= ji.

For these modified algorithms, we obtain the following result
using arguments very similar to the ones used in Theorem 5.

Theorem 7:For δ > 0, let σ be the matching obtained from
the modified min-sum auction algorithm I (or II). Then,wσ ≥
wπ∗ − nδ (i.e. σ is within nδ of the MWM).

IV. DISCUSSION AND CONCLUSION

We consider the question of finding the MWM in a weighted
complete bipartite graph using the max-product belief propa-
gation algorithm. In previous work, we had established the
convergence property of the max-product (min-sum) algo-
rithm. However, the complexity of the algorithm scaled as
O(n4) for a graph withn nodes. In this paper, we first pre-
sented a simplification of this algorithm which only requires
O(n3) operations and thus matching the running time of the
best known algorithms for finding the MWM. The dynamics
of the simplified min-sum (SMS) algorithm are very similar to
that of the Auction algorithm. Motivated by this, we presented
modifications of the min-sum and auction algorithms that are
equivalent. We established correctness of termination points
of this modification. Moreover, we applied theδ-relaxation
method to this modified algorithm and studied its correctness.

The similarities mentioned above are very similar to the
recently observed connection between the max-product algo-
rithm and the LP-based dual algorithm for iterative decoding
[6]. This suggests the possibility of there being a connection
between the max-product and dual Linear programming algo-
rithms for a more general class of problems on graphs.
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