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Recent Medicare legislation has been directed at improving patient care quality by financially penalizing

providers for hospital-acquired infections (HAIs). However, Medicare cannot directly monitor HAI rates,

and instead relies on providers accurately self-reporting HAIs in claims data to correctly assess penalties.

Consequently, the incentives for providers to improve service quality may disappear if providers upcode, i.e.

mis-report HAIs (possibly unintentionally) in a manner that increases reimbursement or avoids financial

penalties. Identifying upcoding in claims data is challenging due to unobservable confounders such as patient

risk. Our approach leverages state-level variations in adverse event reporting regulations and instrumental

variable techniques to discover contradictions in HAI and present-on-admission (POA) infection reporting

rates that are strongly suggestive of upcoding. We conservatively estimate that over 10,000 out of nearly

60,000 annual reimbursed claims for POA infections (18.5%) were upcoded HAIs, resulting in an added cost

burden of $200 million to Medicare. Our findings suggest that self-reported quality metrics are unreliable

and thus, recent legislation may result in unintended consequences. In particular, contrary to widely-held

beliefs, increasing financial penalties may not reduce HAI incidence and may even exacerbate the problem.

We make several policy recommendations based on our results, including a new measure for targeted HAI

auditing and suggestions for effective adverse event reporting systems.

Key words : Medicare, pay-for-performance, upcoding, asymmetric information, quality control and

detection, hospital-acquired infections, strategic behavior

1. Introduction

The United States is one of the highest per-capita healthcare spenders in the world, surpassing

annual expenditures of $2.5 trillion (Schoen 2013, Martin 2012). Yet, there are serious concerns

about the quality of care, particularly due to the prevalence of medical errors (Green 2012). Recent

Medicare legislation has aimed to improve patient outcomes and reduce costs through the gradual

introduction of pay-for-performance policies, which create financial penalties for providers based on

quality of care. In principle, these penalties would incentivize providers to modify their operations

and improve their quality of service. Since Medicare cannot directly monitor patient outcomes, pay-

for-performance policies rely on providers self-reporting accurate information in order to correctly
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assess penalties. However, this information asymmetry creates financial incentives for providers to

upcode, i.e., bias their claims (possibly unintentionally) towards collecting greater reimbursement

(Silverman and Skinner 2004). Prior literature on contract design (Fuloria and Zenios 2001) suggests

that such distortion of reported information may cause pay-for-performance contracts to fail since

they reduce providers’ incentives to improve quality of care. Anecdotal evidence suggests that such

upcoding may occur frequently in practice (Himmelstein and Woolhandler 2015).

In this paper, we empirically study upcoding in response to Medicare’s efforts at reducing

hospital-acquired infection (HAI) rates, as well as its economic and policy implications.

Background. HAIs are infections developed by patients as a consequence of medical treatment

in a hospital. On any given day, about 1 in 25 hospital patients in the US has at least one HAI,

leading to the deaths of an estimated 75,000 hospital patients a year (Magill 2014). In addition,

official estimates by the Centers for Disease Prevention and Control (CDC) estimate the direct

economic cost of HAIs to be between $28 to $34 billion annually (Scott 2009).

Evidence has shown that most HAIs are preventable through the use of better clinical practices

(see, e.g., Berenholtz 2004, Berriel-Cass 2006). However, until recently, Medicare’s fee-for-service

model reimbursed healthcare providers for these infections regardless of whether or not they were

due to an avoidable lapse in the provider’s quality of care. Furthermore, Hsu (2014) found that

providers could increase their margins over eight-fold for a given ICU patient if he or she incurred

a HAI, since the patient would require an extended stay and more services. This created perverse

incentives for providers to increase HAI rates.

This issue was addressed by the Centers of Medicare & Medicaid Services (CMS) through the

hospital-acquired condition (HAC) nonpayment policy (starting on October 1, 2008), which aimed

in part to incentivize providers to invest in reducing HAI incidence (a subset of HACs) by placing

the financial burden of treating HAIs on the provider rather than on Medicare. The policy targeted

selected high cost and high volume HAIs that were considered to be reasonably preventable through

better healthcare practices. When providers submitted reimbursement claims diagnosing patients

with one or more of these infections, they could indicate whether the infection was present-on-

admission (POA) or not. An infection qualifies as POA if the provider detected it within a certain

time window of the patient’s hospital admission; we will refer to this as a POA time window,

which is typically 48 hours (Meddings et al. 2010). If the infection was not POA, it was deemed

a preventable HAI and would not be reimbursed, causing a large financial loss to the provider

for the resulting treatment (Center for Medicare & Medicaid Services 2014). Furthermore, CMS

began publicly reporting provider-specific risk-adjusted HAI rates on Hospital Compare1 in order

to create added reputational incentives and to help route patients to higher-quality providers.

1 http://www.medicare.gov/hospitalcompare
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Unfortunately, multiple sources of evidence suggest that the HAC nonpayment policy has had

little impact on the true rate of HAIs (Lee 2012, Schuller et al. 2014). It has been hypothesized

that this may be because the financial impact of the policy was too small to influence significant

change in practice (McNair et al. 2009). Consequently, public organizations that promote patient

safety have called for stronger financial penalties (see, e.g., Health Watch USA 2011). In response,

further Medicare legislation was issued in the form of the HAC Reduction Program, which created

additional financial penalties (starting on October 1, 2014) for providers with high HAI incidence.

Upcoding. We investigate another explanation for the lack of improvement in HAI incidence:

upcoding (inaccurate claims reporting that results in higher reimbursement or reduced penalties)

may have diminished providers’ financial incentives for reducing true HAI rates. In this paper, we

focus on two types of upcoding that can occur when encountering a patient with a true HAI:

1. POA over-reporting, i.e., reporting a HAI as present-on-admission (POA) infection, and

2. HAI under-reporting, i.e., failing to report a HAI.

Even though both types of erroneous reporting can be considered upcoding, we distinguish them

in our exposition and analysis as they are likely to occur through different mechanisms and have

different policy implications. Our principal objective of this paper is to assess whether reliable

evidence can be found for the existence of either type of upcoding.

Presently, there is mixed evidence for whether HAI upcoding exists. One study manually reviewed

eighty medical records from the University of Michigan Health System and found that both types

of upcoding were rampant:

“It is concerning that cases of CA-UTI (the most common type of hospital-acquired infection)

are rarely identified in [claims data]... In addition, coders often listed [infections] as present

on admission, although the medical record indicated that it was hospital acquired... Because

coding ... seems to be fraught with error, nonpayment according to CMS policy may not reliably

occur.” - Meddings et al. (2010)

On the other hand, the Office of the Inspector General (OIG) conducted a manual review of a few

hundred medical records across the nation and found that HAIs were indeed reliably reported and

that there was very little evidence of upcoding (Snow 2012). These conflicting results illustrate

the drawbacks of identifying upcoding through manual auditing of claims data: manual review is

a time-consuming and expensive process that produces high-variance results due to small sample

sizes and the rarity of HAIs. Yet, detecting upcoding from available observational data (i.e., hos-

pital claims records) is challenging because a patient’s true diagnosis is unobservable. Moreover,

standard econometric techniques such as diff-in-diff estimates of reporting rates before and after

the nonpayment policy do not apply because the distinction between HAIs and POAs in claims

reporting did not exist prior to the nonpayment policy.
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It is important to gauge the extent of upcoding at a national scale in order to better understand

its implications for Medicare policy and for providers. In particular, significant upcoding (if present)

can erode the effectiveness of the current regulation at reducing HAI incidence. Additionally, it

raises questions about the veracity of self-reported HAI rates. This is especially concerning since

financial penalties from the HAC Reduction Program are determined on the basis of self-reported

data; thus, current policy may unfairly penalize providers who report HAIs accurately. Furthermore,

Medicare publishes these self-reported HAI rates to inform patients so as to guide their choice of

providers. Thus, upcoding could ultimately lead to the undesirable outcome of patients choosing

low-quality providers who upcode over high-quality providers.

We note that there is a division of opinion on whether upcoding occurs intentionally or as a

consequence of ineffective quality management. For example, Silverman and Skinner (2004) suggest

that upcoding may be intentional profit-maximizing behavior, while Meddings et al. (2010) suggest

that it may be a result of miscommunication between nurses and medical coders (specialized

hospital staff who translate medical records to claims reports). We restrict the focus of our paper

to finding evidence of upcoding rather than the question of intent. However, in §7, we discuss some

insights derived from conversations with hospital quality control staff about our results.

Main Contributions. We use national claims reporting data to estimate the extent of upcod-

ing after the nonpayment policy went into effect. Our identification strategy is driven by variations

in existing state-level regulation on adverse event reporting, and we address endogeneity concerns

through the use of instrumental variables. We find that the differential impact of state-level regula-

tion on HAI and POA reporting rates is strongly suggestive of upcoding. In particular, under some

mild assumptions, we find that providers in weakly-regulated states are either (1) over-reporting

POAs, or (2) under-reporting HAIs relative to providers in strongly-regulated states. If we further

assume that the omitted variable bias from unobservable patient risk in our empirical analysis is

negligible, we can make the stronger claim that weakly-regulated providers over-report POAs. We

strengthen the validity of this assumption by using an extensive set of patient risk controls (derived

from patient claims histories and demographics) that have been validated in the medical literature.

In order to estimate the financial impact of upcoding, we make conservative estimates of the

rate of upcoding in Medicare inpatient claims for the two most common and important infections

– central line-associated bloodstream infections (CLABSIs) and catheter-associated urinary tract

infections (CAUTIs) – that have been targeted by the HAC legislation. We estimate that there are

over 10,000 over-reported POAs a year, resulting in an added annual cost burden of $200 million to

Medicare for reimbursing these HAIs. While this cost inefficiency is small compared to other Medi-

care expenditures, it is important to note that this money was intended as a penalty to providers

to incentivize them to reduce HAI incidence. The practice of upcoding has therefore eroded this
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financial incentive, thereby reducing the effectiveness of the policy. Medicare’s current plan to

increase penalties through the HAC Reduction Program does not address these concerns, and may

in fact exacerbate the problem since providers with high HAI rates will face even greater financial

pressure to engage in upcoding. Moreover, providers who are trying to report more accurately than

others will be unfairly penalized, both financially and reputationally.

Our results suggest that in order for HAI reduction policies to be effective and fair, federal

regulation must be introduced to induce accurate reporting. To this end, we provide two policy

recommendations: (1) targeted audits based on a new measure we introduce for identifying poten-

tially upcoding providers, and (2) federal implementation of certain features of current state-level

regulations that we find to be effective at eliciting truthful reporting. More broadly, we emphasize

the importance of ensuring the veracity of self-reported data as Medicare moves towards adopting

a growing number of data-driven pay-for-performance policies (HHS 2015).

1.1. Related Literature

Our work relates to the literature on incentivizing provision of high-quality service under asym-

metric information. This typically falls under the umbrella of principal-agent problems (Bolton and

Dewatripont 2004). As motivated by Arrow (1963), one of the distinguishing features in health-

care settings is the nature of the information asymmetry between Medicare (principal) and the

provider (agent). Particularly in our setting, Medicare does not directly observe the provider’s cho-

sen action (i.e. level of service quality), making it difficult to design contracts that can successfully

improve quality of care. For example, Fuloria and Zenios (2001) develop an optimal outcomes-

based reimbursement contract for healthcare providers; however, they acknowledge that the new

payment model can only achieve significant gains in quality of care if the payer has access to accu-

rate information about patient characteristics. In fact, they show that if providers distort reported

information, outcomes-based contracts can perform worse than standard payment models.

Providers have several levers through which they can strategically take advantage of asymmetric

information. One well-studied example is that hospitals may strategically choose which patients

they admit. For instance, KC and Terwiesch (2011) find empirical evidence that specialized hos-

pitals cherry-pick easy-to-treat patients. Similarly, Ata et al. (2013) show how the current hospice

reimbursement policy may cause providers to engage in adverse selection by preferentially admit-

ting short-lived patients. Brown et al. (2014) empirically find that Medicare overpays capitation

payments to private Medicare Advantage plans due to risk-selection by private insurers despite

recent efforts to employ patient-level risk-adjustment in deciding payment levels. In these papers,

providers take advantage of Medicare’s (relative) lack of knowledge of patient risk; in our work, we

illustrate that providers (possibly unintentionally) take advantage of Medicare’s lack of knowledge

of infection occurrence by upcoding, either through poor infection detection or inaccurate claims.
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The issue of strategically choosing poor detection levels of low quality (or detection of infections

in our setting) has been studied in the supply chain management literature, particularly with

respect to social and environmental responsibility (Baiman et al. 2000). The closest work is by

Plambeck and Taylor (2015) who study how increased auditing pressure may motivate suppliers

to exert greater effort to pass the buyer’s audit by hiding information and less care to improving

quality and safety. Similarly, in our setting, increased financial penalties may incentivize providers

to strategically maintain low detection levels of HAIs to avoid liability and penalties.

Previous studies in the medical and economics literature have studied a different form of upcoding

where providers report higher-paying diagnoses under Medicare’s traditional fee-for-service system.

Silverman and Skinner (2004) found that for-profit hospitals in particular bias their claims reports

towards higher-paying diagnoses (DRGs) in order to maximize reimbursement; however, this form of

upcoding has greatly declined after increased auditing pressure from Medicare. In fact, concurrent

work by Heese et al. (2015) finds that upcoding occurs more frequently among non-profit providers

since Medicare preferentially avoids auditing them; based on these results, the authors hypothesize

that Medicare allows “beneficient” non-profit hospitals to make some profit from upcoding in

order to recover losses from other factors (e.g., treating poorer patients). From a methodological

standpoint, both these papers use a provider’s fraction of claims that correspond to the highest-

paying DRG as a proxy for that provider’s level of upcoding. However, a key limitation of this proxy

(acknowledged by the authors) is that it can be biased by patient selection based on unobservable

risk factors (e.g., as suggested by empirical work in KC and Terwiesch (2011)). This issue was

resolved by a large-scale manual review of medical records conducted by the OIG, which definitively

established evidence for upcoding (Silverman and Skinner 2004). Similarly, two studies took this

manual approach for evaluating the extent of HAI upcoding, but as mentioned earlier, they yielded

conflicting estimates (Meddings et al. 2010, Snow 2012). This may be because such studies involve

hiring costly medical experts and are thus limited to small sample sizes, leading to high-variance

estimates. Our approach uses observational claims data and helps resolve this conflict by finding

evidence of HAI upcoding as well as conservative estimates of its magnitude. In contrast to prior

methodologies, we account for patients’ unobservable risk factors by employing a double regression.

We note that concurrent work by Geruso and Layton (2015) also uses observational data to study

yet a different form of upcoding by private insurers among Medicare Advantage patients. However

their approach relies on comparing risk scores of patient populations under different insurers, which

cannot be used to identify upcoding within the Medicare population (since all patients have the

same insurer). Thus, to the best of our knowledge, our paper is the first to show and quantify

upcoding behavior among Medicare-only patients using observational data.
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The remainder of the paper is organized as follows. In §2, we outline our identification strategy

and present intuition behind our argument that providers are engaging in HAI upcoding. In §3,

we provide a formal model that maps our upcoding hypothesis to a hypothesis that is empirically

verifiable from claims data under certain assumptions. We describe our various sources of data on

patients, providers, and state regulations in §4, and establish our key empirical results for upcoding

in §5 along with estimates of the monetary losses incurred by Medicare. We perform robustness

checks to justify our model assumptions in §6. We conclude with insights from conversations with

hospital staff about our results, as well as a discussion of the policy implications of this work in §7.

2. Empirical Strategy for Identifying Upcoding

A naive approach would use national claims data to identify upcoding providers as those who have

high POA reporting rates (suggestive of over-reporting POAs) and/or low HAI reporting rates

(suggestive of under-reporting HAIs). One may further wish to risk-adjust these reporting rates

to account for the variation in infection susceptibility among individual patients. However, these

effects may also be caused by variations in:

1. Provider quality : higher-quality providers are likely to cause fewer HAIs and would thus report

lower (risk-adjusted) HAI rates.

2. Provider’s POA infection detection: providers who successfully detect more POAs (by find-

ing the infection within the POA time window) would report higher (risk-adjusted) POA rates.

Analogously, they may report relatively lower (risk-adjusted) HAI rates since providers with poor

POA detection may incorrectly identify POAs as HAIs.

3. Unobservable patient risk confounders: if we fail to properly risk-adjust for infection suscep-

tibility, providers with relatively riskier patients will appear to report higher (risk-adjusted) POA

rates and providers with less risky patients will appear to report lower (risk-adjusted) HAI rates.

We address these concerns by exploiting variations in existing state-level adverse event regulation.

Many states passed laws that mandated the reporting of various HAIs prior to the federal nonpay-

ment policy in 2008. As documented by the Office of Inspector General (OIG) of the Department of

Health and Human Services, regulations on the contents of these reports varied significantly from

state to state (Levinson 2008), thereby creating a natural quasi-experiment. The primary aim of

these reporting systems was to track HAI incidence across providers, and a subset of states included

measures to ensure accurate reporting (e.g., detailed patient and event information monitoring and

root cause analysis). We will refer to this subset of states as strongly-regulated states and all other

states as weakly-regulated states. It is important to note that this state-level regulation was inde-

pendent of Medicare legislation and had no outcomes-based financial incentives (unlike Medicare

policies). However, states could conduct on-site audits and exact financial penalties if providers
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were caught purposefully mis-reporting. Strongly-regulated states in particular required provider

accountability for accurate HAI reporting as well as implementation of follow-up corrective strate-

gies; thus, the regulations indirectly mandated that providers in such states had to improve their

operational capabilities to correctly detect and prevent these targeted infections.

Thus, providers in strongly-regulated states should have both (1) higher quality and (2) better

POA infection detection. We provide further empirical evidence in §6 to support these claims in

the context of general medical care:

1. (Provider quality) We compare a variety of risk-adjusted provider quality metrics reported

on Hospital Compare, including mortality rates and process of care measures (§6.1). We find

overwhelming evidence that strongly-regulated providers offer higher quality care, as shown through

better scores on nearly all process of care measures (particularly those targeted towards preventing

infections), as well as reduced downstream mortality rates.

2. (POA infection detection) Much of the medical literature (see, e.g., Meddings et al. 2010, Mark

and Harless 2010, Duffin 2014) as well as our conversations with hospital staff suggests that timely

infection detection and attribution is a nurse-centric task. Unfortunately, evidence shows that US

hospitals have severe nurse understaffing; for example, 33% of surveyed nurses report inadequate

staffing levels and half report insufficient time with patients (ANA 2016). Consequently, several

states have introduced regulation to ensure adequate hospital nurse staffing levels. Using data from

the American Nurses Association (ANA), we find that the majority (75%) of strongly-regulated

states (versus only 8% of weakly-regulated states) have adopted such regulation, suggesting that

strongly-regulated states have improved nurse staffing levels and would thus have higher POA

detection. However, since nurse staffing levels are not publicly reported in most states, we exam-

ine some alternate nurse-centric metrics (§6.2). First, we compare time-sensitive process of care

measures. We find that strongly-regulated providers are significantly more successful at performing

necessary tasks within a pre-specified time window, suggesting that they would be more success-

ful at identifying true POAs by testing for the infection within the allowed POA time window

(typically 48 hours). Second, we examine payment rates (adjusted for variations in demographic

differences in pay, patient risk, and provider mortality rates) reported on Hospital Compare, as well

as our own measure of “billing aggressiveness” computed from claims data. We find evidence that

strongly-regulated providers are significantly more aggressive in claims billing, and furthermore,

succeed at receiving higher payments for equal quality of services provided. This suggests that they

are more likely to discover and report all reimbursable complications (including POA infections).

Furthermore, our conversations with hospital staff support the claim that strongly-regulated

providers have established additional infrastructure for ensuring compliance with state-level guide-

lines on accurate HAI (and therefore, POA) detection and prevention (see discussion in §7.1).
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Figure 1 Average (unadjusted) POA and HAI reporting rates for strongly- and weakly-regulated states in a

random sample of almost a million Medicare inpatient stays from 2009-10. Providers in strongly-regulated states

have relatively lower POA and higher HAI reporting rates.

Yet, we empirically find that providers in strongly-regulated states have lower (risk-adjusted)

POA reporting rates and higher (risk-adjusted) HAI reporting rates (see Fig. 1 for the unadjusted

reporting rates in a random sample of almost a million Medicare inpatient stays from 2009-10).

Since strongly-regulated providers have both (1) higher provider quality and (2) better POA

infection detection, these two confounders cannot explain the observed effects. Furthermore, (3)

unobservable patient risk confounders cannot simultaneously explain both effects. In particular, if

weakly-regulated providers report higher POA rates because they treat relatively riskier patients

(who are more susceptible to infections), then their patients would also contract more HAIs since

the infection is the same and weakly-regulated providers have equal or lower quality of care; they

should thus report higher HAI rates as well. Similarly, if weakly-regulated providers report lower

HAI rates because they treat relatively less risky patients, they should also report lower POA rates.

Another potential explanation is that state adverse event regulation may be endogenous to

HAI reporting rates. Specifically, strongly-regulated states may have introduced adverse event

reporting regulation as a response to low provider quality with respect to HAIs (although they

have overall higher quality of care). In this case, it would be reasonable that providers in strongly-

regulated states report relatively higher (risk-adjusted) HAI rates. We address this issue by using

an instrumental variable approach: our instruments are various measures of state taxation levels

(known as the Economic Freedom Index (Ashby et al. 2010)) which are correlated with the strength

of a state’s regulatory environment but bear no direct relationship with HAI-specific provider

quality. We find our results remain consistent despite accounting for this endogeneity.

Thus, the differential impact of state-level regulation on HAI and POA reporting rates strongly

suggests that weakly-regulated providers engage in upcoding. If we further assume that the bias

from unobservable patient risk confounders in our analysis is negligible, we can make the stronger
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claim that weakly-regulated providers are over-reporting POAs by at least their excess (risk-

adjusted) POA reporting rates. To support this hypothesis, we use an extensive set of patient risk

controls (§4.4) that have been validated in the medical literature. These arguments are formalized

in Proposition 1 using a model of provider reporting in §3.

3. Model

Accurate reporting signifies reporting a POA in the case of a true POA infection, and similarly

reporting a HAI in the case of a true HAI occurrence. According to Medicare policy, all detected

infections must be reported. There are several mechanisms through which providers can deviate

from accurate reporting by upcoding (claiming more reimbursement than allowed) and downcoding

(claiming less reimbursement than allowed), which we detail in a simple model below.

3.1. Definitions

We describe all possible provider reporting behaviors conditional on a patient’s infection type.

Model parameters are defined for strongly-regulated states (denoted by superscript S); analogous

definitions hold for weakly-regulated states (denoted by superscript W ).

3.1.1. Reporting Mechanisms.

Given a patient with a true POA infection, strongly-regulated providers report:

• a POA with probability 1− εS1 − εS2 (accurate reporting)

• a HAI with probability εS1 (downcoding)

• no infection with probability εS2 (downcoding)

Note that failing to report a POA accurately is considered downcoding since reporting the infection

would likely increase the provider’s reimbursement. Downcoding occurs as a result of the hospital’s

failure to detect the infection within the POA time window (thus, forcing it to report the infection

as a HAI) or failure to detect the infection entirely. It may also occur if the hospital fails to

communicate the early detection or existence of the infection to the medical coder who files claims.

Similarly, given a patient with a true HAI infection, strongly-regulated providers report:

• a HAI with probability 1− δS1 − δS2 (accurate reporting)

• a POA with probability δS1 (upcoding via POA over-reporting)

• no infection with probability δS2 (upcoding via HAI under-reporting)

Both upcoding mechanisms may be a consequence of poor provider quality: POA over-reporting

may be due to poor coder training, and HAI under-reporting may be due to poor infection detection

ability. Of course, both mechanisms may also occur through intentional claims manipulation.

See Table 1 for a summary of parameters. We note that we only model provider reporting

behavior in cases where the patient truly has either a POA or a HAI infection. In principle,

providers could report a POA or a HAI even if the patient did not have any infection. However,

there is no evidence that this occurs in practice (Snow 2012, Meddings et al. 2010).
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Reported POA Reported HAI No Report (Risk-Adjusted)
Infection Prob.

True POA 1− εR1 − εR2 εR1 εR2 pR

True HAI δR1 1− δR1 − δR2 δR2 αR · pR

Table 1 Summary of model parameters. The superscripts R ∈ {S,W} denote strong vs weak regulation.

3.1.2. Infection Risk. Let X denote the patient’s observed risk covariates. Denote pS(X) as

the patient’s risk-adjusted probability of a true infection outside the hospital (i.e. the probability

of a POA infection conditioned on X) in strongly-regulated states. (We omit the X-dependence

when it is clear from context.) Note that this quantity does not depend on hospital-specific factors

(such as quality or detection ability). Thus, if our patient-level risk-adjustment is unbiased (i.e., if

there is no omitted variable bias), then pS(X) = pW (X); however, we will not assume that this is

the case as there are many unobservable patient risk factors in healthcare that can create bias.

Similarly, let αS · pS(X) denote the patient’s risk-adjusted probability of a true HAI (i.e., the

probability of a HAI conditioned on X) in strongly-regulated states. Intuitively, pS(X) captures

the patient’s propensity for infection and αS captures the impact of the hospital’s quality of care

on the patient’s risk for infection. In other words, we assume that the overall risk for a true HAI

is multiplicative in patient and provider risk factors.

3.1.3. Reporting Rates. Given the model above, the observed per-visit probabilities of POA

and HAI reports in strongly-regulated providers are, respectively,

rSPOA := pS(1− εS1 − εS2 ) +αSpSδS1 ,

rSHAI := αSpS(1− δS1 − δS2 ) + pSεS1 .

Analogous expressions hold for weakly-regulated providers.

3.2. Assumptions

We now formalize the assumptions we stated earlier (in §2) in the language of our model:

1. (Provider Quality) We assume that strongly-regulated providers cause equal or fewer true

HAIs compared to weakly-regulated providers given patients that are equally susceptible to infec-

tion (i.e., when fixing p). In other words, we assume

αS ≤ αW .

We justify this assumption by comparing a variety of risk-adjusted provider quality metrics reported

on Hospital Compare, including mortality rates and process of care measures (§6.1).
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2. (POA Infection Detection) We assume that strongly-regulated providers report true POAs

more accurately (i.e., they downcode less). In particular,

εS1 ≤ εW1 and εS2 ≤ εW2 .

We justify this assumption by comparing time-sensitive process of care measures (§6.1) and

adjusted payment rates reported on Hospital Compare, as well as our own measure of “billing

aggressiveness” computed from claims data (§6.2).

3.3. Hypotheses

Let the rate of POA over-reporting (i.e., the risk-adjusted probability of a reported POA in the

event of a true HAI) in strongly-regulated states be denoted by OS = αSpSδS1 and similarly, the rate

of HAI under-reporting (i.e., the risk-adjusted probability of no reported infection in the event of a

true HAI) be denoted US = αSpSδS2 . The total rate of mis-reported HAIs is then simply OS +US.

We consider the following hypothesis:

Compared to strongly-regulated providers, weakly-regulated providers have higher rates of

upcoding, either through (i) POA over-reporting or (ii) HAI mis-reporting.

We can write this as hypothesis H1 (with corresponding null hypothesis H0):

H0 :OS ≥OW and OS +US ≥OW +UW

H1 :OS <OW or OS +US <OW +UW

This hypothesis cannot be directly evaluated since we do not observe true POAs/HAIs. However,

using our assumptions (§3.2), we can map this hypothesis to the following empirically verifiable

hypothesis H ′1 (with corresponding null hypothesis H ′0):

H ′0 : rSPOA ≥ rWPOA or rSHAI ≤ rWHAI

H ′1 : rSPOA < r
W
POA and rSHAI > r

W
HAI

Proposition 1. Hypothesis H ′1 implies H1. If we further assume pS = pW , then weakly-regulated

providers over-report POAs by at least the excess risk-adjusted POA reporting rate (rWPOA− rSPOA):

OW ≥OW −OS ≥ rWPOA− rSPOA .

Proof of Proposition 1 : See Appendix B.

Thus, if we empirically verify H ′1, Proposition 1 implies that weakly-regulated providers have

higher rates of upcoding compared to strongly-regulated providers. Moreover, if our patient risk-

adjustment is unbiased (i.e., pS = pW ), then weakly-regulated providers over-report POAs by at

least as much as their excess risk-adjusted POA reporting rate.



13

4. Datasets

In this section, we describe our various sources of data and define our key variables for treatment

effect estimation. We also discuss potential confounders and our approach to control for these

effects. We reproduce state reporting system features in Table 2, and we report summary statistics

of selected variables in Table 10 (in Appendix A).

4.1. Data Sources

Medicare Patient Data. Our main source of data was Medicare inpatient claims data from

the MedPAR Research Identifiable Files (RIF) made available by CMS. This dataset contains

information on every inpatient stay between 2007 and 2010 of a randomly selected 5% sample

of all Medicare beneficiaries in the United States. Our dataset spans 3,865,733 inpatient stays

by 492,218 unique beneficiaries. Each record includes provider IDs, diagnoses (ICD-9 codes) and

procedures, patient demographics, and billing information. Beneficiaries can be tracked across

multiple inpatient stays, allowing us to compute health risk measures for individual patients based

on their claims histories during this period. We use a rolling six-month window of claims histories

to compute various measures of patient risk for each inpatient stay.

Our unit of observation is an individual Medicare inpatient stay, and we perform a cross-sectional

analysis on inpatient stays in 2009-10. We limit our sample to short stays under the prospective

payment system served by providers in the United States (which is the healthcare setting that was

targeted by the nonpayment policy). Finally, if a patient is newly enrolled in Medicare (e.g., from

Medicare Advantage), their past visits may be censored (thus, creating bias in controls computed

on past visits); we address this by limiting our sample to patients with at least one prior Medicare

inpatient stay in the past 24 months. We note that these filters affect all states uniformly, and

therefore do not create bias in our analysis; see Appendix C.

State Reporting System Classification. As of January 2008, 26 states had implemented

adverse event reporting systems in the absence of federal guidelines. The OIG performed a detailed

comparison of these systems based on telephone interviews with the staff responsible for each state’s

reporting system (Levinson 2008). The OIG report describes key features of the state reporting

systems, including the type of information that must be reported by each state regarding (1) the

affected patient, (2) the adverse event, and (3) the root cause of the adverse event. All 26 states

with reporting systems enforced at least reporting the identity of the hospital and the adverse

event that had occurred. We reproduce the information reported in each category and the number

of states that had implemented each requirement in Table 2.

Other Sources of Data. We used data from the American Community Survey (2008-12) by the

US Census Bureau to control for patient demographics. Similarly, we obtained data on county-level
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Category Information # States

Any Reporting Event and Hospital 26

Patient-Specific

Impact of Event on Patient 12
Patient Age or Date of Birth 19
Patient Diagnosis 16
Patient Medical Record Number 5
Patient Billing Number 2

Event-Specific

Type of Event 26
Location within Hospital 20
Date of Event 24
Date of Discovery 10
Summary Description 18
Detailed Description 11

Root Cause Analysis
Root Cause Analysis Team Name 7
Identified Cause 12
Contributing Factors 16

Table 2 Different types of information reporting requirements used in state adverse event reporting systems

and the number of states that had implemented each requirement. Reproduced from Levinson (2008).

life expectancies from the Institute of Health Metrics and Evaluation. For our instrumental variable

analysis, we used the state-level 2010 North American Economic Freedom indices (Ashby et al.

2010). Finally, we used Hospital Compare’s provider-level quality metrics for robustness checks.

4.2. Treatment Variable

One possible definition of the treatment variable is simply having an adverse event reporting

system. Interestingly, our results show that merely having an adverse event reporting system did

not have a significant effect on POA and HAI claims reporting rates for CLABSIs and CAUTIs (see

Table 5). This is because the quality of the reporting systems varied widely. Instead, our approach

is to look for states that impose meaningful requirements on the quality of reporting. We construct

a treatment variable that is an indicator for whether the provider is located in a state that had

strong regulations on adverse event reporting prior to the federal nonpayment policy in 2008.

As previously noted, we use data from an OIG report which lists each state’s information

reporting requirements (§4.1). We are particularly interested in regulation that enforced accurate

reporting. The OIG report claims that states identified cases of mis-reporting by

“analyzing reported data, comparing hospital reports against complaints, referrals, and admin-

istrative databases, and conducting onsite audits” (Levinson 2008, pg. 4).

These methods are greatly aided by the availability of more detailed data. In particular, we argue

that the more data a state has regarding the circumstances of an adverse event, the harder it is for

a provider to mis-report the event without being detected. Thus, we used the amount of required

information reported to states in each category as a proxy for increased regulatory pressure for
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accurate reporting. For simplicity, we chose the most informative reporting requirement from each

of the three information categories (see Table 2), namely,

1. Patient-specific: patient medical record number or billing number

2. Event-specific: detailed description of the adverse event

3. Root cause analysis: identified cause of adverse event

We define our treatment variable based only on these three reporting requirements, which helps

us better interpret our results and make concrete policy suggestions. Since there are many ways to

define the treatment variable, we perform a robustness check (§5.4) by considering several alternate

definitions of the treatment variable to alleviate the concern that a particular definition of the

treatment variable gave rise to our results by chance.

In order to construct the treatment variable, we compute a binary “strength” for each state’s

regulation of its adverse event reporting system based on the number of these three features

adopted. The median number of features adopted among states with reporting systems was one;

thus, we considered the strongly-regulated states to be those with two or more features. According

to this definition, the strongly-regulated states are CT, FL, MA, MN, NJ, NY, RI, and SD. (We

define a binary treatment variable to improve the interpretability of our results; in §6.3, we perform

a robustness check to ensure our results are consistent if the treatment variable is continuous.)

Thus, we define the binary treatment variable S for providers as:

• S = 0: Provider is located in a weakly-regulated state, i.e., either had no adverse event reporting

system, or had an adverse event reporting system that had zero or one of the reporting requirements

described above.

• S = 1: Provider is located in a strongly-regulated state, i.e., had an adverse event reporting

system with two or more of the reporting requirements described above.

4.3. Outcome Variables

We focus on CLABSIs and CAUTIs, the only two HAIs directly targeted by both the HAC non-

payment policy and the recent HAC Reduction Program. We define two outcome variables:

• POAi is an indicator variable for whether either a CLABSI or a CAUTI was diagnosed along

with the present-on-admission indicator in the claims record for inpatient stay i.

• HAIi is an indicator variable for whether either a CLABSI or a CAUTI was diagnosed without

the present-on-admission indicator in the claims record for inpatient stay i.

4.4. Controls

We define a variety of controls to account for potential confounders.

Patient Risk. States that implement strong regulation for HAIs are likely to have also imple-

mented other measures towards improving population health; this may, in turn, affect downstream
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patient infection rates. To account for this effect, we control for an extensive list of patient-specific

factors that are computed from their claims histories. Age, sex, and race are obtained from Med-

PAR’s summarized beneficiary demographic information. We use a rolling window of 6 months

of each patient’s claims history to identify risk-associated quantities such as the number of days

since the patient’s last admission, the number of prior admissions, the number of prior procedures

performed on the patient during those admissions, the number of previous CLABSI and/or CAUTI

infections sustained during that time, and the total length of hospital stay days.

We also use 6-month patient history to compute the Charlson comorbidity index (measure of

patient risk that predicts patient mortality within 6 months) and 29 Elixhauser comorbidities

(scores that capture patient comorbidities outside of the primary reason for hospitalization). These

measures have been frequently validated and are widely accepted in the medical community (Deyo

et al. 1992, Elixhauser et al. 1998). We compute the Elixhauser comorbidities as recommended

by the Agency of Healthcare Research & Quality (AHRQ)2. Finally, we control for the patient’s

current type of diagnosis using DRG groupings used in computing the Elixhauser scores.

Demographic Factors. States that did not implement strong HAI regulation may generally

be poorer or more resource-constrained. This may, in turn, affect the completeness of patient

claims data; in particular, poor patients may not have access to frequent healthcare due to lack of

health insurance or other resource constraints, and thus their health risks may not be completely

captured from claims histories. We address this by using health-related controls from census data

based on the patient’s listed zipcode. These controls (aggregated by zipcode) included the average

household income as well as fractions of individuals in the population who were above 65, uninsured,

unemployed, near the poverty line, foreign-born and/or had not completed high school.

Provider’s Billing Aggressiveness. Providers that code their claims more aggressively to

achieve the highest possible reimbursement rates may generally have more complete patient claims

data. Note that this is different from upcoding, since the codes may be accurate. We control for

variations in coding practices by defining a provider-specific measure of billing aggressiveness:

billing aggressivenessj =

∑
i∈Tj

charges to Medicare for inpatient stay i∑
i∈Tj

Medicare payment for inpatient stay i

where j is the index of the provider and Tj is the set of all inpatient stays under the care of

provider j. This heuristic – the ratio between average payment requested and payment received

– would likely be higher for aggressive providers who attempt to charge Medicare much more for

each patient stay than the typical reimbursement level.

2 https://www.hcup-us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp
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4.5. Instrumental Variables

Our treatment variable is potentially endogenous if states with poor provider quality (with respect

to HAIs) chose to pass adverse event reporting regulation. While strongly-regulated states have

higher provider quality on many standard metrics (see §6.1), HAI-specific provider quality (the

quantity of interest in this context) is unobservable. We address this issue through the use of

instrumental variables. We focus on two factors that drive increased state-level regulation that are

not caused by high HAI rates: (i) a state’s capacity to issue and enforce costly regulation, and (ii)

voters’ preferences for increased regulation. Following the example of Mukamel (2012), we use the

Economic Freedom Indices as our instruments (see Table 10 in Appendix A for summary statistics):

1. Area 1 (Size of Government): This measure captures the government’s (both federal and

state) spending in the state as a percentage of the state’s GDP. While weakly-regulated states tend

to have lower tax earnings and thus lower state-level spending, they are poorer and have higher

total government expenditures due to intergovernment transfers (i.e., incoming funds from federal

assistance programs). In contrast, strongly-regulated states are more affluent and have less federal

government intervention (indicating financial ability to support sovereign regulation). For example,

the federal government spent more in West Virginia (weakly-regulated) than they raised through

taxation, while the opposite held for Connecticut (strongly-regulated) (Ashby et al. 2010).

2. Area 2 (Takings & Discriminatory Tax): This measure captures the government’s (both fed-

eral and state) tax revenue from this state as a percentage of the state’s GDP. Strongly-regulated

states tend to have higher tax rates to financially support more stringent government regulation.

3. Area 3 (Labor Market Freedom): This measure scores the government’s stringency of regula-

tion with respect to labor issues (e.g. the minimum wage, union density) as well as bureaucracy (e.g.

the proportion of employed individuals who work for the government). Voters in strongly-regulated

states seem to prefer increased labor market regulation.

Summarizing, strongly-regulated states have higher Area 1 index and lower Area 2 and 3 indices:

in particular, they tend to have stronger state-level government presence (Areas 2 and 3) and

stronger financial resources to support regulation (Areas 1 and 2). We verify that these instruments

are sufficiently correlated with the treatment variable through a weak identification test (see §5.2).

Second, we believe the instruments are uncorrelated with the error term in the HAI regression,

i.e., the instruments are not predictive of reported HAI rates after conditioning on the treatment

and controls. Unlike the original treatment variable, which may have been directly caused by poor

provider quality with respect to HAIs, there is no apparent causal relationship between poor HAI-

specific provider quality and our instruments. We perform an overidentification test (§5.2), which

suggests that the instruments are, in fact, not correlated with the error term in our regression.
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Furthermore, our instruments capture state affluence; since affluent states have more financial

resources to improve provider quality, we expect that the instrumented treatment variable would be

positively correlated with HAI-specific provider quality. To support this hypothesis, we show that

both the instruments and the instrumented treatment variable are positively correlated with higher

provider quality on a number of standard quality metrics (see Appendix D.2, specifically Tables 13

and 14). Recall that our instrumental variable approach is motivated by the concern that the

treatment variable may be correlated with (unobserved) poor HAI-specific provider quality, i.e., the

error term of the HAI regression. Therefore, this hypothesis suggests that even if the instruments are

correlated with the error term, we expect the correlation to be negative. As described in Appendix

D.3, this ensures that our treatment effect estimates are conservative; i.e., the causal effect of the

original treatment variable on HAI reporting rates can only be higher than our estimate.

Finally, we note that it is highly implausible that a state’s decision to regulate was influenced

by its POA rates, because adverse event reporting systems targeted HAIs and, to the best of our

knowledge, there were no state agencies that even collected information on present-on-admission

infection rates. Thus, we only use an instrumental variable approach for our analysis of HAI rates.

5. Estimation & Results

We perform treatment effect estimation to determine the causal effects of strong state-level adverse

event reporting regulation on POA and HAI claims reporting rates for CLABSIs and CAUTIs.

Our primary analysis uses standard regression techniques under a linear probability model.

Although our outcomes are binary, we use a linear probability model (see Section 15.2 of

Wooldridge (2010) for a justification) rather than a logit or probit model so that we can per-

form instrumental variable validity tests in the presence of clustered errors (e.g., see Cameron and

Miller (2015)). We perform robustness checks in §6.3 to show that our results remain consistent

under alternate specifications. We find that the presence of strong state regulation of adverse event

reporting was associated with decreased POA rates and increased HAI rates. Finally, since we seek

to jointly establish statistical significance for both POA and HAI regressions, we can conservatively

apply the Bonferroni correction by summing the p-values for both regressions as our joint p-value.

We note that in all our regressions (including robustness checks), the sum of the two corresponding

p-values is less than 0.05, showing that we have joint significance. As argued in §3, this suggests

that providers in weakly-regulated states have statistically significant rates of upcoding.

5.1. POA Regression

Let Si be the treatment variable (as defined earlier), Ci denote the vector of controls (including an

intercept term) for inpatient stay i. We use a linear model with the econometric specification:

POAi = βPOA
S Si +βTCi + εi
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where εi is the error term. The coefficient of interest is βPOA
S , which represents the effect of strong

state regulation on POA reporting rates. Specifically, if βPOA
S is negative, this would indicate that

after controlling for potential confounders, providers in states with strong regulations have a lower

probability of reporting POAs than providers in states with little or no regulation.

The standard OLS estimator makes the assumption that all errors in the POA model are

homoskedastic and independent. However, this is unlikely to be the case as hospital stays served by

the same provider may have correlated heteroskedastic errors due to unobserved provider-specific

variables. To account for this, we cluster our data at the provider (i.e., hospital) level, and use

cluster-robust standard errors that relax our assumptions to allow both arbitrary heteroskedastic-

ity and arbitrary within-provider correlation. (In §6.3, we perform a robustness check with coarser

state-level clustering and confirm that our results remain significant.)

The regression results with cluster-robust standard errors are shown in Table 3. We find that,

after controlling for patient risk through claims histories and demographic factors, strong state

regulation is associated with significantly lower POA reporting rates (p= 1.0× 10−4).

5.2. HAI Regression

Let Ii denote the vector of instrumental variables for inpatient stay i. We use standard two-stage

least squares (2-SLS) for estimation (implemented in the ivreg2 Stata package). In the first stage,

we fit our endogenous variable

Ŝi = βT
1 Ci +βT

I Ii + εi,1

In the second stage, we fit our outcome variable using the predicted Ŝi from the first stage

HAIi = βHAI
S Ŝi +βT

2 Ci + εi,2

where εi,1, εi,2 denote error terms. In this case, if βHAI
S is positive, then after controlling for potential

confounding variables and the endogeneity of regulation, providers in strongly-regulated states

have a higher probability of reporting HAIs than providers in weakly-regulated states.

Once again, we use cluster-robust standard errors clustered at the provider level. We also perform

weak- and over-identification tests to support the validity of our chosen instruments.

The regression coefficients, and robust standard errors clustered by provider are shown in Table 3.

We find that, after controlling for patient risk through claims histories and demographic factors,

strong state regulation is associated with significantly higher HAI reporting rates (p= 1.6×10−2).

Tests of Instrument Validity. Our first-stage regression produced R2 = 0.54, and the instru-

ments (economic freedom indices) alone had a partial R2 = 0.17 (see results in Appendix D.1). We

performed the standard IV validity tests under robust provider-level clustering:
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Variable (1) POA Reports (2) HAI Reports

Estimate SE Estimate SE
(Intercept) 3.76× 10−3 8.17× 10−3 4.74× 10−3* 2.85× 10−3

sex: female −2.86× 10−3*** 2.34× 10−4 1.30× 10−4** 5.96× 10−5

age −1.31× 10−4*** 9.91× 10−6 −1.06× 10−5*** 2.79× 10−6

race: white 1.84× 10−3* 1.03× 10−3 3.27× 10−4 3.36× 10−4

race: black 3.35× 10−3*** 1.09× 10−3 4.87× 10−4 3.46× 10−4

race: asian 5.99× 10−4 1.38× 10−3 5.72× 10−4 4.70× 10−4

race: hispanic 2.61× 10−3** 1.30× 10−3 2.56× 10−4 3.87× 10−4

race: other 1.90× 10−3 1.39× 10−3 −8.23× 10−6 3.98× 10−4

race: unknown 4.49× 10−4 2.17× 10−3 −1.17× 10−4 5.62× 10−4

elixhauser score: x (omitted) (omitted) (omitted) (omitted)
charlson score −5.20× 10−5 1.11× 10−4 −8.48× 10−5** 3.40× 10−5

diagnosis: cardiac −4.66× 10−3*** 1.79× 10−4 −3.29× 10−4*** 6.88× 10−5

diagnosis: renal 5.38× 10−2*** 1.73× 10−3 −3.98× 10−4*** 1.28× 10−4

diagnosis: nervous −6.82× 10−3*** 5.80× 10−4 −4.58× 10−4 2.90× 10−4

diagnosis: pulmonary −4.71× 10−3*** 2.13× 10−4 −7.40× 10−4*** 7.58× 10−5

diagnosis: diabetes −5.93× 10−3*** 6.31× 10−4 −1.46× 10−4 3.23× 10−4

diagnosis: hypothyroidism −2.46× 10−3** 1.14× 10−3 6.26× 10−4 7.15× 10−4

diagnosis: renal failure −5.87× 10−2*** 1.76× 10−3 5.11× 10−4** 2.42× 10−4

diagnosis: liver −6.73× 10−3*** 4.77× 10−4 −5.53× 10−4** 2.40× 10−4

diagnosis: ulcer −4.86× 10−3*** 3.72× 10−4 −3.35× 10−4** 1.62× 10−4

diagnosis: cancer −1.02× 10−2*** 4.25× 10−4 7.11× 10−4** 2.85× 10−4

diagnosis: nutrition −6.78× 10−3*** 3.14× 10−4 −2.81× 10−4 1.82× 10−4

diagnosis: alcohol −5.78× 10−3*** 6.67× 10−4 −9.31× 10−4*** 2.30× 10−4

diagnosis: hypertension −4.15× 10−3*** 5.63× 10−4 −8.87× 10−4*** 5.55× 10−5

diagnosis: blood disorders −5.37× 10−3*** 5.59× 10−4 1.34× 10−4 2.86× 10−4

diagnosis: mental disorders −6.89× 10−3*** 4.08× 10−4 −9.50× 10−4*** 1.70× 10−4

days since last admit −1.71× 10−5*** 1.83× 10−6 −3.33× 10−6*** 6.10× 10−7

# past admits −7.22× 10−4*** 1.28× 10−4 −9.12× 10−5** 3.63× 10−5

# past procedures 4.90× 10−4*** 5.28× 10−5 3.08× 10−5** 1.36× 10−5

# past cauti 1.25× 10−1*** 5.22× 10−3 4.62× 10−4 4.72× 10−4

# past clabsi 6.87× 10−2*** 4.58× 10−3 1.26× 10−3** 5.51× 10−4

total past length of stay 6.00× 10−5*** 6.08× 10−6 3.25× 10−6** 1.36× 10−6

billing aggressiveness 1.27× 10−4** 5.14× 10−5 5.01× 10−6 1.28× 10−5

demographics: % uninsured −6.30× 10−4 2.29× 10−3 1.10× 10−3 6.74× 10−4

demographics: % above 65 −1.96× 10−3 1.51× 10−3 −1.47× 10−4 5.43× 10−4

demographics: % foreign-born −3.28× 10−3** 1.43× 10−3 −3.73× 10−4 4.19× 10−4

demographics: % unemployed 2.20× 10−3 2.86× 10−3 −3.67× 10−4 8.44× 10−4

demographics: % near poverty 2.09× 10−3 1.73× 10−3 1.39× 10−4 5.11× 10−4

demographics: % no high school −3.60× 10−3** 1.80× 10−3 −2.77× 10−4 5.07× 10−4

local household income 1.68× 10−8** 6.83× 10−9 −7.01× 10−10 2.04× 10−9

local female life expectancy 3.35× 10−4 2.29× 10−4 −1.51× 10−4* 7.77× 10−5

local male life expectancy −1.62× 10−4 1.68× 10−4 1.14× 10−4** 5.43× 10−5

S −1.21×10−3*** 3.26×10−4 5.23×10−4** 2.16×10−4

*p < 0.10, **p < 0.05, ***p < 0.01

Table 3 Results of regressions. Point estimates and cluster-robust standard errors (SE) of coefficients for (1)

OLS regression of POA reports and (2) 2-SLS regression of HAI reports against strength of state reporting

system and controls (Elixhauser coefficients omitted due to space constraints).

1. (Weak Identification Test) Our analysis yielded a Kleinberg-Paap Wald F -statistic of 138,

which is well above the Stock-Yogo weak ID test critical values for the maximal IV relative bias
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(13.91 at the 5% level) and for the maximal IV size (22.30 at the 10% level). This indicates that

our instruments are not weak (Baum 2007).

2. (Overidentification Test) We computed a Hansen J statistic of 0.228 with a χ2 p-value 0.89.

Thus, we do not reject the null hypothesis that our model is correctly specified, suggesting that

our instruments are valid, i.e., economic freedom indices are uncorrelated with HAI reporting rates

except through the treatment variable and controls.

3. (Endogeneity Test of Treatment Variable) We found evidence (p = 0.03) rejecting the null

hypothesis that the treatment variable is exogenous with respect to HAI reporting outcomes; this

result justifies our instrumental variable approach.

5.3. Loss Estimates

In order to estimate the annual number of upcoded infections as well as their associated costs

to Medicare, we assume that the patient risk adjustment in our empirical analysis is unbiased.

Following the notation introduced in §3, this translates to pS = pW . Thus, by Proposition 1,

weakly-regulated providers over-report POAs by at least as much as their excess risk-adjusted POA

reporting rate, rWPOA− rSPOA. Using this estimate implicitly makes two conservative assumptions:

1. Providers in strongly-regulated states have an upcoding rate of zero

2. All providers have similar capabilities for infection detection

We believe these estimates are conservative since providers in strongly-regulated states likely have

better infection detection due to their increased infrastructure in response to reporting requirements

as discussed earlier. In this case, the number of over-reported POAs by weakly-regulated providers

is larger than what we estimate. Secondly, it is unlikely that providers in strongly-regulated states

have zero upcoding; in this case, the overall amount of upcoding is again larger than our estimate.

Furthermore, we do not consider losses through under-reporting HAIs in this analysis, since the

cost of under-reporting is indirect and therefore harder to measure.

We perform two linear regressions on CLABSI-POA and CAUTI-POA outcomes respectively.

We find the absolute value of the treatment effects, i.e., excess POA reporting rates, of:

• CLABSI-POA: 2.26× 10−4 with standard error 1.08× 10−4

• CAUTI-POA: 1.34× 10−3 with standard error 2.50× 10−4

Our data comprises 690,743 inpatient stays in weakly-regulated states over 2 years. Since we have

a random 5% sample of all Medicare inpatient stays, we estimate that there are 6,907,430 Medicare

inpatient stays per year in weakly-regulated states that meet our criteria. We compute the number

of over-reported POAs for each infection (see Table 4) as:

[# patients in weakly-regulated states per year]× [excess POA rate]
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We also obtain estimates of Medicare’s added reimbursement cost for these infections from

Umscheid et al. (2011). They find that CLABSIs result in a mean estimated incremental cost of

$110,800 (95% CI: $22,700 - $327,000), and CAUTIs result in a mean estimated incremental cost

of $2950 (95% CI: $1200 – $4700). We use these inputs to estimate the cost burden to Medicare

from upcoding (see Table 4).

Infection Estimated # Upcoded Cases Estimated Added Cost to Medicare

Estimate 95% CI Estimate 95% CI

CLABSI 1,561 [99, 3023] $173 million $2.2 million – $989 million
CAUTI 9,256 [5871, 12641] $27 million $7.0 million – $59.4 million

Table 4 Conservative estimates are shown for the number of upcoded cases per year and the associated cost

burden to Medicare for both CLABSIs and CAUTIs.

Thus, we estimate a total of 10,817 over-reported POAs (out of 58,520 annually reported POA

infections from weakly-regulated states) with an associated cost burden of approximately $200

million in annual Medicare reimbursements. We note that these estimates only account for direct

healthcare service costs, and do not include broader societal costs, e.g., long-term impact of HAIs

on patient health and the loss of patient productivity as a result of their extended hospital stay.

5.4. Policy Comparison

We defined our original treatment variable using three reporting requirements that we considered

informative. We now alter the definition of the treatment variable based on reporting requirements

along three dimensions: patient, event, and cause (see Table 2). This serves two purposes:

1. We show that our results are robust to the choice of treatment variable as long as it captures

the stringency of regulations on truthful reporting.

2. We draw inferences about which types of reporting requirements may be most effective at

reducing upcoding rates in order to make policy recommendations.

Alternative Definitions of Treatment Variable. We construct alternative definitions of the

treatment variable through the following procedure. For every combination of patient/event/cause,

we consider the relevant set of reporting requirements and compute the median number imple-

mented by states with adverse event reporting systems (see Appendix E and Table 15 for details).

We define all states with more than the median number of requirements as “strongly regulated.”

We also investigate an alternative definition where a strongly-regulated state is one that simply

has an adverse event reporting system. These states include CA, CO, CT, DC, FL, GA, IN, KS,

ME, MD, MA, MN, NJ, NV, NY, OH, OR, PA, RI, SC, SD, TN, UT, VT, WA, and WY.

For each of these definitions of the treatment variable, we ran a linear regression and a 2-SLS

regression for POA and HAI outcomes respectively, as described in Sections 4.1–4.2. We list the
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estimated treatment effect along with cluster-robust standard errors and p-values in Table 5. The

“Original” definition refers to the measure that was defined and used earlier in the paper.

Results & Observations. First, we find that our results are largely consistent for different

definitions of strong regulation that capture the magnitude of the providers’ reporting burden in

that state. In particular, stringent regulation on adverse event reporting is associated with reduced

upcoding levels. On the other hand, merely having regulations for adverse event reporting is not

associated with significant changes in upcoding rates. These findings support the hypothesis that

laws cannot create proper incentives without sufficient accountability.

Treatment (1) POA Reports (2) HAI Reports
Definition Estimate SE p-value Estimate SE p-value

Patient −1.02× 10−3 2.97× 10−4 0.001 5.85× 10−4 2.38× 10−4 0.014
Event −1.03× 10−3 3.43× 10−4 0.003 2.76× 10−4 2.42× 10−4 0.255
Cause −7.01× 10−4 3.18× 10−4 0.027 6.91× 10−4 2.91× 10−4 0.018

Patient & Event −9.97× 10−4 2.95× 10−4 0.001 5.91× 10−4 2.39× 10−4 0.013
Patient & Cause −9.53× 10−4 3.09× 10−4 0.002 8.56× 10−4 3.51× 10−4 0.015
Event & Cause −1.37× 10−3 3.51× 10−4 0.000 1.85× 10−4 2.62× 10−4 0.479

Patient, Event & Cause −1.43× 10−3 3.15× 10−4 0.000 7.04× 10−4 3.07× 10−4 0.022

Has Reporting System? −4.88× 10−4 2.83× 10−4 0.084 5.30× 10−4 2.86× 10−4 0.064

Original −1.21× 10−3 3.26× 10−4 0.000 5.23× 10−4 2.16× 10−4 0.016

Table 5 Point estimates and cluster-robust standard errors for the coefficient of the treatment variable are

shown for alternative definitions of strong state regulation.

Second, we infer that reporting patient information is most valuable, while only reporting infor-

mation on the event has limited value. This may be because reporting patient information (such

as the medical record number) may allow state entities to more easily audit hospital records. Our

findings also suggest that reporting along all three dimensions is best; in particular, reporting

patient, event, and cause information was associated with the highest reduction in upcoding.

6. Robustness Checks

We perform several robustness checks to provide further evidence justifying our assumptions and

to show that that our empirical results are consistent under alternate specifications.

6.1. Provider Quality

As noted in §2, one of our key assumptions is that strongly-regulated providers have higher quality

of care with respect to HAIs. We perform two robustness checks to demonstrate that strongly-

regulated providers have higher quality of care even in a general medical context using the December

2010 release of Hospital Compare’s risk-adjusted provider quality metrics.
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Mortality. We compare risk-adjusted mortality rates (which are the most direct measure of

provider quality) between providers in strongly- and weakly-regulated states (see Table 6). During

this time period, Medicare reported these rates only for three conditions: heart attack, heart failure,

and pneumonia. Using a t-test, we find that providers in strongly-regulated states have lower risk-

adjusted mortality rates across all 3 conditions with high statistical significance. In Appendix D.2,

we verify that a similar relationship holds for our instrumental variables as well as the instrumented

treatment variable (see Table 13).

Condition Mean Mortality Mean Mortality 95% CI of p-value
(Strong States) (Weak States) Difference

Heart Attack 15.75% 16.27% [-0.69%, -0.36%] 6.7× 10−10

Heart Failure 10.82% 11.36% [-0.66%, -0.41%] 2.1× 10−16

Pneumonia 11.19% 11.77% [-0.73%, -0.44%] 6.2× 10−15

Table 6 T-test results are shown comparing Medicare providers’ risk-adjusted mortality rates in strongly vs.

weakly regulated states for heart attack, heart failure, and pneumonia patients.

Process of Care. We compare all reported (risk-adjusted) process of care quality measures,

except outpatient and pediatric ones (since our study is focused on the adult inpatient setting)

(see Table 7). We find that strongly-regulated providers outperform weakly-regulated providers

on all but one measure (where the difference is not statistically significant). The improvement in

performance is statistically significant for 75% of the measures. We particularly draw attention

to measures related to the appropriate administration of antibiotics (PN 5c, PN 6, SCIP INF1,

SCIP INF2, and SCIP INF3), which aids in infection prevention. Even more relevant, the measure

SCIP INF9 captures the appropriate and timely removal of urinary catheters after surgery, which is

instrumental to CAUTI prevention (Saint 2009). Strongly-regulated providers perform significantly

better on these measures compared to weakly-regulated providers. In Appendix D.2, we verify that

a similar relationship holds for the instrumented treatment variable (see Table 14).

6.2. Provider POA Infection Detection

Another key assumption (discussed in §2) is that strongly-regulated providers are more likely to

detect and accurately report POA infections. We perform two robustness checks to demonstrate

that strongly-regulated providers exhibit (i) better performance in time-sensitive process of care

measures (suggesting that they are more likely to correctly identify POAs by detecting the infection

promptly within the allowed POA time window), and (ii) more aggressive billing behavior (which

suggests that they are better at detecting and reporting reimbursable complications such as POAs).

Time-sensitivity. We compare all Hospital Compare (risk-adjusted) process of care measures

that are time-sensitive, i.e. require a task to be completed within a given window of time. These
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Measure Definition Mean
(Strong)

Mean
(Weak)

Better
Quality?

p-value

AMI 1 Patiens given aspirin at arrival 97.3 95.3 Yes 0.00
AMI 2 Patiens given aspirin at discharge 96.3 93.8 Yes 0.00
AMI 3 Patients given ACE inhibitor for Left Ven-

tricular Systolic Dysfunction (LVSD)
94.6 93.2 Yes 0.04

AMI 4 Patients given smoking cessation counseling 97.8 97.1 Yes 0.24
AMI 5 Patients given beta blocker at discharge 96.8 93.4 Yes 0.00
AMI 7a Patients given fibrinolytic medication within

30 minutes of arrival
49.6 45.6 Yes 0.43

AMI 8a Patients given PCI within 90 minutes of
arrival

87.1 83.9 Yes 0.00

HF 1 Patients given discharge instructions 83.7 81.0 Yes 0.00
HF 2 Patients given an evaluation of Left Ventric-

ular Systolic Dysfunction (LVSD)
93.5 91.3 Yes 0.00

HF 3 Patients given ACE inhibitor or ARB for Left
Ventricular Systolic Dysfunction (LVSD)

92.2 90.1 Yes 0.00

HF 4 Patients given smoking cessation counseling 94.2 93.5 Yes 0.35
PN 2 Patients assessed and given pneumococcal

vaccination
90.7 88.4 Yes 0.00

PN 3b Patients whose initial ER blood culture was
performed prior to the administration of the
first hospital dose of antibiotics

93.5 93.4 Yes 0.87

PN 4 Patients given smoking cessation counseling 93.8 91.7 Yes 0.00
PN 5c Patients given initial antibiotic(s) within 6

hours after arrival
94.2 94.0 Yes 0.41

PN 6 Patients given the most appropriate initial
antibiotic(s)

90.6 89.4 Yes 0.01

PN 7 Pneumonia patients assessed and given
influenza vaccination

89.8 87.3 Yes 0.00

SCIP CARD 2 Percentage of patients who were taking beta
blockers before coming to the hospital that
were kept on the beta blockers before and
after their surgery

92.3 87.8 Yes 0.00

SCIP INF 1 Surgery patients who received preventative
antibiotic(s) one hour before incision

94.9 93.0 Yes 0.00

SCIP INF 2 Percentage of surgery patients who received
the appropriate antibiotic(s) for their surgery

96.2 95.1 Yes 0.00

SCIP INF 3 Surgery patients whose preventative antibi-
otic(s) are stopped within 24 hours after
surgery

93.7 91.7 Yes 0.00

SCIP INF 4 Cardiac surgery patients with controlled 6am
post-operative blood glucose

90.3 91.8 No 0.29

SCIP INF 6 Surgery patients with appropriate hair
removal

98.5 98.4 Yes 0.65

SCIP INF 9 Percentage of surgery patients whose urinary
catheters were removed on the first or second
day of surgery

87.8 85.6 Yes 0.00

SCIP VTE 1 Surgery patients whose doctors ordered treat-
ments to prevent blood clots for certain types
of surgeries

92.8 89.3 Yes 0.00

SCIP VTE 2 Surgery patients who received treatment to
prevent blood clots within 24 hours before or
after selected surgeries

91.4 87.9 Yes 0.00

Table 7 T-test results are shown comparing Medicare’s risk-adjusted process of care quality measures in

strongly vs. weakly regulated states for heart attack, heart failure, pneumonia, and surgical care improvement.
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include AMI 7a, AMI 8a, PN 5c, SCIP INF 1, SCIP INF 3, SCIP INF 9, and SCIP VTE 2 (see

Table 7). We find that strongly-regulated providers outperform weakly-regulated providers in all

of these metrics, and the difference is statistically significant in over 70% of the measures.

Billing Aggressiveness. First, we compare Medicare’s “payment and value of care” metrics

(adjusted for variations in demographic differences in pay, patient risk, and provider mortality

rates) using the December 2015 release of Hospital Compare’s risk-adjusted provider quality met-

rics (see Table 8); we note that payment information was not made available in Hospital Com-

pare data during the study period (2009-10). We find that strongly-regulated states receive much

larger adjusted payments with high statistical significance; this difference persists after we stratify

providers by quality (i.e. we restrict the comparison to providers with risk-adjusted mortality rates

that are comparable to the national average). Second, we compare our own measure of “billing

aggressiveness” (defined in §4.4) computed from the claims data. Using a t-test, we find that

providers in strongly-regulated states have higher billing aggressiveness (mean: 4.42) compared to

weakly-regulated states (mean: 4.10) with high statistical significance (p-value: 0.003). Thus, we

find significant evidence that strongly-regulated providers are more aggressive in claims reporting,

and furthermore, succeed at receiving higher payments for equal quality of services provided.

Condition Mortality Mean Payment p-value
Strong Weak

Heart Attack All $22,492 $22,005 2.5× 10−8

Average $22,494 $21,997 2.2× 10−8

Heart Failure All $15,815 $15,231 4.1× 10−16

Average $15,738 $15,183 7.6× 10−14

Pneumonia All $14,411 $14,248 2.8× 10−3

Average $14,381 $14,220 5.7× 10−3

All infections All 1.00 0.98 1.8× 10−9

Table 8 The t-test results compare Medicare’s adjusted payments to strongly vs. weakly-regulated providers

for selected infections over both (i) all providers and (ii) providers with mortality rates comparable to the national

average. The last row shows the ratio of adjusted payments to the national average for all Medicare patients.

6.3. Regression Specification

In addition to checking the robustness of our results to different definitions of the treatment variable

(§5.4), we also ensure that our results are consistent under alternative regression specifications:

1. Since the outcomes are binary, we use a probit model specification rather than a linear model.

2. We use a continuous (rather than binary) definition of the treatment variable, i.e. the number

of total reporting requirements (out of 14) adopted by each state (see Fig 2 in Appendix A).
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3. We use a two-level definition of the treatment variable, i.e. S = {0,1,2} corresponds to no

adverse event reporting regulation, weak regulation, and strong regulation respectively.

4. We employ coarser state-level (rather than provider-level) clustering of standard errors.

Coarser clustering is believed to yield more conservative estimates (Cameron and Miller 2015).

However, since there are only 50 states and we have over 70 controls, we exclude the Elixhauser

and diagnosis controls to ensure that the estimation is not rank deficient.

We redo our POA and HAI analyses under each of these alternative specifications. Again, we

find that our results are consistent (see Table 9).

Change in (1) POA Reports (2) HAI Reports
Specification Estimate SE p-value Estimate SE p-value

Probit Model -0.07 0.019 0.000 0.19 0.076 0.015
Continuous Treatment −8.35× 10−5 3.22× 10−5 0.010 5.03× 10−5 2.22× 10−5 0.023
Two-level Treatment −5.71× 10−4 1.81× 10−4 0.002 2.82× 10−4 1.27× 10−4 0.026
State-Level Clustering −1.66× 10−3 5.65× 10−4 0.005 5.29× 10−4 2.35× 10−4 0.024

Table 9 Point estimates and cluster-robust standard errors for the coefficient of the treatment variable are

shown for alternative specifications of the POA and HAI regressions.

7. Discussion & Concluding Remarks

In summary, our results show that providers in states with stronger regulations on adverse event

reporting have (1) lower (risk-adjusted) POA reporting rates and (2) higher (risk-adjusted) HAI

reporting rates for CLABSIs and CAUTIs. This effect is statistically significant even after control-

ling for a wide range of patient risk factors and demographic characteristics, as well as arbitrary

intra-provider correlations and endogeneity of regulation for HAI outcomes. The differential impact

of state-level regulation on HAI and POA reporting rates strongly suggests that weakly-regulated

providers upcode. If we further assume that the bias from unobservable patient risk confounders

in our analysis is negligible, we can make the stronger claim that weakly-regulated providers are

over-reporting POAs; in particular, we conservatively estimate that over 10,000 POA infections are

over-reported annually, i.e. 18.5% of POAs reported by weakly-regulated states are actually HAIs.

This result is similar to that reported by Meddings et al. (2010); they find that out of 80 manually

reviewed CAUTI medical records, 18 cases (22.5%) were over-reported as POAs. We estimate that

the resulting reimbursement burden for Medicare is approximately $200 million a year.

7.1. Why does upcoding occur?

So far, we have focused on detecting whether upcoding happens, and have ignored the question of

why and how it may occur. While a rigorous understanding is beyond the scope of this paper, we

gained some insight based on discussions with 17 hospital staff that are part of a quality reporting
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team at a nearby major hospital3. This team, which consists primarily of nurses, is tasked with

catching potential coder errors and relaying the information to compliance teams. They described

some difficulties that make coding a particularly error-prone process:

1. Coders do not have the medical training to interpret medical records. Rather, they rely on

doctor’s notes, which are often sparse and incomplete. This claim is supported by the discussion

in Meddings et al. (2010) based on their conversations with hospital coders:

“In discussion with hospital coders, we learned that hospital coders are instructed to obtain

diagnosis information for payment purposes only from provider notes and not from nursing

notes. If a hospital coder does review nursing notes and suspects a diagnosis that is not apparent

from provider notes, the hospital coder must then verify the diagnosis with a provider, and the

provider would need to change the provider documentation to reflect this additional diagnosis.

However, reviewing nursing notes for potential diagnoses that then necessitate communication

and additional documentation from a provider is a resource-intensive step.”

2. Exacerbating the previous issue, the definitions used for differentiating and reporting HAIs

and POAs vary by organization. For example, the same hospital must report the occurrence of

each HAI to Medicare, the National Healthcare Safety Network (NHSN), and other patient safety

organizations (e.g., state adverse event reporting system); each of these organizations may have

different definitions for HAIs vs. POAs, making accurate reporting both onerous and confusing.

3. In some cases, doctors skip or delay the step of performing (blood or urine) cultures (which

are required to definitively claim that a patient has an infection), and simply place patients on

antibiotics. This may result in failure to attribute these infections correctly (with respect to claims

reporting) even if the infection has been treated appropriately. In such cases, doctors may feel that

they are unfairly blamed under the HAI legislation. Prior medical literature has argued that such

policies may lead providers to “game” the system (e.g., upcode) if they feel that the penalties are

unfair (Morreim 1991, Werner et al. 2002).

The hospital we visited has invested significantly in improving coding accuracy by hiring a large

quality reporting team. They address these issues by double-checking coder reports and encouraging

doctors to always perform cultures when a new patient is admitted. However, they pointed out that

in general, there is little financial incentive for hospitals to make such investments. For example,

hiring and training an employee to oversee quality can cost significantly more per year than paying

a HAI penalty. Consequently, investment in coding quality may vary greatly across hospitals.

In hospitals without substantial investment in quality, coders have to make decisions based on

very sparse evidence. In principle, according to the regulation, coders should conservatively report

3 We redact the name of the hospital to preserve the anonymity of our institutional affiliation.
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unclear cases as HAIs. However, due to the combination of financial and reputation penalties,

coders may face pressure from hospital administration to upcode claims when the data is uncertain.

This problem is exacerbated by the prevalent use of software that “optimizes claims” for the high-

est possible reimbursement; such tools often auto-fill claims reports with higher-paying diagnoses

(which the coder may then revise). This may enable upcoding in the presence of uncertainty since

the coder may simply choose not to revise the default (higher-paying) option.

7.2. Harmful Effects of Upcoding

Our work suggests that financial incentives alone are not sufficient to reduce HAI incidence; these

policies must be accompanied by regulation to enforce truthful reporting. This hypothesis is sup-

ported by recent evidence that the nonpayment policy has not reduced HAI rates (Lee 2012). In

fact, increasing financial incentives (e.g. HAC Reduction Program) or reputation incentives (e.g.

published infection rates on Hospital Compare) may worsen the problem as providers may simply

increase their rate of upcoding. Increased upcoding would have a number of negative consequences:

1. Truthful providers are unfairly penalized and face greater financial pressure to upcode as well

2. Upcoding biases medical records resulting in a loss of accurate information. This interferes

with tracking harmful infections and evaluating the effectiveness of policies aimed at improving

quality (Saint 2009)

3. Publishing biased quality metrics may harm patients by routing them to providers who are

engaging in upcoding rather than providing better quality of care

Thus, we recommend that CMS implement measures to enforce truthful reporting by providers.

7.3. Policy Recommendations

To this end, our results suggest two policy recommendations to help mitigate upcoding. First,

we suggest that CMS perform targeted audits of providers with high (risk-adjusted) POA-to-HAI

reporting ratios. As discussed in §2, providers with higher risk-adjusted POA reporting rates and

lower risk-adjusted HAI reporting rates are more likely to be engaging in HAI upcoding. This

approach can complement existing audits conducted by Medicare. In general, targeted auditing has

been a profitable strategy for the government: the OIG finds that recently, for every $1 spent on

health care fraud control, the federal government has returned $6.80 (Taebel 2012). Second, we rec-

ommend that the federal government implement certain features of current state-level regulations

that seem to be effective at eliciting truthful reporting. Our analysis establishes the effect of stronger

regulation on decreased upcoding, and helps isolate some of the state adverse event reporting sys-

tem features that were successful in reducing upcoding. These include reporting patient-identifying

information (medical record number or billing number), a detailed description of the adverse event,

as well as the identified root cause of the adverse event. On the other hand, we note that simply
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having a reporting system without stringent requirements produced no significant effect on report-

ing rates; we find that it is crucial that the regulation creates sufficient provider accountability.

We hypothesize that simply requiring providers to report detailed information on how and why

an adverse event occurred forces providers to implement the necessary infrastructure for detecting

and preventing HAIs. Moreover, reporting more detailed information increases the threat of setting

off red flags when upcoding, and thus possibly diminishes the rate of upcoding. CMS may benefit

by implementing such detailed information reporting requirements in addition to existing financial

incentives to help improve hospital infrastructure and truthful reporting nationally.

More broadly, we emphasize the importance of taking measures to mitigate upcoding as Medicare

moves towards adopting a growing number of data-driven pay-for-performance policies (HHS 2015).

To support these efforts, we recommend that Medicare choose performance criteria that are not

only representative of patient outcomes but are also easily and cheaply verifiable.
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Appendix

A. Summary Statistics

Variable Strong Weak

All POA HAI All POA HAI

# Observations 230,794 1,533 198 690,743 5,852 538

sex 59% 47% 65% 60% 50% 62%
race: white 81% 76% 75% 81% 74% 79%
race: black 13% 17% 19% 14% 20% 17%
race: asian .85% 1.0% .51% 1.1% .94% 1.5%
race: hispanic 3.5% 3.7% 4.0% 1.9% 2.5% 1.5%
race: native american .28% .20% 0% .68% .58% .56%
race: other 1.4% 1.6% 1.0% 1.0% 1.2% .56%
race: unknown .32% .20% .51% .21% .26% 0.0%

age 75 71 73 74 70 70
(14) (16) (16) (14) (16) (15)

charlson score 1.8 2.7 2.1 1.8 2.6 2.2
(2.3) (2.6) (2.4) (2.3) (2.6) (2.5)

days since last admit 89 56 65 91 61 64
(75) (65) (71) (75) (67) (69)

# past admits 1.7 2.8 2.1 1.6 2.6 2.1
(2.0) (2.5) (2.3) (1.9) (2.4) (2.0)

# past procedures 2.2 4.4 2.9 1.9 3.9 3.0
(3.6) (5.1) (3.8) (3.3) (4.8) (3.9)

# past cauti .0049 .12 .025 .0068 .17 .011
(.078) (.40) (.19) (.099) (.52) (.12)

# past clabsi .0065 .12 .045 .0071 .092 .022
(.095) (.44) (.23) (.098) (.39) (.16)

total past length of stay 16 40 28 15 33 22
(34) (53) (48) (31) (47) (33)

billing aggressiveness 4.9 4.9 4.9 4.7 4.8 4.7
(2.4) (2.3) (2.4) (2.5) (2.7) (2.3)

demographics: % uninsured 13% 13% 13% 15% 15% 15%
demographics: % above 65 16% 16% 18% 14% 14% 13%
demographics: % foreign-born 17% 16% 16% 8.9% 9.6% 9.6%
demographics: % unemployed 9.5% 9.9% 9.6% 9.7% 9.9% 9.9%
demographics: % near poverty 68% 68% 69% 68% 69% 68%
demographics: % no high school 13% 13% 14% 15% 15% 15%

local household income $29,400 $28,600 $27,800 $25,200 $27,000 $25,700
($19,600) ($18,200) ($18,400) ($17,600) ($17,900) ($16,700)

local female life expectancy 81 81 81 80 80 80
(1.3) (1.4) (1.5) (1.8) (1.7) (1.8)

local male life expectancy 77 76 77 75 75 75
(1.7) (1.8) (1.9) (2.4) (2.3) (2.5)

economic freedom index: area 1 7.4 7.5 7.5 7.1 7.1 7.1
(.32) (.34) (.33) (.84) (.86) (.76)

economic freedom index: area 2 5.7 5.7 5.6 6.2 6.2 6.2
(.37) (.38) (.35) (.55) (.54) (.56)

economic freedom index: area 3 7.0 7.0 7.0 7.2 7.2 7.2
(.58) (.55) (.55) (.62) (.63) (.64)

Table 10 Summary statistics for selected variables. Standard deviations are shown in parentheses.
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The heat map below (Fig. 2) illustrates the strength of adverse event reporting regulation in 2008 across

the continental United States using data from Levinson (2008).

Figure 2 Heat map depicting the number of reporting requirements implemented by each state’s adverse event

reporting system (before 2008) across the continental US using data from Levinson (2008).

B. Proof of Proposition 1

Assume H ′1 is true. Then, rSPOA < r
W
POA, so we have

pS(1− εS1 − εS2 ) +OS < pW (1− εW1 − εW2 ) +OW

≤ pW (1− εS1 − εS2 ) +OW

⇐⇒ (pS − pW )(1− εS1 − εS2 )<OW −OS

using assumption (2) on POA infection detection that εS1 ≤ εW1 and εS2 ≤ εW2 . Thus, since 1− εS1 − εS2 ≥ 0, we

either have that (1) OW >OS (there is increased POA over-reporting in weakly-regulated states), or that

(2) pW > pS (our risk-adjustment is biased and patients in weakly-regulated states are more susceptible to

infection).

Consider the case where OW ≤ OS (which implies pW > pS). We also have rSHAI > rWHAI from H ′1, so we

can write

αWpW −OW −UW + pW εW1 <αSpS −OS −US + pSεS1

<αWpW −OS −US + pW εW1

Using assumption (1) on provider quality that αS ≤ αW , we can cancel terms to get OW +UW >OS +US,

i.e., the rate of improper HAI reporting is higher in weakly-regulated states. This proves our first statement

that H ′1 implies H1.

Now, consider the case where we further assume pS = pW . Then, applying assumption (1) gives

rWPOA− rSPOA = pW (1− εW1 − εW2 )− pS(1− εS1 − εS2 ) +OW −OS

≤OW −OS ≤OW �
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C. Data Sample Selection

The data sample construction for our regression analyses is detailed in Table 11. We are interested in data

from 2009-10, since the claims data only begins to distinguish between POAs and HAIs after the policy

was implemented in late 2008. We also restrict our sample to US providers under the prospective payment

system since billing procedures may vary otherwise. Similarly, we restict our sample to “short stays” (as

defined in the claims data) since providers who treat “long stay” patients are typically not hospitals and

are subject to different billing procedures as well. Another concern is that if a patient is newly enrolled in

Medicare (e.g., switched from Medicare Advantage), their past visits may be censored (thus, creating bias in

controls computed on past visits); we address this by restricting our sample to stays where the patient had

at least one prior visit in the last 2 years (which ensures that they were recently enrolled in Medicare). We

choose a two-year window because it is the longest possible window in our dataset for patients in our sample

(2009-10). Finally, we restrict our sample to those patient and providers for whom we have demographic

controls (from zipcode-level census data) and provider-level controls (from Hospital Compare data).

Criteria # Observations # POA # HAI

5% Random Sample (2007-2010) 3,865,733 - -
5% Random Sample (2009-2010) 1,939,552 8,639 1,993
US providers 1,914,704 8,615 1,984
Short stays (as defined by Medicare) 1,570,400 8,458 1,265
Stays under prospective payment 1,473,135 8,372 1,021
Stays with prior visits in last 2 years 948,495 7,578 759
Merge demographic controls 925,397 7,412 738
Merge provider controls 924,380 7,405 738
Merge instrumental variables 921,537 7,385 736

Table 11 Data sample construction for regression analyses.

D. Instrumental Variable Analysis

D.1. First-Stage Regression

The results of the first-stage regression are show in Table 12. The total R2 = 0.54, and the instruments

(economic freedom indices) alone had a partial R2 = 0.17. This produced a first-stage F -statistic of 128.12

with a corresponding p-value of 0, indicating that our chosen instruments are not weak.

We note that although the Area 3 economic freedom index has a negative pairwise correlation with the

treatment variable, the regression coefficient of this instrument in the first-stage regression is positive. This is

because our three instruments are correlated, i.e., the area 3 EFI is positively correlated with the treatment

variable after conditioning on the other two economic freedom indices. However, the IV estimator does not

require the instruments to be uncorrelated with each other, so this does not affect the correctness of our

econometric analysis.
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Variable Estimate SE

(Intercept) −4.06*** 4.62× 10−1

sex 1.26× 10−3 1.53× 10−3

age 1.49× 10−5 1.08× 10−4

charlson score −7.00× 10−4 5.77× 10−4

(other patient controls) (omitted) (omitted)
demographics: % uninsured −1.36*** 1.37× 10−1

demographics: % above 65 2.99× 10−1*** 8.35× 10−2

demographics: % foreign-born 6.85× 10−1*** 8.09× 10−2

demographics: % unemployed 6.03× 10−1*** 1.14× 10−1

demographics: % near poverty 1.07× 10−2 2.82× 10−2

demographics: no high school 3.97× 10−2 8.93× 10−2

local household income −1.19× 10−6*** 2.83× 10−7

local female life expectancy 1.47× 10−1*** 1.17× 10−2

local male life expectancy −9.29× 10−2*** 8.39× 10−3

economic freedom index: area 1 1.45× 10−1*** 1.07× 10−2

economic freedom index: area 2 −3.71× 10−1*** 2.17× 10−2

economic freedom index: area 3 1.10× 10−1*** 1.98× 10−2

*p < 0.10, **p < 0.05, ***p < 0.01

Table 12 Results of first-stage regression for instrumental variable analysis. Point estimates and cluster-robust

standard errors (SE) of coefficients for regression of treatment variable S against economic freedom indices

(coefficients of some patient risk variables omitted due to space constraints).

D.2. Quality Comparison

Since, we are using the instrumented regulation variable rather than the true regulation variable in our

HAI regression, we repeat our robustness checks to ensure that provider-level quality metrics are positively

correlated with the instrumented regulation variable. First, we compare risk-adjusted mortality rates against

each of the three instruments and the instrumented strong regulation variable (see Table 13). Using a Pearson

correlation test, we find similar results:

1. mortality rates are negatively correlated with the Area 1 economic freedom index (which is positively

correlated with strong regulation),

2. mortality rates are positively correlated with the Area 2 and 3 economic freedom indices (which are

negatively correlated with strong regulation), and

3. mortality rates are negatively correlated with the instrumented strong regulation variable.

Condition EFI: Area 1 EFI: Area 2 EFI: Area 3 Instrumented S
Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Heart Attack -0.085*** 0.00 0.018 0.36 0.040** 0.03 -0.094*** 7× 10−7

Heart Failure -0.066*** 0.00 0.009 0.57 -0.001 0.93 -0.072*** 8× 10−6

Pneumonia -0.041*** 0.01 0.008 0.61 0.028* 0.08 -0.047*** 3× 10−3

*p < 0.10, **p < 0.05, ***p < 0.01

Table 13 Pearson correlation test results are shown for Medicare providers’ risk-adjusted mortality rates and

our three instruments (economic freedom indices) as well as the instrumented treatment variable for heart attack,

heart failure, and pneumonia patients.
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Measure Definition Correlation with
Instrumented Reg.

Better
Quality?

p-value

AMI 1 Patiens given aspirin at arrival 0.089 Yes 0.00
AMI 2 Patiens given aspirin at discharge 0.085 Yes 0.00
AMI 3 Patients given ACE inhibitor for Left Ven-

tricular Systolic Dysfunction (LVSD)
0.056 Yes 0.00

AMI 4 Patients given smoking cessation counseling 0.053 Yes 0.01
AMI 5 Patients given beta blocker at discharge 0.098 Yes 0.00
AMI 7a Patients given fibrinolytic medication within

30 minutes of arrival
0.031 Yes 0.49

AMI 8a Patients given PCI within 90 minutes of
arrival

0.019 Yes 0.46

HF 1 Patients given discharge instructions 0.062 Yes 0.00
HF 2 Patients given an evaluation of Left Ventric-

ular Systolic Dysfunction (LVSD)
0.082 Yes 0.00

HF 3 Patients given ACE inhibitor or ARB for Left
Ventricular Systolic Dysfunction (LVSD)

0.094 Yes 0.00

HF 4 Patients given smoking cessation counseling 0.035 Yes 0.03
PN 2 Patients assessed and given pneumococcal

vaccination
0.038 Yes 0.01

PN 3b Patients whose initial ER blood culture was
performed prior to the administration of the
first hospital dose of antibiotics

0.018 Yes 0.25

PN 4 Patients given smoking cessation counseling 0.030 Yes 0.05
PN 5c Patients given initial antibiotic(s) within 6

hours after arrival
-0.004 No 0.81

PN 6 Patients given the most appropriate initial
antibiotic(s)

0.067 Yes 0.00

PN 7 Pneumonia patients assessed and given
influenza vaccination

0.048 Yes 0.00

SCIP CARD 2 Percentage of patients who were taking beta
blockers before coming to the hospital that
were kept on the beta blockers before and
after their surgery

0.064 Yes 0.00

SCIP INF 1 Surgery patients who received preventative
antibiotic(s) one hour before incision

0.001 Yes 0.96

SCIP INF 2 Percentage of surgery patients who received
the appropriate antibiotic(s) for their surgery

0.038 Yes 0.02

SCIP INF 3 Surgery patients whose preventative antibi-
otic(s) are stopped within 24 hours after
surgery

0.034 Yes 0.04

SCIP INF 4 Cardiac surgery patients with controlled 6am
post-operative blood glucose

-0.053 No 0.06

SCIP INF 6 Surgery patients with appropriate hair
removal

0.007 Yes 0.68

SCIP INF 9 Percentage of surgery patients whose urinary
catheters were removed on the first or second
day of surgery

0.012 Yes 0.48

SCIP VTE 1 Surgery patients whose doctors ordered treat-
ments to prevent blood clots for certain types
of surgeries

0.038 Yes 0.02

SCIP VTE 2 Surgery patients who received treatment to
prevent blood clots within 24 hours before or
after selected surgeries

0.058 Yes 0.00

Table 14 Pearson correlation test results are shown comparing Medicare’s risk-adjusted process of care quality

measures and the instrumented propensity to be a strongly-regulated state for heart attack, heart failure,

pneumonia, and surgical care improvement.
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Second, we compare all reported (risk-adjusted) process of care quality measures against the instrumented

strong regulation variable (see Table 14). Similar to our earlier findings for the un-instrumented regulation

variable, we find that the instrumented regulation variable is correlated with higher quality in all but two

measures (the negative correlation is not statistically significant for both measures), and the improvement

in performance is statistically significant for 75% of the measures.

D.3. Conservative Estimates

In this section, we argue that if our instrument is negatively correlated with the error term and positively

correlated with our treatment variable, then our treatment effect estimate will be conservative. Since the

Area 2 and 3 indices are negatively correlated with the treatment variable, we will consider the negative of

these two indices to be the instruments under consideration. Recall that the error term in HAI reporting

rates is poor (unobserved) HAI-specific provider quality (since this is positively correlated with the outcome

variable of HAI reporting rates). As shown in the previous section (Appendix D.2), we expect our instruments

(with sign defined as above) to be negatively correlated with this error term (poor provider quality).

For simplicity, consider a simple one-dimensional model with a single instrument (the argument easily

generalizes to higher dimensions). We have:

yi = βxi + εi ,

where yi is the dependent variable, xi is an independent variable, εi is an unobserved error term, and β is a

scalar coefficient that we seek to estimate. If x and ε are correlated, we use an instrument z. This gives us

the IV estimator

β̂IV = β+
zT ε

zTx
.

Clearly, if z is uncorrelated with ε, then the IV estimate is a consistent estimator of β (Wooldridge 2010).

We consider the case where z may be negatively correlated with ε, i.e., the second term

zT ε

zTx
< 0 .

(Recall that we defined the instruments so that they are positively correlated with the treatment variable,

i.e., zTx > 0.) Then, it follows that β̂IV < β. Thus, if β̂IV > 0 (as we find in the HAI regression), then the

true estimate also satisfies β > 0.

E. Robustness Checks

We now describe the construction of alternative treatment definitions (used for robustness checks in §5.4). For

every combination of patient/event/cause reporting categories, we first consider the relevant set of reporting

requirements (see Table 15 below). We then compute the median number implemented by the states with

adverse event reporting systems, and define all states with more than the median number of requirements

as “strongly regulated.”
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Treatment Definition Median Requirements # States

Patient 2 out of 5 11
Event 4 out of 6 11
Cause 1 out of 3 11

Patient & Event 6 out of 11 12
Patient & Cause 3 out of 8 12
Event & Cause 6 out of 9 9

Patient, Event, & Cause 8 out of 14 10

Table 15 Different definitions of the treatment variable based on the number of reporting requirements along

three dimensions (patient, event, and cause), as well as the number of states that satisfied this infection.


