Practice Final Exam: Winter 2007

1. (40 points) Find $\frac{dy}{dx}$ for each function. Each answer should be a function of x only.

(a) (10 points) $y = \frac{2}{x - 1} - \frac{1}{\sqrt{x}}$.

(b) (10 points) $y = (\sin x)^{\cos x}$.

(c) (10 points) $y = \sqrt{\tan(x^2)}$.

(d) (10 points) $y = \frac{(2x + 1)^4 \sin(x^2)}{(\ln x) \sqrt{3x - 1}}$.

2. (10 points) Find the equation of the tangent line to the curve $e^{x^2} + e^{y^2} = 2e$ at the point $(-1, 1)$.

3. (20 points) Let $f(x) = \ln(x^2 - 1)$.

(a) (10 points) You must show all your work, but please write your final answers in the box.

<table>
<thead>
<tr>
<th>The domain of $f(x)$ is:</th>
<th>______________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$ is increasing on:</td>
<td>______________________</td>
</tr>
<tr>
<td>$f(x)$ is decreasing on:</td>
<td>______________________</td>
</tr>
<tr>
<td>$f(x)$ has local maxima at:</td>
<td>______________________</td>
</tr>
<tr>
<td>$f(x)$ has local minima at:</td>
<td>______________________</td>
</tr>
<tr>
<td>$f(x)$ is concave up on:</td>
<td>______________________</td>
</tr>
<tr>
<td>$f(x)$ is concave down on:</td>
<td>______________________</td>
</tr>
</tbody>
</table>

(b) (4 points) Compute the following four limits.

$$\lim_{x \to \infty} \ln(x^2 - 1) = \quad \lim_{x \to -\infty} \ln(x^2 - 1) =$$

$$\lim_{x \to 1^+} \ln(x^2 - 1) = \quad \lim_{x \to -1^-} \ln(x^2 - 1) =$$
(c) (1 points) List all vertical and horizontal asymptotes of \(y = \ln (x^2 - 1) \).

(d) (5 points) Using your answers from parts (a) and (b), sketch a graph of

\[
f(x) = \ln (x^2 - 1).
\]

Even if your answers in parts (a) and (b) are wrong, if your sketch correctly uses those answers, you may earn partial credit.

4. (20 points) A particle is moving along the curve \(x^2 - 4xy - y^2 = -11 \). Given that the \(x \)-coordinate of the particle is changing at 3 units/second, how fast is the distance from the particle to the origin changing when the particle is at the point \((1, 2)\)? Hint: As an intermediate step, you should compute the value of \(\frac{dy}{dt} \) when \(x = 1 \) and \(y = 2 \).

5. (20 points) A balloon is rising at a constant speed of 1 m/sec. A girl is cycling along a straight road at a speed of 2 m/sec. When she passes under the balloon it is 3 m above her. How fast is the distance between the girl and the balloon increasing 2 seconds later?

6. (20 points) A Norman window consists of a rectangle surmounted by a semicircle, as shown. Given that the total area of the window is \(A = 8 + 2\pi \), find the minimum possible perimeter of the window. (Please note the horizontal line between the rectangle and the semicircle does not count as part of the perimeter.) Hint: The total area has been carefully chosen so that the minimum perimeter occurs at a very simple value of \(r \). If your optimal value of \(r \) is complicated, you have done something incorrectly.

7. (20 points) Suppose you have a cone with constant height \(H \) and constant radius \(R \), and you want to put a smaller cone “upside down” inside the larger cone (see figure). If \(h \) is the height of the smaller cone, what should \(h \) be to maximize the volume of the smaller cone? The optimal value of \(h \) will depend on \(H \). Recall that the volume of a cone with base radius \(r \) and height \(h \) is given by the formula \(V = \frac{1}{3} \pi r^2 h \).

8. (10 points) For parts (a) and (b), compute the given limits, if they exist. If you assert that a limit does not exist, you need to justify your answer to get full credit.

(a) (5 points) \(\lim_{x \to \infty} (\sqrt{x^2 - 3x + 1} - \sqrt{x^2 + 2}) \)

(b) (5 points) \(\lim_{x \to 2} e^{\frac{1}{x-2}} \)