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Abstract—To store and transmit the large amount of image
data necessary for Image-based Rendering (IBR), efficient
coding schemes are required. This paper presents two different
approaches which exploit three–dimensional scene geometry
for multi-view compression. In texture-based coding, images
are converted to view-dependent texture maps for compression.
In model-aided predictive coding, scene geometry is used for
disparity compensation and occlusion detection between images.
While both coding strategies are able to attain compression ratios
exceeding 2000:1, individual coding performance is found to
depend on the accuracy of the available geometry model. Exper-
iments with real-world as well as synthetic image sets show that
texture-based coding is more sensitive to geometry inaccuracies
than predictive coding. A rate-distortion theoretical analysis of
both schemes supports these findings. For reconstructed approx-
imate geometry models, model-aided predictive coding performs
best, while texture-based coding yields superior coding results if
scene geometry is exactly known.

Index Terms—Geometry coding, image-based rendering (IBR),
light field compression, model-based coding, multi-view coding
analysis, multi-view compression.

I. INTRODUCTION

FROM Internet museum tours and virtual city sightseeing to
three–dimensional (3-D) product presentations and com-

puter games, Image-based Rendering (IBR) techniques can be
used to create photo-realistic representations of remote real-
world or computer-generated places and objects [1]–[9]. Visual
quality thereby depends on the number of scene images avail-
able, and since hundreds to thousands of images are typically
necessary to obtain convincing rendering results [10], efficient
multi-view coding techniques are needed to store IBR data, or to
transmit multi-view imagery over a network, such as the public
Internet.

In recent years, a number of multi-view compression schemes
have been developed specifically for use in conjunction with
image-based rendering applications. Among the various coding
techniques employed are vector quantization [3], discrete cosine
transform (DCT) coding [11], wavelet coding [12]–[16] predic-
tive image coding [17]–[19], as well as approaches based on
video coding standards [15]. To achieve interactive rendering
frame rates, these coders are designed to feature fast decoding
performance which, however, limits coding efficiency to a range
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from about 20:1[3] to 300:1[19]. For storage and Internet trans-
mission, higher compression ratios are desirable. Here, block-
adaptive coding and hierarchical disparity compensation tech-
niques have been shown to yield compression ratios exceeding
800:1 [20].

Coding efficiency, decoding speed, and rendering quality can
be increased considerably if 3-D scene geometry information
is available [8], [21], [22]. This paper describes two different
ways in which knowledge of scene geometry can be employed
to encode multi-view imagery. In texture-based coding, scene
geometry is used to convert images to view-dependent texture
maps prior to compression [5], [23], [24], [8], [25]. These
view-dependent texture maps exhibit greater inter-map corre-
lation than the original images, making them more amenable
to coding. In model-aided predictive coding, on the other
hand, images are successively estimated by employing scene
geometry to predict new views from already encoded images
[26]. The residual prediction error between the image estimate
and the actual image recording is additionally encoded [27].
By predicting multi-view images in a hierarchical fashion,
the image data is available in a multiresolution representation
during decoding. Since the presented coding schemes aim
at highest compression performance for data storage and
transmission purposes, the light field data is decoded off-line
prior to using the images for rendering.

The paper is organized as follows. After outlining multi-view
image data acquisition, the process for reconstructing and en-
coding the geometry model is explained. Both the model-aided
and the progressive texture-based coding schemes are described.
Coding results for real-world as well as synthetic image sets are
presented. For both codecs, the influence of scene geometry ac-
curacy on coding efficiency is experimentally investigated. A
theoretical analysis of coding efficiency in the presence of ge-
ometry and image noise concludes the paper.

II. M ULTI-VIEW IMAGE ACQUISITION

To investigate both multi-view coding schemes described
in the following sections, image sets have been acquired from
three stuffed toy animals (Garfield, Mouse, and Penguin,
Fig. 1). Calibrated images are captured using a computer-con-
trolled turntable and a digital camera on a lever arm, acquiring
object appearance at 384288-pixel resolution and 24-bit
RGB color information per pixel. Image recording positions are
distributed on a hemisphere around the object with an angular
step size of 11.25 in horizontal and vertical direction,
yielding a total of 32 8 images around the object, plus one
additional image from the zenith perspective. Before and after
recording each object, a calibration body is recorded from the
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Fig. 1. Real-world test objects. Multi-view imagery is recorded from stuffed
toy animals.

same viewpoints as the object images. As the turntable and
the camera arm are driven by stepper motors, image recording
positions can be reproduced with sufficiently high accuracy for
calibration. For calibration, an analysis-by-synthesis method is
employed [28]: A synthetic computer model of the calibration
body is automatically fit to the calibration images to determine
extrinsic as well as intrinsic camera parameters. The model is
repeatedly rendered while an optical flow-based optimization
algorithm varies camera parameters until the rendered model
matches the actual image of the calibration object.

To evaluate coding performance for the case of exactly known
geometry, synthetic multi-view data sets are also used (Fig. 2).
In theSpheredata set, the geometry model of a sphere approx-
imation consisting of 8192 triangles is rendered from multiple
viewpoints. TheStar geometry model consists of 128 vertices
approximating a sphere of which 18 vertices protude by 50%
to form the spikes. Both geometry models are gray-scale tex-
tured using a synthetic texture map exhibiting an inter-pixel in-
tensity correlation of 0.98. The synthetic objects have diffusely
reflecting surfaces (Lambertian reflection), while a directional
light source illuminates the objects always from the direction of
the camera (eye-light). Both synthetic image sets consist of 257
images, rendered from viewpoints spaced corresponding to the
real-world image sets.

III. 3-D GEOMETRY RECONSTRUCTION ANDGEOMETRY

CODING

In geometry-based multi-view coding, scene geometry must
be encoded in addition to image data. This section describes the
procedure for reconstructing 3-D scene geometry from images,
in the case of real-world images, and for encoding the geometry,
for both real-world and synthetic data sets.

A. Geometry Reconstruction

While for the computer-generatedSphereimage set exact
3-D geometry is available, for the real-world objects geometry
must be inferred from the recorded images. To reconstruct 3-D
scene geometry directly from calibrated multi-view image data,
several volumetric algorithms have been proposed [29]–[32].
In contrast to methods that rely on distinct image features
[33]–[35], volumetric reconstruction does not require the
explicit identification of correspondences between images. For
the presented experiments, theMulti-Hypothesis Volumetric
Reconstruction(MHVR) algorithm is used to derive 3-D scene
geometry [32]. The algorithm is based on discretizing the space

(a) (b)

Fig. 2. Synthetic test image data. The diffusely reflecting models of (a) a
Sphereand (b) aStarare illuminated from the camera direction.

containing the object into volume elements (voxels). A voxel
model is constructed directly from multiple calibrated images
(Fig. 3). Reconstruction accuracy depends on image calibration
precision, object surface characteristics, and voxel size. In the
presented work, the discretized volume is comprised of to

voxels, where the spatial extent of each voxel corresponds
to approximately 1 pixel when projected into the image plane.
The reconstruction of a -voxel model takes several hours
using all 257 images on a conventional PC.

To eliminate the influence of nonmodelled background on
coding performance measurements, the reconstructed voxel
models are used to segment theGarfield, Mouse, andPenguin
images. For the syntheticSphereimage set, no segmentation is
necessary as the object silhouette exactly matches the geometry
model projection. Exact object geometry is available for the
Sphereimages, whereas for the real-world image sets only
finite-precision geometry models can be reconstructed.

B. Rate-Constrained Geometry Coding

A reconstructed volumetric model typically consists of mil-
lions of voxels. To efficiently compress and process object ge-
ometry, a triangle-mesh description of the object’s surface is de-
sirable. TheMarching Cubesalgorithm [36] is therefore used to
triangulate the voxel model surface (Fig. 3). The resulting mesh
still contains hundreds of thousands of triangles, however, many
more than are necessary to represent object geometry at the level
of accuracy of the reconstructed model. Consequently, thePro-
gressive Meshes(PM) algorithm [37] is employed to reduce
the number of triangles until the maximum distortion of the re-
sulting mesh corresponds to half the size of a voxel (Fig. 3). This
way, triangle mesh accuracy is matched to the original recon-
structed voxel model, and the number of triangles in the mesh
is reduced to approximately 10 000 triangles.

While better geometry accuracy can increase image coding
efficiency, it inevitably also increases geometry coding bit rate.
To determine the point of best overall coding performance,
the geometry model must be encodable at different levels of
accuracy and with correspondingly different bit rates. A number
of progressive mesh-coding algorithms are known that allow
trading off geometry reconstruction accuracy versus geometry
coding bit rate [37]–[40]. Unfortunately, these algorithms
encode only mesh connectivity in a progressive fashion, while
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Fig. 3. A voxel model is reconstructed from theMouseimage set, the surface is triangulated, the triangle mesh reduced, and the resulting geometry model is EMC
encoded. By decoding only a fraction of the bitstream, the accuracy of the reconstructed geometry model can be continuously varied, allowing us to trade coding
bit rate for geometry accuracy. Model accuracy is expressed as the number of bitsn used to quantize vertex coordinates. The maximum deviation of a vertex from
its original position is2 relative to overall bounding-box size. From left to right: reconstructed voxel model; triangulated surface, decimated mesh; 8-bit
accuracy 95 183 bits; and 5-bit accuracy 33 894 bits.

vertex coordinates are encoded with fixed accuracy. Especially
at coarse geometry resolution, most bit rate is spent for ex-
pressing precise vertex positions, even though reconstructed
geometry accuracy would require substantially less accurate
vertex coordinates.

C. Embedded Mesh Coding

TheEmbedded Mesh Coding(EMC) algorithm progressively
encodes mesh connectivity as well as vertex coordinates simul-
taneously [41]. The geometry coding scheme is based on vertex
connectivity and an oct-tree representation of vertex coordinates
by introducing multiple resolution levels. This way, EMC allo-
cates available coding bit rate evenly between mesh connectivity
and vertex positional information.

The EMC algorithm encodes vertex coordinates and mesh
connectivity simultaneously at continuously increasing level of
detail. The complete bitstream contains all information to faith-
fully reconstruct original vertex positions and connectivity. But
EMC coding can also be interrupted at any point, yielding a trun-
cated bitstream that still allows the reconstruction of an approxi-
mate geometry model. During decoding, the number of triangles
and vertices as well as vertex positional accuracy increases con-
tinuously, yielding increasingly accurate object geometry. The
decoding process can also be stopped at any point to obtain ap-
proximate geometry representations.

By using EMC in conjunction with multi-view coding
schemes, geometry coding bit rate can be continuously varied,
which enables optimal allocation of bit rate between geometry
and image information. Because the EMC algorithm directly
encodes vertex connectivity instead of triangle connectivity,
EMC can be used to encode polygonal meshes of arbitrary
topology and dimension, regardless of whether the mesh is
orientable, regular, manifold, or nonmanifold.

IV. M ODEL-AIDED PREDICTIVE CODING

Given camera parameters and 3-D scene geometry, disparity
between images can be compensated and obscured image areas
can be detected. TheModel-Aided Coder(MAC) relies on suc-
cessively predicting image appearance by disparity compensa-
tion and occlusion detection on a pixel basis [27]. The images

are hierarchically ordered for encoding, yielding a multiresolu-
tion representation of the multi-view image set during decoding
and rendering.

A. Model-Aided Prediction

In model-aided coding, an image is predicted by warping
multiple reference images [42]. First, the geometry model is
rendered for the image viewpoint that is to be predicted. Each
image pixel is assigned its corresponding point on the surface
of the 3-D model by determining the triangle index and the
barycentric coordinates within the triangle (Fig. 4). The geom-
etry model is then rendered for all reference image positions. For
each pixel in the prediction image, the corresponding pixels in
the reference images are sought using the pixel’s triangle index
and its barycentric coordinates. This way, pixels that are not
visible in a reference image are automatically detected. A par-
tially occluded image region is predicted only from those ref-
erence images that depict the respective region, and coinciding
pixel predictions are averaged. Because multiple reference im-
ages are used for prediction, the number of completely invisible
regions is small. These regions are filled by interpolation using
a multiresolution pyramid of the predicted image estimate: Also
known as push–pull interpolation [4], lower resolution versions
of the image are used to look-up the mean color value of the
local neighborhood around an unpredicted pixel position.

B. Hierarchical Image Coding Order

As image recording positions are distributed on the hemi-
sphere around the scene (Fig. 5), they can be expressed in
spherical coordinates with the origin at the scene’s center. To
efficiently exploit similarities among the images, and at the
same time span the entire light field recording hemisphere early
on during decoding, it was experimentally found that highest
coding efficiency is achieved by encoding the images in the
following hierarchical order [20], [43]: The image closest to the
zenith of the hemisphere and four images evenly spaced around
the equator are intra-encoded using the block-DCT scheme
familiar from still-image compression (images A in Fig. 5). For
each image, the DCT coefficients’ quantization parameter
is individually adjusted to ensure that the reconstructed image
meets a preset minimum reconstruction quality . The
five intra-encoded images are arranged into four groups, each
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Fig. 4. Model-aided image prediction detects occlusions and performs disparity compensation from multiple reference frames.

Fig. 5. Hierarchical multi-view coding order. Image recording positions are
projected onto the hemisphere around the scene. The images closest to the zenith
and four images along the equator are intra-encoded (images A). The image
closest to the center of each quadrant (image B) is predicted from the quadrant’s
corner images, and mid-side images (images C) are predicted from the central
and two corner images. Each quadrant is then subdivided and treated likewise
until all images have been encoded.

consisting of the polar and two equatorial images, subdividing
the hemisphere into four quadrants. In each quadrant, the image
closest to the central position (image B in Fig. 5) is predicted by
model-aided disparity compensation (Section IV-A), using the
three corner images as reference. After prediction, the residual
prediction error is DCT-encoded if image quality does not meet
the desired reconstruction quality . Next, the three images
closest to the mid-positions of the quadrant’s sides (images C
in Fig. 5) are predicted likewise using the just-encoded center
image and the two closest corner images as reference. After

all quadrants have been considered, each quadrant is divided
into four smaller subregions: the center image B and the polar
A image form together with each of the two mid-latitude
images C two triangular sub-quadrants, while the center image
B in conjunction with each of the equatorial A images and
the two closest C images represent two more quadrangular
subquadrants. Because each sub-quadrant’s corner images are
already encoded (the center image B, one corner image A, and
one or two mid-side images C), these images are available for
prediction of the center and side images of each subdivided
region. After the center and mid-side images of all subquadrants
have been encoded, each subquadrant is again subdivided in
the above-described fashion. Quadrant subdivision continues
recursively until all images are encoded. This way, an image
pyramid of ever-decreasing mutual recording distances is
established.

As all images are predicted from previously encoded im-
ages, a multilevel hierarchy is established among the image
data. The hierarchical coding order provides short prediction
distances to yield best prediction results, and during decoding,
multiple resolution levels of the image set can be progressively
accessed. For image-based rendering, the multiresolution
representation allows adjusting rendering quality to available
computational resources. To eliminate ghosting artifacts during
rendering, model-aided prediction can also be used to supple-
ment multi-view imagery by providing disparity-compensated
intermediate image estimates [44], or by directly warping
in-between viewpoints [21].

C. Coding Performance

The performance of the model-aided coder has been assessed
using multi-view imagery from real-world scenes as well as a
computer-generated image set (Section II). For encoding, the
images are converted to color space, and the chromi-
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Fig. 6. Model-aided coding performance. Geometry-model accuracy is expressed in number of bits used to quantize vertex positions along each dimension.

nance components are downsampled by a factor of 2 both hori-
zontally and vertically. Fig. 6 illustrates the rate-distortion per-
formance of the model-aided coder for the multi-view image
sets. Reconstruction quality is expressed as the peak-signal-to-
noise ratio (PSNR) averaged over all image pixels, whereas bit
rate is given in bits per pixel (bpp). EMC geometry coding bit
rate is included in all curves.

For theGarfield image set, coding bit rate ranges from 0.0085
bpp at 32.9 dB reconstruction PSNR up to 0.182 bpp at 42.0 dB.
Reconstruction quality of theMouseimages varies from 32.7 dB
at 0.087 bpp to 42.3 dB at 0.218 bpp. ThePenguinlight field
requires between 0.0067 bpp at 37.3 dB and 0.129 bpp at 47.0
dB. The syntheticSphereimages, finally, are encoded with 0.01
bpp at 36.4 dB and 0.133 bpp at 45.9 dB PSNR.

Different geometry approximations are evaluated to deter-
mine best bit-rate allocation. Except for theSphereobject, best
coding performance is obtained if object geometry is approxi-
mated with 8-bit vertex positional accuracy. This corresponds
to the resolution of the reconstructed volumetric models which
consist of voxels along one side. More accurate vertex po-
sitions do not improve prediction performance but only increase

geometry bit rate. The same approximate geometry model is op-
timal at high as well as at very low coding bit rates, indicating
that the benefits from better geometry accuracy outweigh the
bit-rate savings from using a more approximate geometry rep-
resentation even at high compression.

In contrast to the real-world test objects, the syntheticSphere
image set shows optimal coding results at 10- to 14-bit accurate
geometry. Because the original 8192-triangleSpheregeometry
model is available, prediction quality can be expected to im-
prove with approximation accuracy until the exact rendering ge-
ometry is recovered at 24-bit accurate vertex positions. At low
bit rates, 10-bit accurate sphere geometry achieves best coding
results, while improved prediction quality using 12- and 14-bit
approximate models subsequently over-compensates geometry
coding bit rate at higher reconstruction quality.

D. Reconstruction Quality

Fig. 7 depicts an image of theMouseimage set that is en-
coded at different bit rates using the 8-bit accurate geometry
model. At 0.136 bpp overall coding bit rate and 40.1 dB PSNR,
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(a) (b) (c) (d)

Fig. 7. Image from theMouseset, MAC encoded with 8-bit accurate geometry at different bit rates. (a) Original image. (b) 0.136 bpp at 40.1 dB. (c) 0.018 bpp
at 34.0 dB. (d) 0.009 bpp at 32.7 dB.

the reconstructedMouseimage shows only marginal differences
from the original image set, visible merely in the finely tex-
tured pants. When increasing the compression ratio, the pants
pattern washes out and becomes blurry. At 34.0 dB PSNR, cor-
responding to 0.018 bpp, the fine whiskers cannot be resolved
anymore. At the lowest reconstruction PSNR of 32.7 dB, the sil-
houette of the depicted object still shows up as a crisp outline.
The mosquito artifacts outside the object’s silhouette are caused
by the block-based DCT scheme applied to encode the residual
error.

V. TEXTURE-BASED CODING

By transforming images of a 3-D object into texture maps,
disparity-induced differences between the images can be elim-
inated. If nonvisible regions are suitably interpolated, texture
maps exhibit higher inter-map correlation than images because
only reflection properties of the object surface can cause any
remaining variation between texture maps generated from dif-
ferent viewpoints. Texture-based coding is inspired by view-de-
pendent texture mapping techniques developed in IBR research
[23], [8], [25].

In Progressive Texture-based Coding(PTC), reconstructed
3-D object geometry is used to convert images to view-de-
pendent texture maps. After undefined regions in the texture
maps are suitably interpolated, a wavelet coding scheme is
employed to encode the texture information while simultane-
ously exploiting texture correlation within as well as between
texture maps. The progressive coding technique continuously
increases attainable reconstruction quality with available bit
rate. Because PTC is based on texture information, only the
image regions within the projected geometry model silhouette
are encoded. Decoding of the progressive bitstream can be
interrupted at any point of time which allows trading rendering
quality for frame-rate and, thus, adapting rendering perfor-
mance to available computational resources.

A. Texture Map Generation

Object surfaces are most commonly described by piecewise
planar triangle meshes in computer graphics. While surface
texture can be easily parameterized over each triangle sepa-
rately, individual triangle-texture patches are very inefficient
to encode as correlation across adjacent triangles cannot be
exploited. To achieve more efficient texture coding results, a

connectivity-preserving mapping of object surface onto a rect-
angular texture map is necessary, preserving texture correlation.
In the following, a suitable triangle mesh parameterization is
described for objects that exhibit sphere-like topology.

B. Geometry Model Generation for Texture Mapping

To parameterize the closed surface of a volumetric object
such that a planar two–dimensional (2-D) texture map can be
generated, the surface must be cut once or several times, de-
pending on the body’s topological genus. For objects having
genus 0, which are topologically equivalent to a sphere, a simple
rectangular surface parameterization can be obtained by starting
from the simple shape of anoctahedron, Fig. 8. By opening the
octahedron along two edges from pole to pole and along two
edges on the equator and only mildly distorting the shape of the
individual triangles, the octahedron’s eight triangles are mapped
onto a planar square region while preserving triangle connec-
tivity for eight of the 12 octahedral edges [25]. In this manner,
an unambiguous, connected parameterization of the entire oc-
tahedral surface is obtained, yielding a rectangular, completely
filled texture map.

To approximate the volumetric geometry model, the octahe-
dron is placed at the center of the voxel model. Each vertex is
moved along its normal direction until it lies on the voxel model
surface, obtaining an octahedron-based coarse approximation of
the object’s 3-D shape (Fig. 8). More accurate geometry is ob-
tained by subdividing the triangles, inserting new vertices at the
edge midpoints to create four new triangles for each previous
triangle. Vertex normals are inferred from the orientation of the
adjacent triangles, and the new vertices are relocated to the voxel
model surface. By repeated triangle subdivision, increasingly
accurate triangle meshes are obtained (Fig. 8), so that after
subdivisions, the mesh consists of triangles [25].

C. Texture Map Optimization

To map the refined geometry meshes onto the texture plane,
the initial texture-map triangles are subdivided in the same way
as the geometry triangle mesh (Fig. 9). Each texture-map tri-
angle corresponds to one geometry triangle. The texture-map
triangles are all identical, however, while the geometry trian-
gles differ in size and shape. To minimize coinciding pixel map-
pings, which limits attainable reconstruction quality, relative
texture-map triangle size is matched to their corresponding ge-
ometry triangle area by iteratively shifting texture-map vertex
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Fig. 8. Object geometry is initially approximated by fitting an octahedron to the voxel model. By triangle subdivision, refinedPenguingeometry models consisting
of 32, 128, 512, and 2048 triangles are generated.

Fig. 9. Texture-map triangles are subdivided equivalent to their geometry
mesh counterparts. Afterwards, the texture map is optimized to match the
relative triangle area to the geometry triangle size.

positions [25]. The resulting optimized texture-map triangles
have the same relative size as their corresponding geometry tri-
angles. Fig. 9 depicts an optimized texture map. The coding gain
achieved by optimizing texture maps depends on target bit rate
and has been found to be more pronounced for finely textured
objects.

D. Image-to-Texture Map Conversion

A well-known problem in texture mapping is aliasing due to
different resolutions in the image and the texture domain. To
circumvent aliasing artifacts and to guarantee exact reconstruc-
tion, the texture domain is chosen significantly larger than the
pixel area covered by the object in the images. Since many more
texels are available than object pixels in the images, each texture
map is only sparsely filled.

The object pixels in the image are inversely mapped onto
the texture plane to determine the corresponding texels’ color
values. To convert multi-view images into view-dependent tex-
ture maps, the geometry model is rendered, and each pixel inside
the projected model silhouette is assigned its corresponding ge-
ometry triangle and the relative coordinates within the triangle.
Triangle number and coordinates determine the texel to which
the color value of the image pixel is copied.

By mapping image pixels onto the texture plane, the texture
maps are filled unevenly, as depicted in Fig. 10. Invisible trian-
gles cause empty texture map regions, triangles seen at a grazing
angle lead to sparsely filled areas, while for face-on triangles,
different image pixels may be mapped onto the same texel. To
avoid coinciding pixel mappings, the texture map is chosen suit-
ably large.

By converting images into texture maps, substantially more
texels are introduced than there are object pixels in the orig-

(a) (b)

Fig. 10. Mapping image pixels to the texture plane leads to unevenly
distributed texture information. Missing texture information is interpolated
from pixels within the texture map as well as from other maps. (a) Sparse
texture map. (b) Interpolated texture map.

inal images. To avoid adverse effects from large texture maps
on compression efficiency, a wavelet coding scheme is applied
to compress the texture information. Because wavelet coding re-
lies on texture information represented in the frequency domain,
bitstream size does not have to increase with map size in the spa-
tial domain. In the following, a texture interpolation scheme is
presented that allows filling in undefined texel values such that
the wavelet coding bit rate remains minimal.

E. Sparse Texture Map Interpolation

The undefined texel values represent a large number of de-
grees of freedom that can be exploited to keep the bitstream
size to a minimum by matching the texture interpolation to the
wavelet coding scheme that follows. Because the four–dimen-
sional (4-D) SPIHT wavelet coding method (Section V-F) per-
forms best if high-frequency coefficients are small relative to
low frequency coefficients, undefined texels must be interpo-
lated subject to the constraint that the applied wavelet trans-
form results in minimal high-frequency coefficient values and
maximum low-frequency coefficients. For the 4-D Haar wavelet
used, it can be shown that the mean value of the defined texels
within the region of support must be assigned to the undefined
texel positions in order to minimize the overall energy of the
high-frequency coefficients [45]. Texture interpolation is per-
formed in all four dimensions. 2 2 texels from 2 2 adjacent
texture maps are considered, corresponding to the 4-D Haar
basis function’s region of support of texels. Those texels
within the -texel region which have been assigned a color
value during image-to-texture mapping (Section V-D) are av-
eraged, and the so-far undefined texels among the 16 texels are
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assigned this average value. To interpolate larger undefined tex-
ture regions, the texture-map array is downsampled by a factor
of 2 along all four directions, assigning to each downsampled
texel the previously determined -texel region average value.
Undefined texels in the downsampled texture-map array are then
again interpolated from local -texel regions by taking again
the average of the defined texels. Downsampling and interpola-
tion continues until all blank texture regions are filled. Fig. 10
depicts the sparse and the corresponding interpolated texture
map for one frontal image of thePenguin. The blocky structures
in the interpolated map result from the Haar wavelet’s square re-
gion of support which for large undefined regions (such as the
penguin’s back in the example) shows up as blocks of uniform
intensity, interpolated from texture maps that actually show the
back side. Note, however, that these structures never become
visible during rendering, since they are always on the invisible
far side of the object. Instead, uniformly colored square areas
which are aligned with the Haar basis functions keep wavelet
coefficient coding bit rate at a minimum since they represent
only low frequencies.

For image compression purposes, more efficient basis func-
tions than the Haar wavelet are known [46]. Unfortunately, no
optimal interpolation scheme could be derived for these more
complex wavelet basis functions because of their overlapping
region of support. The PTC codec therefore employs the simple
Haar wavelet.

F. 4-D Wavelet Decomposition

Texture maps exhibit statistical properties very similar to con-
ventional images. In addition, texels at the same coordinates in
different texture maps display high correlation as they corre-
spond to the same object surface point. The 4-D texture-map
array allows exploiting intra-map as well as inter-map similar-
ities by applying the one-dimensional Haar wavelet kernel sep-
arately along all four dimensions. After the entire texture-map
array has been transformed, the resulting low-frequency coef-
ficients, representing 1/16 of the original texture information,
are again wavelet-transformed along all four dimensions. By re-
peated transformation of the low-frequency coefficients, a hier-
archy of octave subbands is created. The resulting 4-D array of
wavelet coefficients constitutes a joint multiresolution represen-
tation of all texture maps [45].

To compress the wavelet coefficient array, theSet Parti-
tioning in Hierarchical Trees (SPIHT)codec [46] is modified to
be applicable to the 4-D coefficient field [47]. In the modified
SPIHT codec, wavelet coefficients are considered in order
of importance, with large-magnitude coefficients encoded
early on, and small coefficient values considered later in
the bitstream. Reconstructed coefficients are at first coarsely
represented and then gradually refined as bitstream decoding
continues. Higher order statistical dependencies between
wavelet coefficients in different subbands of the 4-D coefficient
array are exploited to encode the positional arrangement of
the magnitude-ordered coefficients. The extended 4D-SPIHT
algorithm makes use of dependencies between subbands along
all four dimensions. During decoding, all texture maps are

jointly and progressively reconstructed. Bitstream decoding
can be terminated at any arbitrary point to access a (lower
quality) version of any texture map. Also, texture information
is progressively reconstructed which allows continuous adjust-
ment of reconstruction quality versus decoding speed.

G. Progressive Texture-Based Coding Performance

Progressive texture coding starts out by compressing the
octahedron-based object geometry using the EMC algo-
rithm (Section III-C). Object surface parameterization and
texture-map optimization can be deduced from the encoded
geometry model, so no additional mapping information needs
to be encoded. For coder evaluation, 328 images of the
Garfield, Mouse, Penguin, andSpheredata sets are transformed
into 256 256-texel texture maps. For encoding, the texture
maps are converted to color space, and the chromi-
nance components are downsampled by a factor of 2 in both
dimensions. Each color channel is hierarchically decomposed
into a 4-D pyramid of frequency subbands using the Haar
wavelet (Section V-F). The coefficients are grouped into sets
according to the 4-D SPIHT coding scheme, and the array
is progressively encoded starting with the highest-magnitude
coefficient. As many bits are written out to the bitstream as the
preset bit rate allows. Coding ends after all three color channels
have been encoded.

Fig. 11 depicts PTC performance for different object geom-
etry approximations, denoted by the number of triangles. Since
texture-based coding can encode only those image regions that
fall within the geometry model’s outline, reconstruction quality
is measured as the average PSNR of the reconstructed object
pixels only. Consequently, bit rate is measured with regard to
the number of reconstructed object pixels only, expressed inbits
per object pixel(bpop). In the examples, the object silhouette
covers no more than of the total image size, i.e., approx-
imately 1.5 pixels per silhouette. Note that this is consid-
erably smaller than the texture map size of texels.

At 25.1-dB reconstruction PSNR, theGarfield images are en-
coded at 0.0066 bpop, whereas 0.174 bpop allow reconstructing
the images at 31.3 dB mean object-pixel PSNR. For theMouse
images, bit rate ranges from 0.007 bpop at 24.3 dB up to 0.192
bpop at 29.9 dB. ThePenguinimages are encoded with 0.0076
bpop at 28.6 dB and 0.212 bpop at 36.6 dB. Coding bit rate for
theSpheredata set ranges from 0.0087 bpop at 24.5 dB to 0.338
bpop at 38.4 dB.

H. Reconstruction Quality

Fig. 12 depicts decoded images of theGarfield data set. The
applied 2048-triangle geometry approximation clips the original
object along the projected model silhouette. At 31.3-dB recon-
struction PSNR and 0.173 bits per object pixel, only very fine
detail of the fur texture is lost. With increasing compression,
blurriness increases and the Haar wavelet’s nonoverlapping re-
gion of support causes a checkerboard effect of the textured sur-
face. At 0.016 bpop and 26.9 dB PSNR, the reconstructed object
texture is composed of irregularly shaped patches of uniform
color.
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Fig. 11. Rate-distortion curves of progressive texture-based coding (PTC) for different geometry approximations: Reconstruction quality and bitrate (bpop) are
expressed in relation to the number of reconstructed object pixels.

(a) (b) (c) (d)

Fig. 12. Image from theGarfield image set, PTC encoded at different bit rates using the 2048-triangle geometry model. (a) Original image. (b) 0.173 bpop at
31.3 dB. (c) 0.059 bpop at 29.2 dB. (d) 0.016 bpop at 26.9 dB.

VI. CODER COMPARISON

To objectively compare model-aided and progressive tex-
ture-based coding performance, in the following coding bit
rate as well as reconstruction quality are restricted to the
pixels within the projected geometry silhouette. In Fig. 13,
which depicts rate-distortion performance of the PTC and

MAC coding schemes, reconstruction PSNR is measured only
with respect to pixels that lie inside the model silhouette, and
coding bit rate is expressed inbits per reconstructed object
pixel (bpop), corresponding to Section V-G. The image sets are
encoded using the same octahedral geometry models for MAC
and PTC. The MAC rate-distortion curves in Fig. 13 therefore
differ from Fig. 6.
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Fig. 13. Comparison of model-aided and progressive-texture coding
performance.

The results depicted in Fig. 13 indicate that real-world objects
whosegeometrymodelsexhibitonlylimitedaccuracyaremoreef-
ficientlyencodedusingmodel-aidedcompression.Athighrecon-
struction quality, the model-aided codec requires about 40% less
bit rate to encode theGarfield,MouseorPenguindata set than the
progressive texture codec does. Only at the lowest bit rates does
PTCperformequallywellasMAC.ForthesyntheticSphereimage
set, however, progressive-texture coding yields better coding re-
sults at medium to high reconstruction quality, and model-aided
coding performs only slightly better at low bit rates.

To investigate the performance differences of PTC and MAC
for real-world and synthetic images, additional experiments are
conducted. For a broader experimental basis and to investigate
the influence of object shape, theStartest data set is introduced
as a second synthetic image set, Fig. 2. The same texture map
as for theSphereimages is used to texture theStar geometry.
As these experiments focus on image-data coding performance,
the following coding results do not include geometry coding
bit rate. Again, 256 256-texel maps are used for progressive-
texture coding.

Fig. 14 illustrates that if exact geometry is used for PTC and
MAC coding, the progressive texture-based coder performs sig-
nificantly better than model-aided coding for both test data sets.
Coding gains are especially impressive for theStarimage set for
which PTC achieves up to 80% better compression at medium
to high reconstruction quality. At low bit rates, MAC performs
only slightly better than PTC for theSphereobject.

To systematically examine the influence of small geometry
inaccuracies on PTC and MAC coding performance, the exact
Sphereand Star geometry models are gradually distorted.
Due to the volumetric reconstruction algorithm’s implicit
shape-from-silhouette approach, the reconstructed geometry
models tend to be slightly too small. Therefore, the vertices
of the synthetic data sets are displaced randomly by a small
amount along the radial direction toward the object’s center.
Vertex displacements parallel to the object’s surface do not
significantly alter overall model geometry and are not consid-
ered. Geometry distortion is expressed as mean radial vertex

displacement in unit pixels when projected into the image
plane. The radial displacement steps are chosen such that the
depicted curves in Fig. 14 correspond to a mean silhouette
mismatch of 1/16th, 1/8th, 1/4th, 1/2th, and 1 pixel.

Fig. 14 shows that PTC and MAC react differently to in-
creasing geometry error. While at medium to high bit rates,
PTC coding suffers a 1–2-dB decrease in reconstruction quality
from one geometry approximation level to the next coarser level,
the MAC encoder shows only marginal loss in reconstruction
quality for small geometry deviations. Even at the greatest ge-
ometry distortion level, MAC performance degrades only by
about 2 dB when compared to exact geometry. The experimental
results indicate that the progressive-texture coding scheme is
very sensitive even to small errors in object geometry.

To summarize, the texture-based coding scheme PTC is ob-
served to yield superior compression results if exact 3-D scene
geometry is available. For approximate geometry, however,
coding efficiency drops quickly, and predictive MAC coding
attains better compression performance. In the next section, this
empirical result is investigated on a signal-theoretical basis.

VII. T HEORETICAL ANALYSIS

The effect of geometry inaccuracy on the efficiency of the two
geometry-basedcodingschemescanbeanalyzed theoretically.A
statistical signal processing framework for this analysis has been
developed [48], similar to that for motion-compensation errors
in video compression [49], [50]. The theoretical analysis qualita-
tivelyexplains theexperimental results fromtheprevioussection.
The main ideas and results of the analysis are summarized here.
The reader is referred to the Appendix for more details.

In this analysis, a simple planar geometry is considered, pic-
tured in Fig. 15. With certain camera model assumptions, the
multi-view image data set can be considered equivalent to a set
of view-dependent texture maps, allowing for easy comparison
of the texture-based and prediction-based schemes.

The set of texture maps is treated as a random process, with
correlation both within a texture, and between textures of dif-
ferent views. The correlation between view-dependent texture
maps depends upon the geometry error, which is modeled as
a random quantity. The texture-based and prediction-based
coding schemes are modeled as different transformations that
seek to de-correlate the set of texture maps, allowing them
to be encoded efficiently. The two schemes are compared by
considering the optimal independent encoding efficiency of the
resulting set of transformed images.

Fig. 16 shows the numerical results from the analysis for an
arrangement similar to that in the previous sections. The coding
efficiency, described by rate difference, is plotted against ge-
ometry accuracy. For rate difference, in bits per pixel, a more
negative number indicates better coding efficiency. For geom-
etry accuracy, described by the logarithm of the variance of the
geometry error, a smaller number indicates a more accurate ge-
ometry.

When the geometry model is approximate and not very ac-
curate, the prediction-based scheme out-performs the texture-
based scheme. Here, coding performance is mainly affected by
the amount of correlation between the texture maps, and the
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Fig. 14. Coding performance of MAC and PTC for two synthetis image data sets using different geometry approximations. Geometry accuracy is denoted as
mean radial deviation of vertex positions, expressed in pixels.

Fig. 15. Object geometry is modeled as a planar surface in thex y plane, with
vertical error�z. Parallel projection is assumed. The projection of the texture
from the accurate geometry surface onto the model geometry surface results in
a texture shift by (� , � ). This shift is dependent on the geometry error as
well as the camera direction.

prediction-based scheme is better able to encode the texture
maps. For high geometry accuracy, the texture maps are highly
correlated, therefore, image noise dominates the analysis in-
stead. The prediction-based scheme is not as efficient as the tex-
ture-based scheme in the presence of uncorrelated noise. These
results qualitatively agree with the observations from the exper-
imental results.

VIII. C ONCLUSION

In this paper, two different coding schemes for multi-view
image data were presented that rely on reconstructed, actively
acquired, ora-priori known 3-D geometry of the depicted scene.
Both coding strategies apply 3-D scene geometry in different
ways toeithersuccessivelypredict imagesandencode thepredic-
tion error, or to convert multi-view imagery into view-dependent
texture maps prior to progressive wavelet coding. Compression
ratios exceeding 2000:1 are observed for both coding schemes.
In direct comparison, model-aided predictive coding is found

Fig. 16. Rate-difference (bits/pixel) versus geometry accuracy (log (
p
12�)

for the prediction-based scheme and the texture-based scheme.� is the square
root of the variance of the geometry error. For high geometry accuracy, toward
the left of the plot, the curve for the texture-based scheme is below the curve
of the prediction-based scheme, indicating greater efficiency. Conversely, for
less accurate geometry, on the right side, the prediction-based scheme performs
better. In this graph, the ratio of noise variance to signal variance is� = 0:001.

to be more efficient for real-world images. For computer-gen-
erated image sets, however, progressive texture coding achieves
significantly better compression than model-aided compression.
Experiments with synthetic images show that texture-based
coding is more susceptible to small errors in object geometry
than the prediction-based scheme. A rate-distortion theoretical
analysis is presented, explaining the relationship between
geometry accuracy and coding efficiency for both schemes. The
analysis confirms that for accurate geometry, the texture-based
scheme is more efficient than the prediction-based approach,
whereas for less accurate geometry, the prediction-based scheme
is more efficient.
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APPENDIX

A. Signal and Encoding Model

In this analysis [48], a simplified model for the geometry of
the object is employed: a planar surface. A 2-D texture signal

exists on this surface, viewed by cameras that have
direction vectors . This arrangement is illustrated
in Fig. 15.

In addition, the surface is assumed to be Lambertian. All non-
Lambertian view-dependent effects are modeled as noise. The
camera that images the scene uses parallel projection and suffers
no band-limitation restriction due to imaging resolution limits.

As a result of these assumptions, the image signal is essen-
tially the same whether in the texture or image plane. Therefore,
prediction between images can be performed in the texture plane
instead of the image plane, making the comparison between the
texture-based and prediction-based approaches simpler.

As illustrated in Fig. 15, the geometry error is modeled as an
offset of the planar surface from its true position. When the
image is back-projected from viewonto the inaccurate geom-
etry, this results in a texture that is a shifted version of the
original texture signal given by the equation

(1)

where is the additive noise component that represents all non-
Lambertian view-dependent effects.

The shift, which depends only upon the camera’s viewing
direction and the geometry error , is
described by the equation

(2)

The shift is a linear operation that can be represented in the
frequency domain as the transfer function

(3)

The set of texture images, given in vector form
, represents the image data that is to

be encoded. Both the prediction-based and the texture-based
scheme take a linear transform of to produce the set of
images . This linear transformation matrix

appears in the transformation equation . The model
assumes that the components are then indepen-
dently encoded.

Using the transform , the correlation between images can be
reduced and therefore the entire image data set can be encoded
more efficiently. The analysis centers on the effects of using dif-
ferent transformation matrices. For the texture-based scheme,
the transform matrix describes a 2-D Haar wavelet subband de-
composition. In the prediction-based scheme, the difference be-
tween the image to be predicted and a linear combination of its
reference images is taken; the transform matrix describes this
prediction structure.

The block diagram in Fig. 17 illustrates the relationship be-
tween , , and .

Fig. 17. Signalsc are produced by shifting the original texture signalv

by (� , � ) (described by the transfer functionD (! ; ! )) and adding
signal-independent noisen . The signalsc are linearly transformed (matrix
T ) to give the signalse . Each signale is then independently encoded.

B. Statistical Model

The texture signal is assumed to be awide-sense sta-
tionary random process withpower spectral density (PSD)

. If the set of transfer functions that represent the
shift in the texture map is denoted by the column vector

...
...

(4)

then the power spectrum of signalis

(5)

where represents the power spectrum of the noise vector
and the superscript denotes the com-

plex-conjugate transpose of the matrix. Note that bothand
are matrices of size .

The shift amount of each texture map can be considered a
stochastic quantity based on the random variable, resulting
in the following expression:

(6)

where is defined by (7), shown at the top of the next
page.

represents the one–dimensional (1-D) Fourier trans-
form of the continuous pdf of the random variable ,

and .
The power spectrum of the transformed signalis

(8)

C. Performance Measure

To compare the texture-based and prediction-based ap-
proaches, the rate difference equation

(9)

which represents the savings in bits per sample from encoding
the signal instead of the signal , is used. This formula is
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...
...

. . .
...

(7)

based on optimal encoding of a stationary, Gaussian signal at
high rate [51].

The bit-rate savings is averaged over the entire set of images
to obtain the overall rate difference

(10)

D. Numerical Results

In evaluating the rate-difference equation for various geom-
etry accuracies, 256 views arranged in a regular fashion over the
hemisphere, similar to the arrangement in the experiments, are
used. For the random geometry error, a zero-mean Gaussian
probability density function (pdf) with variance is assumed.

All noise components are considered to be independent of
one another. In addition, the noise signal spectrum is assumed
to have the same shape as the image signal spectrum. The re-
sults do not change significantly even if a flat noise spectrum
is used instead, indicating that the shape of the noise spectrum
is not critical. The noise and image spectrums are related by
the equation , where is the
ratio of noise signal variance to image signal variance. The value

is used in the numerical evaluation presented.
In Fig. 16, the rate difference for the prediction- and tex-

ture-based schemes in bits per pixel is plotted versus geom-
etry accuracy. Geometry accuracy is expressed as ,
a quantity used in motion-compensation analysis for video com-
pression, where is the square root of the variance of the geom-
etry error . There are two main regions of the curve that are
interesting: the high geometry accuracy regime to the left and
the low geometry accuracy regime to the right.

In the low geometry accuracy region, the misalignment be-
tween textures due to the texture-map shifts dictates the perfor-
mance of the coding schemes. The prediction-based scheme pre-
dicts from views that have similar viewing direction, therefore
the relative misalignment is smaller than in the texture-based
scheme which encodes all views simultaneously. A similar geo-
metric argument is used in [52] to explain the experimental re-
sults. A bit-rate difference of approximately 1/2 bits/pixel is ob-
served between the prediction- and texture-based approaches.
This corresponds to approximately a 3-dB difference in image
quality.

For very high geometry accuracy, there is very little misalign-
ment due to geometry error, so, instead, noise dominates the
analysis. The texture-based coding scheme employs an orthog-
onal transform that preserves the noise variance. In the case of
the prediction-based scheme, subtracting two or more indepen-
dent noise signals increases the noise variance, and therefore
degrades performance. This is why the texture-based scheme
outperforms the prediction-based scheme by 1/4 bits/pixel, cor-
responding to 1.5 dB in image quality.

It should be noted that the analysis makes several assump-
tions about the formation of the light field images, and further
assumes that these signals are Gaussian and are encoded at high
rate. In light of these assumptions, comparisons between the the-
oretical and empirical results can only be qualitative, and apply
only to the higher bit rates of the experimental results. How-
ever, for synthetic as well as real-world data sets with approx-
imate geometry, the experimental and theoretical results agree
that the prediction-based scheme is more efficient. For the syn-
thetic multi-view data sets, with high geometry accuracy, both
theory and experiments suggest that the texture-based scheme
is more efficient.
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