Blanka Magyari-Köpe

Senior Research Engineer

Stanford Nanodevices Group
Stanford University
Paul G. Allen 105
420 Via Palou Mall, Stanford, CA 94305
  650-725-5725
Fax 650-725-0991

Send an email!

Blanka Magyari-Köpe
   
 

 

 

Google Scholar Profile and Full Publications List

Selected Recent Papers

  1. Book chapter in Future Intelligent Integrated Systems of the Handbook of Intelligent Nanosystems Series, “Resistive Memories “,
    B. Magyari-Köpe and Y. Nishi, 2014, in press.

  2. Nanoscale (∼10nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode
    E. Cha, J. Woo, D. Lee, S. Lee, J. Song, Y. Koo, J. Lee, C.G. Park, M.Y. Yang, K. Kamiya, K. Shiraishi, B. Magyari-Köpe, Y. Nishi and H. Hwang,
    IEDM Tech. Digest, 268, 2013.

  3. Vacancy Cohesion-Isolation Phase Transition Upon Charge Injection and Removal in Binary
    Oxide-Based RRAM Filamentary-Type Switching
    K. Kamiya, M.Y. Yang, B. Magyari-Köpe, M. Niwa, Y. Nishi, and K. Shiraishi,
    IEEE Trans. Electr. Dev. 60, 3400, 2013.

  4. First principles investigations of the metal doping effects in the filamentary resistive switching of TiO2,
    L. Zhao, S.-G. Park, B. Magyari-Köpe and Y. Nishi,
    Appl. Phys. Lett. 102, 083506 (2013); doi: 10.1063/1.4794083

  5. Generalized theory of the ON-OFF switching mechanism of binary-oxide-based resistive random access memories,
    K. Kamiya, M. Yang, T. Nagata, S. G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi,
    Phys. Rev. B 87, 155201, 2013.

  6. Charge-dependent oxygen vacancy diffusion in Al2O3 - based resistive-random-access-memories
    M.Y. Yang, K. Kamiya, B. Magyari-K¨ope, M. Niwa, Y. Nishi, and K. Shiraishi,
    Appl. Phys. Lett. 103, 093504, 2013.

  7. Dopant Selection Rules for Extrinsic Tunability of HfO2-x RRAM Characteristics: A Systematic Study
    L. Zhao, S.-W. Ryu, A. Hazeghi, D. Duncan, B. Magyari-Köpe, and Y. Nishi,
    Tech. Digest, VLSI, 2013.

  8. Achieving direct band gap in germanium through integration of Sn alloying and external strain
    S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat,
    J. Appl. Phys., vol. 113, no. 7, pp. 073707,2013.

  9. Physical guiding principles for high quality resistive random access memory stack with Al2O3
    insertion layer
    M.Y. Yang, K. Kamiya, B. Magyari-Köpe, H. Momida, T. Ohno, M. Niwa, Y. Nishi, and K. Shiraishi,
    J. J. Appl. Phys., 52, 04CD11, 2013.

  10. First principles calculations of oxygen vacancy ordering effects in resistance change memory materials incorporating binary transition metal oxides,
    B. Magyari-Köpe, S.G. Park, H.-D. Lee and Y. Nishi,
    J. Mat. Sci. 47, 7498, 2012.
  1. Achieving direct band gap in germanium through integration of Sn alloying and external strain
    S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat,
    J. Appl. Phys., vol. 113, no. 7, pp. 073707, 2013.

  2. Physics in Designing Desirable ReRAM Stack Structure -Atomistic Recipes Based on Oxygen Chemical Potential Control and Charge Injection/Removal-
    K. Kamiya, M.Y. Yang, B. Magyari-K¨ope, M. Niwa, Y. Nishi, and K. Shiraishi,
    IEDM Tech. Digest, 478, 2012.

  3. Lattice instabilities in metallic elements,
    G. Grimvall, B. Magyari-Köpe, V. Ozolins, and K. Persson,
    Rev. Mod. Phys. 84, 945, 2012.

  4. ON-OFF switching mechanism of resistive random access memories based on the formation and disruption of oxygen vacancy conducting channels,
    K. Kamiya, M. Yang, S. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, and K. Shiraishi,
    Appl. Phys. Lett 100, 073502, 2012.

  5. GeSn channel nMOSFETs: material potential and technological outlook,
    S. Gupta, B. Vincent, D. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, K. Saraswat,
    Tech. Digest, VLSI, 2012.

  6. GeSn technology: extending the Ge electronics roadmap,
    S. Gupta, R. Chen, B. Magyari-Köpe, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris and K. C. Saraswat,
    IEDM Tech. Digest, 398, 2011.

  7. Theoretical Study of the Resistance Switching Mechanism in Rutile TiO2-x for ReRAM:the role of oxygen vacancies and hydrogen impurities
    S.G. Park, B. Magyari-Köpe, and Y. Nishi,
    Tech. Digest VLSI Tech. Symp., 2011.

  8. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0:7Ca0:3MnO3,
    B. Magyari-Köpe, M. Tendulkar, S. Park, H. Lee, and Y. Nishi, Nanotechnology 22, 254029, 2011.


  9. The impact of oxygen vacancies on the formation of a conductive channel in rutile TiO2,
    S. Park, B. Magyari-Köpe, and Y. Nishi,
    IEEE Electron Device Letters, 32, 197, 2011.


  10. Multi-scale simulations of partially unzipped CNT heterojunction tunneling field effect transistor,
    L. Leem, A. Srivastava, S. Li, B. Magyari-Köpe, G. Iannaccone, J.S. Harris, G. Fiori,
    IEDM Tech. Digest, 740, 2010.


  11. Model of metallic filament formation and rupture in NiO for unipolar switching,
    H. Lee, B. Magyari-Köpe, and Y. Nishi,
    Phys. Rev. B 81, 193202, 2010.


  12. Electronic correlation effects in reduced rutile TiO2-x within the LDA+U method,
    S. Park, B. Magyari-Köpe, and Y. Nishi,
    Phys. Rev. B, 82, 115109, 2010.

  13. Physical model of the impact of metal grain work function variability on emerging dual metal gate MOSFETs and its implication for SRAM reliability
    Xiao Zhang, Jing Li, Melody Grubbs, Michael Deal, Blanka Magyari-Köpe, Bruce Clemens, Yoshio Nishi,
    IEDM Tech. Digest, 57, 2009.

  14. Ab initio study of Al-Ni bilayers on SiO2: Implications to effective work function modulation in gate stacks
    B. Magyari-Köpe, S. Park, L. Colombo, Y. Nishi, and K. Cho
    J. Appl. Phys., 105, 013711, 2009.

  15. Image Charge and Dipole Combination Model for the Schottky Barrier Tuning at the Dopant Segregated Metal/Semiconductor Interface
    L. Geng, B. Magyari-Köpe, Y. Nishi
    IEEE Electron Device Letters 30, 963-965, 2009.

  16. High quality GeO2/Ge interface formed by SPA radical oxidation and uniaxial stress engineering for high performance Ge NMOSFETs
    M. Kobayashi, T. Irisawa, B. Magyari-Köpe, K. Saraswat, H.-S.P. Wong, and Y. Nishi
    IEEE Trans. Electron Devices, 2009.

  17. Uniaxial Stress Engineering for High Performance Ge NMOSFETs
    M. Kobayashi, T. Irisawa, B. Magyari-Köpe, Y. Sun, K. Saraswat, H.-S.P. Wong, P. Pianetta and Y. Nishi
    Tech. Digest VLSI Tech. Symp. p 76, 2009.


  18. Fermi level unpinning and Schottky barrier modification by Ti, Sc and V incorporation at NiSi2/Si interface
    L. Geng, B. Magyari-Köpe, Z. Zhang, Y. Nishi
    Chinese Physics Letters 26, 037306, 2009.

  19. Ab initio modeling of Schottky barrier height tuning by yttrium at nickel-silicide/silicon interface
    L. Geng, B. Magyari-Köpe, Z. Zhang, Y. Nishi
    IEEE Electron Device Letters 29, 746-749, 2008.

  20. Theoretical prediction of low-energy crystal structures and hydrogen storage energetics of Li2NH
    B. Magyari-Köpe, V. Ozolins and C. Wolverton
    Phys. Rev. B 73, 220101, 2006.

Back to main page

Blanka Magyari-Köpe
Last updated: 25 February, 2014