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Flow in Unsaturated Soils with 
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The first law of thermodynamics suggests an energy-conjugate relationship 
among degree of saturation, suction stress, and density of an unsaturated 
porous material. Experimental evidence affirms that this constitutive rela-
tionship exists and that the water retention curves are dependent on the 
specific volume or density of the material. This constitutive feature must 
be incorporated into the mathematical formulation of boundary-value 
problems involving finite deformation. We present a fully coupled hydrome-
chanical formulation in the finite deformation range that incorporates the 
variation of degree of saturation with the Kirchhoff suction stress and the 
Jacobian determinant of the solid-phase motion. A numerical simulation 
of solid deformation–fluid flow in unsaturated soil with randomly distributed 
density and degree of saturation demonstrates an intricate but well-estab-
lished coupling of the hydromechanical processes. As deformation localizes 
into a persistent shear band, we show that bifurcation of the hydromechani-
cal response manifests itself not only in the form of a softening behavior but 
also through bifurcation of the state paths on the water-retention surface.

The water retention curve, also called the soil-moisture characteristic curve, 
is a relationship between a soil’s water content and water potential or between a soil’s 
degree of saturation and the suction stress (Lu and Likos, 2004). It is used to predict the 
soil water storage in the mass balance equation, as well as to close the statement of the 
initial boundary-value problem for coupled solid deformation–fluid flow (Borja, 2004; 
Borja et al., 2012a, 2012b, 2013b; Buscarnera and Nova, 2011; Buscarnera and di Prisco, 
2011, 2012; Diamantopoulos and Durner, 2012; Ehlers et al., 2011; Garcia et al., 2011; 
Goumiri et al., 2012; Guillon et al., 2012; Le et al., 2012; Lloret-Cabot et al., 2013; 
Mousavi Nezhad et al., 2011; Oostrom et al., 2012; Sun and Sun, 2012; Uzuoka and 
Borja, 2012; Zha et al., 2013). During the past few decades, the water retention curve for 
soils has been widely studied and is considered to be a fairly accurate representation of 
the water storage property under isothermal conditions, small deformation, monotonic 
loading, and even cyclic loading (Barquin-Valle et al., 2011; Hassanizadeh et al., 2002; 
Horta et al., 2013; Manzanal et al., 2011; Mohammadi and Vanclooster, 2011; Tamagnini, 
2004; Zhang, 2011).

In has long been recognized that the water retention curve for unsaturated soils is a func-
tion of the density of the soil (Arairo et al., 2013; Miller et al., 2002; Sugii et al., 2002; 
Tarantino and Tombolato, 2005) as well as temperature (Arson and Gatmiri, 2012; 
Dumont et al., 2011; Mašín and Khalili, 2012; Imbert et al., 2005; Romero et al., 2001; 
Salager et al., 2006, 2011; Tang, 2005). For isothermal conditions, this means that the 
water retention curve must be defined for a given density and that, for soils undergo-
ing finite volume changes, the water retention law must contain a third variable, namely, 
either density, porosity, specific volume, or any suitable measure of porosity changes in the 
soil. This is fulfilled by a more generalized water retention surface where one variable, say, 
the degree of saturation, may be interpreted as a function of two remaining independent 
variables, namely, the suction stress and specific volume. Such a constitutive relationship 
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is supported by continuum principles of thermodynamics (Borja 
2004, 2006; Nikooee et al., 2013; Nuth and Laloui, 2008) and has 
already been established experimentally for different types of soil 
(Gallipoli et al., 2003b; Salager et al., 2010).

The solution of an initial boundary-value problem must accom-
modate governing conservation and constitutive laws, along with 
relevant boundary and initial conditions. Closed-form analyti-
cal solutions are available for unsaturated flow in one dimension 
(Ashayeri et al., 2011; Shan et al., 2012; Wu et al., 2012). However, 
they are severely handicapped by numerous simplifying assump-
tions, making them unsuitable for general-purpose problems. 
Furthermore, because of their limited kinematics, they cannot 
capture localized deformation phenomena. In this work, we 
adopted a mixed finite element formulation combined with mix-
ture theory in a fully coupled hydromechanical framework. The 
formulation can accommodate some intricate aspects of hydrome-
chanical processes, such as material and geometric nonlinearities 
as well as material heterogeneities at the mesoscopic scale, more 
naturally than can other equally robust methods, such as the mesh-
less method (Khoshghalb and Khalili, 2012). Mesoscopic scale is a 
common term used to quantify the spatial variations of density, 
degree of saturation, and other continuum variables within a mac-
roscopic element without the need to consider the complexities 
of the grain-scale processes (Andrade and Borja, 2006; Borja and 
Andrade, 2006; Borja et al., 2013a, 2013b; Mousavi Nezhad et al., 
2011, 2013; Rechenmacher et al., 2011).

A finite deformation formulation is especially suited for a prob-
lem with an evolving solid matrix configuration in general and an 
evolving porosity in particular. Whereas the infinitesimal formu-
lation can also be used to a certain extent, it is not as natural and 
consistent; it assumes that the solid displacements are small and so 
the solid matrix configuration is essentially unchanged. However, 
updating the porosity changes the solid matrix configuration, 
which is conceptually inconsistent with the idea behind the infin-
itesimal formulation. On the other hand, a finite deformation 
formulation naturally accommodates an evolving configuration 
characteristic of a deformable solid matrix. Finite volume changes 
are accommodated naturally by the so-called Jacobian determi-
nant J, which represents the evolution of a differential volume in 
a solid matrix.

The specific problem simulated in this study was the hydrome-
chanical response of a rectangular sample of unsaturated sand 
with imposed heterogeneities in density and degree of saturation. 
We considered both material and geometric nonlinearities—spe-
cifically, finite deformation including finite volume changes that 
could significantly impact the position of the field variables on the 
water retention surface. We used the first law of thermodynamics 
to identify energy-conjugate pairings of the constitutive variables, 
as well as to define a so-called effective, or constitutive, stress in 
both the infinitesimal and finite deformation regimes (Borja, 2004, 

2006; Hassanizadeh and Gray, 1993; Houlsby, 1997). The sample 
is deformed until the hydromechanical response bifurcates into a 
deformation band. We show that bifurcation manifests itself not 
only through a localized deformation pattern but also through 
the hydromechanical movement of the field variables on the water 
retention surface.

66Thermodynamic Basis
Our point of departure is the first law of thermodynamics for a 
mixture of solid, water, and air, which serves as the origin of the 
effective stress equation and the motivation for pairing different 
constitutive variables. Let fs, fw, and fa  denote the respective 
volume fractions of solid, water, and air in the mixture, respectively, 
which satisfy the closure condition

=f +f +fs w a1  	 [1]

Further, let r s, rw, and ra denote the intrinsic mass densities of 
solid, water, and air, respectively, defined as the mass of the constit-
uent per unit volume of the constituent. The corresponding partial 
mass densities are rs = fsrs, r

w = fwrw, and ra = fara defined as 
the mass of the constituent per unit volume of the mixture. The 
total mass density r of the mixture is then given by

r=r +r +rs w a  	 [2]

We also recall the partial Cauchy stress tensors ss, sw, and sa for 
solid, water, and air, respectively, which satisfy the closure condition

= + +s w as s s s  	 [3]

where s is the total Cauchy stress tensor.

The first law of thermodynamics applied to a mixture of solid, 
water, and air states that the rate of increase in the total energy 
(internal plus kinetic) of any arbitrary volume of the mixture is 
equal to the rate of work done on the mixture plus the rate of 
increase in heat energy. If there is no mass exchange between the 
species, the rate of change in internal energy per unit total volume 
of the mixture is given by

a
a

a=
r = + + -Ñ×ås

w,a
: :e rd d q s s  	 [4]

where re  is the rate of change in internal energy per unit total 
mass of the mixture, r is the heat supply per unit volume of the 
mixture, q is the heat flux vector, d is the rate of deformation tensor 
for the solid matrix, and dw and da are the rate of deformation ten-
sors for water and air, respectively. Assuming that sw and sa are 
isotropic tensors, we can write

=-f =-fw w a a
w a1, 1p ps s  	 [5]
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where pw and pa are the intrinsic pore water and pore air pressures, 
respectively, defined as the force in the fluid per unit area of that fluid.

Equation [4] can be written in the following alternative form fol-
lowing the developments presented by Borja (2006):
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where wu  and au  are the relative velocities of water and air, 
respectively, with respect to the solid, Kw and Ka are the elastic bulk 
moduli for water and air, respectively, Sr is the degree of saturation, 
and s = pa − pw is the suction stress.

The first term on the right-hand side of Eq. [6] identifies the pair-
ing between the effective Cauchy stress tensor s¢ and the rate 
of deformation tensor d for the solid matrix. This motivates the 
development of a constitutive law for the solid matrix in terms of 
the effective Cauchy stress s¢, which takes the form (Borja, 2006)

( )¢= +b = + -r w r a1, 1p p S p S ps s  	 [7]

where b is the Biot coefficient. The effective stress equation stated 
above approaches the Schrefler (1984) stress in the limit b = 1. 
Other schools of thought have led to the development of a slightly 
different expression for the effective stress (see Khalili et al., 2004).

The second term on the right-hand side of Eq. [6] identifies the 
pairing between the intrinsic pressure pa and the relative velocity 

au  and motivates the use of Darcy’s law for the flow of water and 
air relative to the solid. The third term identifies the conjugate 
pairing among the suction stress s, porosity n = 1 – fs, and degree 
of saturation Sr, which motivates the water retention surface of 
the form

( )= -fs
r r ,1S S s   	 [8]

The fourth term represents the mechanical powers of the intrinsic 
pore water and pore air pressures in volumetrically deforming the 
water and air, respectively. If we assume that water is incompress-
ible and the pore air remains passive (i.e., pa = 0), then these terms 
will drop out of the energy balance equation. Finally, the last two 
terms are non-mechanical powers associated with heat.

Without loss of generality, we shall make the simplifying assump-
tions of incompressible water and passive air, as well as b = 1. The 
expression for the rate of change of internal energy then becomes

( )s
w w r: , 1e p s S r¢r = + u - -f + -Ñ×d q




s  	 [9]

where the symbol á×,×ñ denotes an energy-conjugate pairing. 
Now, let F denote the deformation gradient for the solid-phase 
motion, and J = det(F) the corresponding Jacobian determinant. 
Multiplying both sides of the expression for the internal energy by 
J, and assuming a passive air condition, we get

( ) ( )
0

s
w w w r: , 1 DIV

e

S R

r =

¢ + J u +J -f + -d Q






t

 	 [10]

where r0 = Jr is the pull-back mass density of the mixture, t ¢ = Js ¢ 
is the effective Kirchhoff stress tensor, Jw = Jpw, R = Jr, and 
Q = JF−1q is the Piola identity. This yields the following effective 
stress equation in terms of the Kirchhoff stresses:

¢= - Jr w 1St t  	 [11]

where t = Js. In terms of the first Piola–Kirchhoff stress tensors, 
the effective stress equation takes the form

-¢= - J 1
r wSP P F  	 [12]

where P¢ = F−1t ¢ and P = F−1t. Note that the Piola transform of 
the Kronecker delta is not an isotropic tensor.

66Constitutive Assumptions
Assuming a passive air condition, conservation laws include the 
balance of linear momentum for the solid–water–air mixture and 
the balance of mass for the solid and water. A complete formula-
tion of the initial boundary-value problem may be found in Borja 
et al. (2013a) for infinitesimal deformation and Song and Borja 
(2014) for finite deformation. Motivated by the discussions above, 
we complete the formulation of the initial boundary-value prob-
lem by providing specific constitutive relationships between the 
effective Kirchhoff stress and deformation of the solid matrix, the 
water retention properties of the soil, and a modified Darcy’s law 
accounting for the deformation of the solid matrix. 

Multiplicative Plasticity
The framework for the mechanical response of the soil is based on 
multiplicative decomposition of the deformation gradient. This 
framework is relatively mature, particularly for isotropic plasticity 
models where the product formula algorithm is readily available 
(Simo, 1992; Borja and Alarcón, 1995). A three-invariant consti-
tutive model for unsaturated sand was first presented by Borja et 
al. (2013b) for infinitesimal plasticity. Song and Borja (2014) pre-
sented an extension of this model to the finite deformation regime. 
The elastic deformation of the soil is determined from a stored 
energy function Y = Y(be), where be is the left Cauchy–Green 
deformation tensor. Through a spectral decomposition of be, one 
can choose, as the independent variables of this function, the volu-
metric and deviatoric invariants, ev

e and ev
s, respectively, of the 



Vadose Zone Journal� p. 4 of 11

elastic logarithmic stretches. The effective Kirchhoff stress tensor 
t ¢ is then obtained from the hyperelastic constitutive equation

¶Y¢=
¶

e
e2 b

b
t  	 [13]

To characterize the plastic deformation of the soil, we need to 
define three components of a plasticity model, namely, a yield sur-
face, a hardening law, and a flow rule. The yield surface depends on 
all three invariants of the effective Kirchhoff stress tensor:

( )
( )

¢= = q=
c

3

3

tr1 3
tr , , cos3 6

3 2
p q

x
t x  	 [14]

where x = t ¢ − p1 is the deviatoric component of the effective 
Kirchhoff stress tensor t ¢, and c2 = tr(x2). The quantity p is called 
the mean normal stress and has a negative value throughout; q is 
Lode’s angle, whose value ranges from 0 £ q £ p/3 (Borja 2013). 
The specific yield criterion is given by

=V +h £0F q p  	 [15]

where V is a scaling function defined by Borja et al. (2013b). Lode’s 
angle q represents the effect of the third stress invariant modifying 
the shape of the yield surface on a deviatoric plane and h is defined 
as a function of the slope of the critical state line M, the curvature 
of the yield surface N on the hydrostatic axis, mean normal stress 
p, and image stress pi (Borja et al., 2013b). Figure 1 shows a three-
dimensional representation of the three-invariant yield surface in 
principal effective Kirchhoff stress space.

To simplify the formulation, we assume the associative flow rule 
and express the symmetric part of the plastic velocity gradient as

¶
=l

¢¶
p F

d 

t
 	 [16]

where l  is the consistency parameter.

To complete the plasticity model, we need to define a hardening law 
that accommodates the effect of a spatially varying density. For the 
dry sand case, the hardening law is a function of deviatoric plastic 
strain that allows the proper qualitative capture of key features in 
both loose and dense sands (Jefferies, 1993; Borja and Andrade, 
2006; Andrade and Borja, 2006, 2007; Borja et al., 2013a). In a 
critical-state isotropic model, preconsolidation pressure is a mea-
sure of the size of the yield surface in the fully saturated state. For 
isotropic plasticity models, the preconsolidation pressure char-
acterizes the distance from the origin of the stress space to the 
intersection of the compression cap with the hydrostatic axis. Borja 
et al. (2013b) modified this hardening law to account for the par-
tially saturated sand by enhancing the preconsolidation pressure 
with a so-called bonding variable x (Gallipoli et al., 2003a; Borja, 
2004; Borja et al., 2013b):

( ) ( ) xé ù=- x -ë û
( )

c cexp bp a p  	 [17]

where cp  is the preconsolidation pressure in the fully saturated 
state, and a(x) and b(x) are functions of the so-called bonding vari-
able x, which varies with Kirchhoff suction stress and degree of 
saturation. A returning mapping algorithm is used to numerically 
integrate the constitutive model (Song and Borja, 2014).

Water Retention Surface
A suitable water retention law is crucial for characterizing the effect 
of the degree of saturation on the hydromechanical properties of 
unsaturated porous media. Here, we adopt the water retention 
law proposed by Gallipoli et al. (2003b) in which the degree of 
saturation is a function of suction and porosity. Recalling that for 
the problem at hand, the Kirchhoff suction stress −Jw > 0 (see 
Hassanizadeh and Gray, 1993), whereas the porosity 1 − fs is a 
linear function of the Jacobian determinant J of the solid-phase 
motion, we write

-ì üï ïé ùï ïæ öï ïê ú÷çï ï÷ç= + - - Jí ýê ú÷ç ÷ï ï÷çê úfè øï ïï ïë ûï ïî þ

2

r 1 ws
0

1 1

mna
JS a 	 [18]

where f0
s is the initial solid volume fraction and a1, a2, m, and n 

are material parameters. This soil-water retention law is a simpli-
fied extension of the soil-water retention curve presented by van 
Genuchten (1980) in that as Jw ® 0, Sr ® 0 and as Jw ® −¥, 
Sr ® 0. However, this relationship can capture the effect of poros-
ity on the degree of saturation. On the other hand, it does not 
take into account the hydraulic hysteresis on wetting and drying 
(Khalili and Zargarbashi, 2010). Gallipoli et al. (2003b) used this 
relationship to characterize the water retention behavior of a com-
pacted Speswhite kaolin. Salager et al. (2010) conducted laboratory 
tests on clayey silty sand and also obtained a similar relationship, 

Fig. 1. Three-invariant yield surface in principal effective Kirchhoff 
stress space, where t¢ is the effective Kirchhoff stress tensor.
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although they only showed their results graphically without an 
explicit equation. Here, we apply a three-dimensional curving fit-
ting technique on the experimental data presented by Salager et al. 
(2010) to arrive at the following coefficients for the water reten-
tion surface defined by Eq. [18]: a1 = 3.8038 ´ 10−2, a2 = 3.4909, 
m = 6.3246 ´ 10−1, and n = 7.1771 ´ 10−1 for the clayey silty 
sand. Figure 2 shows such a surface in the space defined by the 
degree of saturation Sr, suction stress −Jw, and specific volume v. 
We used this particular water retention model for the numerical 
simulations presented below.

Modified Darcy’s Law
We apply the modified Darcy’s law to express the superficial veloc-
ity u  in the unsaturated state as

w
rw sa

w
1Jk k z

æ öJ ÷ç ÷u=- Ñ +ç ÷ç ÷ç gè ø
 	 [19]

where krw is the relative permeability of the wetting phase of water 
related to the soil-water retention curve, ksa is the isotropic satu-
rated hydraulic conductivity, gw is the unit weight of water, and z 
is the vertical coordinate. We use the Kozeny–Carman equation 
(Bear, 1972) to express the saturated permeability in the form

( )
( )
-fg

=
m f

3s2 0w
sa 2s

0
180

JDk
J

 	 [20]

where m is the dynamic viscosity of water, D is the effective diame-
ter of the grains, J is the Jacobian determinant, and s

0f  is the initial 
volume fraction of the solid grains. The relative permeability is a 
function of the degree of saturation through the van Genuchten 
(1980) equation:

( )é ù
= - -ê úê úë û

2
1/2 1/

rw r 1 1
mm

rk S S  	 [21]

where m is the same material constant used in Eq. [18]. The degree 
of saturation Sr is calculated from Eq. [18], so krw is now also a 
function of the suction stress and deformation of the solid matrix.

66Numerical Simulations
We conducted numerical simulations of the vertical compression 
of a rectangular specimen of unsaturated sand deforming in plane 
strain. Drainage conditions were specified such that water could 
not escape or enter through the outer boundaries of the sample, but 
could flow internally within the sample, i.e., the flow was globally 
undrained but locally drained. Because the balance of air mass was 
not imposed explicitly, air was assumed to drain freely through 
the atmosphere. The two vertical faces of the sample were exposed 
to an external confining pressure sc, whereas the top and bottom 
horizontal faces were supported on rollers except for one corner 
of the specimen that was pinned to the support to prevent rigid-
body translation. A downward vertical displacement d = d(t) was 
then prescribed at the top supports to compress the sample. This 
experimental setup, depicted in Fig. 3, is a realistic representation 
of a displacement-driven plane strain testing of a sand sample sup-
ported on a smooth base (Borja et al., 2013a).

The boundary conditions described above favor the development 
of a homogeneous deformation, and so, it is necessary to introduce 
imperfections into the soil sample to trigger inhomogeneous defor-
mation. In this example, imperfections were introduced into the 
soil sample in the form of spatially varying density and degree of 
saturation. Randomization of the density, or specific volume, in 
the specimen was achieved through a random function generator 

Fig. 2. Water retention surface for clayey silty sand as determined by 
the degree of saturation (Sr), Kirchhoff pore pressure (Jw), and the 
specific volume (u).

Fig. 3. Finite element mesh and boundary conditions, including the 
mean vertical compression (d) and the confining pressure (sc). Soil 
sample is 5 by 10 cm deforming in plane strain. Material points A and 
B are Gauss points outside and inside the band, respectively.
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with a probability distribution available in MATLAB. However, 
unlike in a previous study where inhomogeneities in density and 
degree of saturation were imposed independently (Borja et al., 
2013a), the adoption of a water retention surface makes the suction, 
degree of saturation, and density interdependent on each other.

Initial conditions were established as follows. Uniform effective 
stresses were specified initially at the Gauss points, while uniform 
negative pore water pressures were specified initially at the pore 
pressure nodes. Because of the assumption of a passive air condi-
tion, a uniform suction equal to the negative of the pore water 
pressure was generated at the nodes, as well as throughout the 
entire problem domain including the Gauss points. A spatially 
varying specific volume was then specified at the Gauss points 
based on the random function generator. Because the degree of 
saturation depends on the suction stress and density, and because 
the suction stress was specified as being uniformly distributed 
throughout the sample, the spatial variation of the degree of satu-
ration follows the same pattern as the spatial variation of specific 
volume. In general, the prescribed initial effective stresses and pore 
water pressures cannot be expected to be in static equilibrium with 
the externally applied confining pressures because the total stresses 
at the Gauss points also depend on the degree of saturation, which 
cannot be specified independently. Therefore, the first time step of 
the analysis, with a very small time interval Dt and no incremental 
compression, was used to iteratively find an equilibrium configura-
tion. For purposes of analysis, the initial configuration where the 
Jacobian determinant J is set to unity was taken as the converged 
stress configuration after this first time step.

The soil sample was 5 cm wide by 10 cm tall and subjected to a 
confining stress of sc = 120 kPa on the two vertical faces (Fig. 3). 
The finite element mesh consisted of 861 solid nodes, 231 pore 
pressure nodes, and 200 isoperimetric quadrilateral elements with 
nine displacement nodes and four pore pressure nodes (Q9P4). 
This mixed element is convergent in the sense that it satisfies the 
Ladyženskaja–Babuška–Brezzi (LBB) stability condition (Brezzi, 
1990) and has been used for similar finite deformation simula-
tions by Li et al. (2004), Andrade and Borja (2007), and Uzuoka 
and Borja (2012). The confining stress sc was assumed constant 
throughout the simulation; however, because the configuration of 
the sample is changing due to finite deformation, the equivalent 
nodal forces generated by the confining pressure is configuration 
dependent. The contribution of the confining pressure to the 
algorithmic tangent operator is obtained by direct linearization 
of the equivalent nodal forces with respect to the configuration 
of the sample.

Table 1 summarizes the relevant material parameters for the sand 
constitutive model. The values of the parameters are similar to 
those used by Borja et al. (2013b). The specimen was compressed 
at the rate of 0.01 mm/s, Dt = 1 s, and the total number of incre-
ments = 310. We remark that the hydromechanical response is 

generally a function of the rate of compression due to the fluid flow 
occurring internally within the soil sample.

To generate a spatially varying initial specific volume in the speci-
men, we specified a range of [1.56, 1.61], a mean value of 1.58, a 
standard deviation of 0.009, and a normal distribution for this 
state variable. Figure 4 shows one realization of the specific volume. 
In generating this realization, we assumed that all nine Gauss 
points in a quadrilateral element have the same weight, so that only 
200 random values would have to be generated (equal to the total 
number of finite elements). Furthermore, we specified an initial 
homogeneous suction stress of 20 kPa and an initial isotropic effec-
tive stress of −100 kPa (i.e., compressive). The corresponding range 
of values of the degree of saturation is Sr Î [0.877, 0.896], with a 
mean value of 0.887. Figure 4 also shows the initial spatial varia-
tion of the degree of saturation within the soil sample. Note that 
the two contours follow the same trend because the suction stress 
is uniform. It is also possible to generate a different realization for 

Table 1. Summary of material parameters for unsaturated sands (for 
physical meanings of these parameters, see Borja and Andrade, 2006; 
Andrade and Borja, 2006).

Symbol Value Parameter

k


0.03 compressibility

p0 −0.12 MPa reference pressure

m0
16 MPa shear modulus

M 1.1 critical state parameter

0.1 compressibility parameter

N 0.4 yield surface parameter

b 1.0 nonassociative parameter

h 280 dimensionless hardening parameter

vc0 1.85 reference specific volume

r 7/9 ellipticity

a −3.5 limit dilatancy parameter

l

Fig. 4. Contours of initial specific volume (left) and initial degree of 
saturation (right). Note that the two contours follow the same trend 
for a uniform suction.
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the degree of saturation if the suction stress is specified to follow 
its own random distribution.

Figure 5 shows the evolution of the second invariant of deviatoric 
strain within the sample, calculated from the principal logarith-
mic stretches of the deformation gradient F of the solid matrix. 
The deviatoric strains are initially homogeneous, but at a vertical 
compression of 2.6 mm, the sample begins to exhibit a tendency to 
form a shear band that propagates upward to the right. At a vertical 
compression of 3.1 mm, a persistent shear band is fully resolved 
(Borja, 2013). We should emphasize that the finite element mesh 
has no bias whatsoever; it is composed of symmetric quadrilateral 
elements with boundary conditions favoring the development of 
a homogeneous deformation pattern. The tendency of the solution 
to resolve a persistent shear band in this example is due solely to 
the heterogeneity in the deformation and fluid flow variables, as 
well as how they evolve with vertical compression.

Figure 6 depicts a more illuminating evolution of the fluid flow 
variables. The suction stress evolves from its initial uniform 

distribution to one that reflects the emerging persistent shear band, 
with mean values of around 3 kPa inside the shear band and 6 kPa 
outside the shear band at a vertical compression of 3.1 mm. Overall, 
the suction stress has reduced significantly from its initial uniform 
value of 20 kPa. Concurrently, the degree of saturation has evolved 
from its initial random distribution to one that also reflects the 
emerging shear band, with mean values of around 0.97 inside the 
shear band and 0.955 outside the shear band. This is a significant 
increase in the degree of saturation from its initial overall mean 
value of 0.887 at the beginning of the loading program. Because 
the water is not free to drain through the boundaries of the prob-
lem domain, we can conclude that the overall increase in degree of 
saturation inside the soil sample is due primarily to the compres-
sion of the air voids inside the sample. Moreover, we can expect 
that more air voids have compacted inside the shear band, where 
the degree of saturation is higher.

Indeed, the more pervasive compaction of the air voids inside the 
shear band is corroborated by the volumetric strain contours of Fig. 
7. The volumetric strain in this case is the sum of the elastic and 
plastic natural logarithmic stretches, which is equal to the natural 
logarithm of the Jacobian determinant J (Borja, 2013, Chapter 6). 
The volumetric strains are all negative, implying that the sample 
has compacted everywhere, i.e., J < 1. However, compaction is 
more pervasive inside the shear band than outside, suggesting 
that the deformation band that forms is that of a compactive shear 
band (Borja and Aydin, 2004). At around this vertical compres-
sion, some material points inside the compactive shear band have 
undergone strain localization as the determinant of the drained 
acoustic tensor reverses in sign (Rudnicki and Rice, 1975). Note 
from the plot of the localization function that the material points 
outside the band remain stable in the sense that the localization 
function is nowhere close to zero. In a way, this is equivalent to the 
vertical compression being converted into localized deformation 

Fig. 5. Evolution of second invariant of deviatoric strain with vertical 
compression. Numbers in millimeters are vertical compression.

Fig. 6. Contours of Kirchhoff suction stress J = −Jw (left) and degree 
of saturation Sr (right) at a vertical compression of 3.1 mm. Recall 
that the suction stress was initially uniformly distributed throughout 
the soil sample.
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along the band, with the subdomain outside the band deforming 
essentially as a rigid body after the band has formed.

Figure 8 compares two load–compression curves, one for the 
heterogeneous sample under study and the other for an equiva-
lent homogeneous sample with density and degree of saturation 
equal to the mean values of those of the heterogeneous sample. 
During the early part of loading, the two load–compression 
curves are nearly on top of one another. This is to be expected 
since the heterogeneous specimen is nearly homogeneous except 
for some small statistical variations in density and degree of satura-
tion, as indicated in Fig. 4. As loading approaches the peak value, 
however, the two curves start to diverge slightly, with the hetero-
geneous soil sample exhibiting a slightly softer behavior and the 
homogeneous sample showing no sign of bifurcation. This result 
demonstrates that even relatively small imperfections can trigger 
strain localization. The first element to localize bifurcates at a ver-
tical compression of around 2.9 mm, near the peak. Beyond this 

bifurcation point, the heterogeneous sample exhibits a marked 
softening response; in contrast, the homogeneous sample con-
tinues to approach a plateau. Clearly, the homogeneous sample 
is unable to undergo strain localization because it lacks a trigger 
to such a mechanism. At a vertical compression of 3.1 mm, the 
persistent shear band has developed completely. This vertical 
compression occurs a little after the first bifurcation point but not 
too far beyond it for the solution to be afflicted significantly by 
mesh-dependency issues. In general, finite element enhancement 
techniques, such as the assumed enhanced strain and extended 
finite element methods, must be used to capture the evolution of 
the persistent shear band and circumvent the mesh-dependency 
issues associated with the loss of ellipticity well past the bifurcation 
point (Borja, 2013).

Figure 9 portrays an interesting comparison of two state paths on 
the water retention surface for two material points inside the soil 
sample, indicated in Fig. 1 and labeled as Gauss Point A, which 
is well outside the band, and Gauss Point B, which lies inside 
the band. The two Gauss points started out with nearly the same 
coordinates on the water retention surface, and their state paths 
are nearly the same during the early stage of compression. This 
is to be expected when the specific volume is specified to have a 
very narrow range within the sample and when its variation is 
only statistical in nature, as in this particular example. As Gauss 
Point B approaches the bifurcation point, its state path deviates 
ever so slightly from that of Gauss Point A. Right after bifurcation, 
however, as indicated by an open circle in Fig. 9, the state path for 
material Point B diverges significantly from that of Point A, whose 
state path remains nearly immobile. This is a remarkable finding in 
that it clearly shows that bifurcation of the field response can also 

Fig. 7. Contours of volumetric strain (left) and normalized determinant 
of the localized function (right) at a vertical compression of 3.1 mm.

Fig. 8. Comparison of load–compression curves for heterogeneous 
and homogeneous soil samples. The homogeneous sample had a uni-
form density and degree of saturation equal to the mean values of the 
heterogeneous sample. The open circle shows the location of the first 
bifurcation point in the shear band.

Fig. 9. Bifurcation on the water retention surface during plane strain 
compression of unsaturated sand; Sr is the degree of saturation, −Jw is 
the Kirchhoff suction stress, and u is the specific volume. Gauss Point 
A is a material point outside the band, which has not bifurcated; 
Gauss Point B is a material point inside the band, which has bifur-
cated (see Fig. 3); the open circle indicates the bifurcation point for 
Gauss Point B.
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manifest itself on the water retention surface. As the strain local-
izes inside the band, more and more air voids are squeezed out 
until Gauss Point B reaches a nearly perfectly saturated state as 
manifested by the suction stress approaching zero while the specific 
volume remains steady at a nearly constant value, suggesting that 
deformation inside the band is close to the critical state. As the 
degree of saturation approaches 100% inside the band, the pressure 
gradient builds up and triggers fluid flow. This is demonstrated by 
the fluid flow patterns depicted in Fig. 10.

Figure 10 shows the evolution of stream lines with vertical com-
pression. During the early part of compression (e.g., 2.6 mm), the 
flow lines are as random as the spatial variations of specific volume 
and degree of saturation, i.e., there is no distinct fluid flow pat-
tern within the sample. As the vertical compression progresses 
(2.8 mm), the random distribution of fluid flow appears to evolve 
into a more recognizable pattern reflecting the developing com-
pactive shear band. At a vertical compression of 3.0 mm, the shear 
band has become a source of fluid: the pore water pressure inside 
the band has developed to such a level where fluid is now expelled 
from the deformation band and away from it. This continues up 

to a vertical compression of 3.1 mm, when the persistent compac-
tive shear band has fully developed. We remark once again that 
the boundaries of the problem domain are no-flow boundaries, 
i.e., fluid may not escape from or enter through the boundaries. 
Therefore, the fluid flow trajectories of Fig. 10 simply delineate 
general directions where the water is going to fill up the air voids 
that are continually squeezed out of the soil sample. Overall, the 
mass of the water contained in the problem domain as well as that 
of the solid are conserved.

66Closure
The mechanisms for fluid flow and solid deformation in an unsatu-
rated porous material are highly intricate and necessitate a fully 
coupled hydromechanical formulation. The continuum principle 
of thermodynamics for a mixture of solid–water–air is extremely 
useful for identifying so-called effective stress and the energy-con-
jugate pairings of the constitutive variables necessary for closing 
the statement of the underlying initial boundary-value problem. 
We have shown how the finite deformation and fluid flow mecha-
nisms play out in the context of an unsaturated porous material 
with random distributions of density and degree of saturation. To 
our knowledge, this is the first time that a porosity-dependent 
water retention law has been fully integrated into the solution of 
an initial boundary-value problem in the finite deformation range. 
A water retention surface is fully consistent with the first law of 
thermodynamics and has been established experimentally for a 
variety of unsaturated, deformable soils. The proposed framework 
also sets the foundation for a more generalized hysteretic water 
retention law that accounts for incremental nonlinearity on wet-
ting and drying.
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