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Preface

This book is about conver optimization, a special class of mathematical optimiza-
tion problems, which includes least-squares and linear programming problems. It
is well known that least-squares and linear programming problems have a fairly
complete theory, arise in a variety of applications, and can be solved numerically
very efficiently. The basic point of this book is that the same can be said for the
larger class of convex optimization problems.

While the mathematics of convex optimization has been studied for about a
century, several related recent developments have stimulated new interest in the
topic. The first is the recognition that interior-point methods, developed in the
1980s to solve linear programming problems, can be used to solve convex optimiza-
tion problems as well. These new methods allow us to solve certain new classes
of convex optimization problems, such as semidefinite programs and second-order
cone programs, almost as easily as linear programs.

The second development is the discovery that convex optimization problems
(beyond least-squares and linear programs) are more prevalent in practice than
was previously thought. Since 1990 many applications have been discovered in
areas such as automatic control systems, estimation and signal processing, com-
munications and networks, electronic circuit design, data analysis and modeling,
statistics, and finance. Convex optimization has also found wide application in com-
binatorial optimization and global optimization, where it is used to find bounds on
the optimal value, as well as approximate solutions. We believe that many other
applications of convex optimization are still waiting to be discovered.

There are great advantages to recognizing or formulating a problem as a convex
optimization problem. The most basic advantage is that the problem can then be
solved, very reliably and efficiently, using interior-point methods or other special
methods for convex optimization. These solution methods are reliable enough to be
embedded in a computer-aided design or analysis tool, or even a real-time reactive
or automatic control system. There are also theoretical or conceptual advantages
of formulating a problem as a convex optimization problem. The associated dual
problem, for example, often has an interesting interpretation in terms of the original
problem, and sometimes leads to an efficient or distributed method for solving it.

We think that convex optimization is an important enough topic that everyone
who uses computational mathematics should know at least a little bit about it.
In our opinion, convex optimization is a natural next topic after advanced linear
algebra (topics like least-squares, singular values), and linear programming.
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Goal of this book

For many general purpose optimization methods, the typical approach is to just
try out the method on the problem to be solved. The full benefits of convex
optimization, in contrast, only come when the problem is known ahead of time to
be convex. Of course, many optimization problems are not convex, and it can be
difficult to recognize the ones that are, or to reformulate a problem so that it is
convex.

Our main goal is to help the reader develop a working knowledge of
convex optimization, i.e., to develop the skills and background needed
to recognize, formulate, and solve convexr optimization problems.

Developing a working knowledge of convex optimization can be mathematically
demanding, especially for the reader interested primarily in applications. In our
experience (mostly with graduate students in electrical engineering and computer
science), the investment often pays off well, and sometimes very well.

There are several books on linear programming, and general nonlinear pro-
gramming, that focus on problem formulation, modeling, and applications. Several
other books cover the theory of convex optimization, or interior-point methods and
their complexity analysis. This book is meant to be something in between, a book
on general convex optimization that focuses on problem formulation and modeling.

We should also mention what this book is not. It is not a text primarily about
convex analysis, or the mathematics of convex optimization; several existing texts
cover these topics well. Nor is the book a survey of algorithms for convex optimiza-
tion. Instead we have chosen just a few good algorithms, and describe only simple,
stylized versions of them (which, however, do work well in practice). We make no
attempt to cover the most recent state of the art in interior-point (or other) meth-
ods for solving convex problems. Our coverage of numerical implementation issues
is also highly simplified, but we feel that it is adequate for the potential user to
develop working implementations, and we do cover, in some detail, techniques for
exploiting structure to improve the efficiency of the methods. We also do not cover,
in more than a simplified way, the complexity theory of the algorithms we describe.
We do, however, give an introduction to the important ideas of self-concordance
and complexity analysis for interior-point methods.

Audience

This book is meant for the researcher, scientist, or engineer who uses mathemat-
ical optimization, or more generally, computational mathematics. This includes,
naturally, those working directly in optimization and operations research, and also
many others who use optimization, in fields like computer science, economics, fi-
nance, statistics, data mining, and many fields of science and engineering. Our
primary focus is on the latter group, the potential users of convex optimization,
and not the (less numerous) experts in the field of convex optimization.

The only background required of the reader is a good knowledge of advanced
calculus and linear algebra. If the reader has seen basic mathematical analysis (e.g.,
norms, convergence, elementary topology), and basic probability theory, he or she
should be able to follow every argument and discussion in the book. We hope that
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readers who have not seen analysis and probability, however, can still get all of the
essential ideas and important points. Prior exposure to numerical computing or
optimization is not needed, since we develop all of the needed material from these
areas in the text or appendices.

Using this book in courses

We hope that this book will be useful as the primary or alternate textbook for
several types of courses. Since 1995 we have been using drafts of this book for
graduate courses on linear, nonlinear, and convex optimization (with engineering
applications) at Stanford and UCLA. We are able to cover most of the material,
though not in detail, in a one quarter graduate course. A one semester course allows
for a more leisurely pace, more applications, more detailed treatment of theory,
and perhaps a short student project. A two quarter sequence allows an expanded
treatment of the more basic topics such as linear and quadratic programming (which
are very useful for the applications oriented student), or a more substantial student
project.

This book can also be used as a reference or alternate text for a more traditional
course on linear and nonlinear optimization, or a course on control systems (or
other applications area), that includes some coverage of convex optimization. As
the secondary text in a more theoretically oriented course on convex optimization,
it can be used as a source of simple practical examples.
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Chapter 1

Introduction

In this introduction we give an overview of mathematical optimization, focusing on
the special role of convex optimization. The concepts introduced informally here
will be covered in later chapters, with more care and technical detail.

Mathematical optimization

A mathematical optimization problem, or just optimization problem, has the form

minimize  fo(z)

subject to  fi(z) <b;, i=1,...,m. (1.1)

Here the vector x = (21,...,x,) is the optimization variable of the problem, the
function fy : R" — R is the objective function, the functions f; : R" — R,
i=1,...,m, are the (inequality) constraint functions, and the constants by, ..., by,
are the limits, or bounds, for the constraints. A vector x* is called optimal, or a
solution of the problem (1.1), if it has the smallest objective value among all vectors
that satisfy the constraints: for any z with fi1(z) < by,..., fm(2) < by, we have
fo(2) = fo(z*).

We generally consider families or classes of optimization problems, characterized
by particular forms of the objective and constraint functions. As an important
example, the optimization problem (1.1) is called a linear program if the objective
and constraint functions fy, ..., f;, are linear, i.e., satisfy

filax + By) = afi(z) + Bfi(y) (1.2)

for all z, y € R" and all o, 8 € R. If the optimization problem is not linear, it is
called a nonlinear program.

This book is about a class of optimization problems called convezr optimiza-
tion problems. A convex optimization problem is one in which the objective and
constraint functions are convex, which means they satisfy the inequality

filax + By) < afi(x) + Bfi(y) (1.3)
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forallz, y e R" and all o, f € Rwitha+8=1,a >0, 8> 0. Comparing (1.3)
and (1.2), we see that convexity is more general than linearity: inequality replaces
the more restrictive equality, and the inequality must hold only for certain values
of a and . Since any linear program is therefore a convex optimization problem,
we can consider convex optimization to be a generalization of linear programming.

Applications

The optimization problem (1.1) is an abstraction of the problem of making the best
possible choice of a vector in R" from a set of candidate choices. The variable x
represents the choice made; the constraints f;(z) < b; represent firm requirements
or specifications that limit the possible choices, and the objective value fo(z) rep-
resents the cost of choosing x. (We can also think of — fo(z) as representing the
value, or utility, of choosing =.) A solution of the optimization problem (1.1) corre-
sponds to a choice that has minimum cost (or maximum utility), among all choices
that meet the firm requirements.

In portfolio optimization, for example, we seek the best way to invest some
capital in a set of n assets. The variable x; represents the investment in the ith
asset, so the vector z € R describes the overall portfolio allocation across the set of
assets. The constraints might represent a limit on the budget (i.e., a limit on the
total amount to be invested), the requirement that investments are nonnegative
(assuming short positions are not allowed), and a minimum acceptable value of
expected return for the whole portfolio. The objective or cost function might be
a measure of the overall risk or variance of the portfolio return. In this case,
the optimization problem (1.1) corresponds to choosing a portfolio allocation that
minimizes risk, among all possible allocations that meet the firm requirements.

Another example is device sizing in electronic design, which is the task of choos-
ing the width and length of each device in an electronic circuit. Here the variables
represent the widths and lengths of the devices. The constraints represent a va-
riety of engineering requirements, such as limits on the device sizes imposed by
the manufacturing process, timing requirements that ensure that the circuit can
operate reliably at a specified speed, and a limit on the total area of the circuit. A
common objective in a device sizing problem is the total power consumed by the
circuit. The optimization problem (1.1) is to find the device sizes that satisfy the
design requirements (on manufacturability, timing, and area) and are most power
efficient.

In data fitting, the task is to find a model, from a family of potential models,
that best fits some observed data and prior information. Here the variables are the
parameters in the model, and the constraints can represent prior information or
required limits on the parameters (such as nonnegativity). The objective function
might be a measure of misfit or prediction error between the observed data and
the values predicted by the model, or a statistical measure of the unlikeliness or
implausibility of the parameter values. The optimization problem (1.1) is to find
the model parameter values that are consistent with the prior information, and give
the smallest misfit or prediction error with the observed data (or, in a statistical
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1.1 Mathematical optimization

framework, are most likely).

An amazing variety of practical problems involving decision making (or system
design, analysis, and operation) can be cast in the form of a mathematical opti-
mization problem, or some variation such as a multicriterion optimization problem.
Indeed, mathematical optimization has become an important tool in many areas.
It is widely used in engineering, in electronic design automation, automatic con-
trol systems, and optimal design problems arising in civil, chemical, mechanical,
and aerospace engineering. Optimization is used for problems arising in network
design and operation, finance, supply chain management, scheduling, and many
other areas. The list of applications is still steadily expanding.

For most of these applications, mathematical optimization is used as an aid to
a human decision maker, system designer, or system operator, who supervises the
process, checks the results, and modifies the problem (or the solution approach)
when necessary. This human decision maker also carries out any actions suggested
by the optimization problem, e.g., buying or selling assets to achieve the optimal
portfolio.

A relatively recent phenomenon opens the possibility of many other applications
for mathematical optimization. With the proliferation of computers embedded in
products, we have seen a rapid growth in embedded optimization. In these em-
bedded applications, optimization is used to automatically make real-time choices,
and even carry out the associated actions, with no (or little) human intervention or
oversight. In some application areas, this blending of traditional automatic control
systems and embedded optimization is well under way; in others, it is just start-
ing. Embedded real-time optimization raises some new challenges: in particular,
it requires solution methods that are extremely reliable, and solve problems in a
predictable amount of time (and memory).

Solving optimization problems

A solution method for a class of optimization problems is an algorithm that com-
putes a solution of the problem (to some given accuracy), given a particular problem
from the class, i.e., an instance of the problem. Since the late 1940s, a large effort
has gone into developing algorithms for solving various classes of optimization prob-
lems, analyzing their properties, and developing good software implementations.
The effectiveness of these algorithms, i.e., our ability to solve the optimization prob-
lem (1.1), varies considerably, and depends on factors such as the particular forms
of the objective and constraint functions, how many variables and constraints there
are, and special structure, such as sparsity. (A problem is sparse if each constraint
function depends on only a small number of the variables).

Even when the objective and constraint functions are smooth (for example,
polynomials) the general optimization problem (1.1) is surprisingly difficult to solve.
Approaches to the general problem therefore involve some kind of compromise, such
as very long computation time, or the possibility of not finding the solution. Some
of these methods are discussed in §1.4.

There are, however, some important exceptions to the general rule that most
optimization problems are difficult to solve. For a few problem classes we have
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effective algorithms that can reliably solve even large problems, with hundreds or
thousands of variables and constraints. Two important and well known examples,
described in §1.2 below (and in detail in chapter 4), are least-squares problems and
linear programs. It is less well known that convex optimization is another exception
to the rule: Like least-squares or linear programming, there are very effective
algorithms that can reliably and efficiently solve even large convex problems.

Least-squares and linear programming

In this section we describe two very widely known and used special subclasses of
convex optimization: least-squares and linear programming. (A complete technical
treatment of these problems will be given in chapter 4.)

Least-squares problems

A least-squares problem is an optimization problem with no constraints (i.e., m =
0) and an objective which is a sum of squares of terms of the form a x — b;:

minimize fo(z) = [|[Az —b|2 = 2F_ (aTx — b;)%. (1.4)

Here A € R¥*" (with k > n), aT are the rows of A, and the vector z € R™ is the
optimization variable.

Solving least-squares problems

The solution of a least-squares problem (1.4) can be reduced to solving a set of
linear equations,

(AT A)z = AT,

so we have the analytical solution z = (AT A)"1ATb. For least-squares problems
we have good algorithms (and software implementations) for solving the problem to
high accuracy, with very high reliability. The least-squares problem can be solved
in a time approximately proportional to n?k, with a known constant. A current
desktop computer can solve a least-squares problem with hundreds of variables, and
thousands of terms, in a few seconds; more powerful computers, of course, can solve
larger problems, or the same size problems, faster. (Moreover, these solution times
will decrease exponentially in the future, according to Moore’s law.) Algorithms
and software for solving least-squares problems are reliable enough for embedded
optimization.

In many cases we can solve even larger least-squares problems, by exploiting
some special structure in the coefficient matrix A. Suppose, for example, that the
matrix A is sparse, which means that it has far fewer than kn nonzero entries. By
exploiting sparsity, we can usually solve the least-squares problem much faster than
order n%k. A current desktop computer can solve a sparse least-squares problem
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with tens of thousands of variables, and hundreds of thousands of terms, in around
a minute (although this depends on the particular sparsity pattern).

For extremely large problems (say, with millions of variables), or for problems
with exacting real-time computing requirements, solving a least-squares problem
can be a challenge. But in the vast majority of cases, we can say that existing
methods are very effective, and extremely reliable. Indeed, we can say that solving
least-squares problems (that are not on the boundary of what is currently achiev-
able) is a (mature) technology, that can be reliably used by many people who do
not know, and do not need to know, the details.

Using least-squares

The least-squares problem is the basis for regression analysis, optimal control, and
many parameter estimation and data fitting methods. It has a number of statistical
interpretations, e.g., as maximum likelihood estimation of a vector z, given linear
measurements corrupted by Gaussian measurement errors.

Recognizing an optimization problem as a least-squares problem is straightfor-
ward; we only need to verify that the objective is a quadratic function (and then
test whether the associated quadratic form is positive semidefinite). While the
basic least-squares problem has a simple fixed form, several standard techniques
are used to increase its flexibility in applications.

In weighted least-squares, the weighted least-squares cost

k
Z wi(aj © — b;)?,
i=1

where wy,...,wy are positive, is minimized. (This problem is readily cast and
solved as a standard least-squares problem.) Here the weights w; are chosen to
reflect differing levels of concern about the sizes of the terms alz — b;, or simply
to influence the solution. In a statistical setting, weighted least-squares arises
in estimation of a vector x, given linear measurements corrupted by errors with
unequal variances.

Another technique in least-squares is regularization, in which extra terms are
added to the cost function. In the simplest case, a positive multiple of the sum of
squares of the variables is added to the cost function:

k

Z(a?w — b))%+ pix?,
i=1

i=1

where p > 0. (This problem too can be formulated as a standard least-squares
problem.) The extra terms penalize large values of z, and result in a sensible
solution in cases when minimizing the first sum only does not. The parameter p is
chosen by the user to give the right trade-off between making the original objective
function Zle(a?x —b;)? small, while keeping >_"_; 27 not too big. Regularization
comes up in statistical estimation when the vector = to be estimated is given a prior
distribution.

Weighted least-squares and regularization are covered in chapter 6; their sta-
tistical interpretations are given in chapter 7.
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Linear programming

Another important class of optimization problems is linear programmsing, in which
the objective and all constraint functions are linear:

T

minimize c¢'x (1.5)
subject to a;fra: <b;,, i=1,...,m. ’
Here the vectors c,aq,...,a, € R" and scalars by,...,b,, € R are problem pa-

rameters that specify the objective and constraint functions.

Solving linear programs

There is no simple analytical formula for the solution of a linear program (as there
is for a least-squares problem), but there are a variety of very effective methods for
solving them, including Dantzig’s simplex method, and the more recent interior-
point methods described later in this book. While we cannot give the exact number
of arithmetic operations required to solve a linear program (as we can for least-
squares), we can establish rigorous bounds on the number of operations required
to solve a linear program, to a given accuracy, using an interior-point method. The
complexity in practice is order n?m (assuming m > n) but with a constant that is
less well characterized than for least-squares. These algorithms are quite reliable,
although perhaps not quite as reliable as methods for least-squares. We can easily
solve problems with hundreds of variables and thousands of constraints on a small
desktop computer, in a matter of seconds. If the problem is sparse, or has some
other exploitable structure, we can often solve problems with tens or hundreds of
thousands of variables and constraints.

As with least-squares problems, it is still a challenge to solve extremely large
linear programs, or to solve linear programs with exacting real-time computing re-
quirements. But, like least-squares, we can say that solving (most) linear programs
is a mature technology. Linear programming solvers can be (and are) embedded in
many tools and applications.

Using linear programming

Some applications lead directly to linear programs in the form (1.5), or one of
several other standard forms. In many other cases the original optimization prob-
lem does not have a standard linear program form, but can be transformed to an
equivalent linear program (and then, of course, solved) using techniques covered in
detail in chapter 4.

As a simple example, consider the Chebyshev approximation problem:

minimize max;—1__x |alz — b;|. (1.6)

Here x € R" is the variable, and ay,...,ar € R", b1,...,br € R are parameters
that specify the problem instance. Note the resemblance to the least-squares prob-
lem (1.4). For both problems, the objective is a measure of the size of the terms
alz — b;. In least-squares, we use the sum of squares of the terms as objective,

whereas in Chebyshev approximation, we use the maximum of the absolute values.
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One other important distinction is that the objective function in the Chebyshev
approximation problem (1.6) is not differentiable; the objective in the least-squares
problem (1.4) is quadratic, and therefore differentiable.
The Chebyshev approximation problem (1.6) can be solved by solving the linear

program

minimize ¢

subject to alx —t<b;, i=1,....k (1.7)
—ale—t<-b;, i=1,...,k,
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with variables z € R"™ and ¢ € R. (The details will be given in chapter 6.)
Since linear programs are readily solved, the Chebyshev approximation problem is
therefore readily solved.

Anyone with a working knowledge of linear programming would recognize the
Chebyshev approximation problem (1.6) as one that can be reduced to a linear
program. For those without this background, though, it might not be obvious that
the Chebyshev approximation problem (1.6), with its nondifferentiable objective,
can be formulated and solved as a linear program.

While recognizing problems that can be reduced to linear programs is more
involved than recognizing a least-squares problem, it is a skill that is readily ac-
quired, since only a few standard tricks are used. The task can even be partially
automated; some software systems for specifying and solving optimization prob-
lems can automatically recognize (some) problems that can be reformulated as
linear programs.

Convex optimization

A convex optimization problem is one of the form

minimize  fo(z)

subject to  fi(z) <b;, i=1,...,m, (1.8)

where the functions fo,..., fi, : R"” — R are convex, i.e., satisfy

filoax + By) < afi(x) + Bfi(y)

forallz, ye R" and all a, § € Rwitha+8=1,a >0, 8 > 0. The least-squares
problem (1.4) and linear programming problem (1.5) are both special cases of the
general convex optimization problem (1.8).

Solving convex optimization problems

There is in general no analytical formula for the solution of convex optimization
problems, but (as with linear programming problems) there are very effective meth-
ods for solving them. Interior-point methods work very well in practice, and in some
cases can be proved to solve the problem to a specified accuracy with a number of
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operations that does not exceed a polynomial of the problem dimensions. (This is
covered in chapter 11.)

We will see that interior-point methods can solve the problem (1.8) in a num-
ber of steps or iterations that is almost always in the range between 10 and 100.
Ignoring any structure in the problem (such as sparsity), each step requires on the
order of

max{n®,n?m, F}

operations, where F' is the cost of evaluating the first and second derivatives of the
objective and constraint functions fo, ..., fimn-

Like methods for solving linear programs, these interior-point methods are quite
reliable. We can easily solve problems with hundreds of variables and thousands
of constraints on a current desktop computer, in at most a few tens of seconds. By
exploiting problem structure (such as sparsity), we can solve far larger problems,
with many thousands of variables and constraints.

We cannot yet claim that solving general convex optimization problems is a
mature technology, like solving least-squares or linear programming problems. Re-
search on interior-point methods for general nonlinear convex optimization is still
a very active research area, and no consensus has emerged yet as to what the best
method or methods are. But it is reasonable to expect that solving general con-
vex optimization problems will become a technology within a few years. And for
some subclasses of convex optimization problems, for example second-order cone
programming or geometric programming (studied in detail in chapter 4), it is fair
to say that interior-point methods are approaching a technology.

Using convex optimization

Using convex optimization is, at least conceptually, very much like using least-
squares or linear programming. If we can formulate a problem as a convex opti-
mization problem, then we can solve it efficiently, just as we can solve a least-squares
problem efficiently. With only a bit of exaggeration, we can say that, if you formu-
late a practical problem as a convex optimization problem, then you have solved
the original problem.

There are also some important differences. Recognizing a least-squares problem
is straightforward, but recognizing a convex function can be difficult. In addition,
there are many more tricks for transforming convex problems than for transforming
linear programs. Recognizing convex optimization problems, or those that can
be transformed to convex optimization problems, can therefore be challenging.
The main goal of this book is to give the reader the background needed to do
this. Once the skill of recognizing or formulating convex optimization problems is
developed, you will find that surprisingly many problems can be solved via convex
optimization.

The challenge, and art, in using convex optimization is in recognizing and for-
mulating the problem. Once this formulation is done, solving the problem is, like
least-squares or linear programming, (almost) technology.
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Nonlinear optimization

Nonlinear optimization (or nonlinear programming) is the term used to describe
an optimization problem when the objective or constraint functions are not linear,
but not known to be convex. Sadly, there are no effective methods for solving
the general nonlinear programming problem (1.1). Even simple looking problems
with as few as ten variables can be extremely challenging, while problems with a
few hundreds of variables can be intractable. Methods for the general nonlinear
programming problem therefore take several different approaches, each of which
involves some compromise.

Local optimization

In local optimization, the compromise is to give up seeking the optimal z, which
minimizes the objective over all feasible points. Instead we seek a point that is
only locally optimal, which means that it minimizes the objective function among
feasible points that are near it, but is not guaranteed to have a lower objective
value than all other feasible points. A large fraction of the research on general
nonlinear programming has focused on methods for local optimization, which as a
consequence are well developed.

Local optimization methods can be fast, can handle large-scale problems, and
are widely applicable, since they only require differentiability of the objective and
constraint functions. As a result, local optimization methods are widely used in
applications where there is value in finding a good point, if not the very best. In
an engineering design application, for example, local optimization can be used to
improve the performance of a design originally obtained by manual, or other, design
methods.

There are several disadvantages of local optimization methods, beyond (possi-
bly) not finding the true, globally optimal solution. The methods require an initial
guess for the optimization variable. This initial guess or starting point is critical,
and can greatly affect the objective value of the local solution obtained. Little
information is provided about how far from (globally) optimal the local solution
is. Local optimization methods are often sensitive to algorithm parameter values,
which may need to be adjusted for a particular problem, or family of problems.

Using a local optimization method is trickier than solving a least-squares prob-
lem, linear program, or convex optimization problem. It involves experimenting
with the choice of algorithm, adjusting algorithm parameters, and finding a good
enough initial guess (when one instance is to be solved) or a method for producing
a good enough initial guess (when a family of problems is to be solved). Roughly
speaking, local optimization methods are more art than technology. Local opti-
mization is a well developed art, and often very effective, but it is nevertheless an
art. In contrast, there is little art involved in solving a least-squares problem or
a linear program (except, of course, those on the boundary of what is currently
possible).

An interesting comparison can be made between local optimization methods for
nonlinear programming, and convex optimization. Since differentiability of the ob-
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jective and constraint functions is the only requirement for most local optimization
methods, formulating a practical problem as a nonlinear optimization problem is
relatively straightforward. The art in local optimization is in solving the problem
(in the weakened sense of finding a locally optimal point), once it is formulated.
In convex optimization these are reversed: The art and challenge is in problem
formulation; once a problem is formulated as a convex optimization problem, it is
relatively straightforward to solve it.

Global optimization

In global optimization, the true global solution of the optimization problem (1.1)
is found; the compromise is efficiency. The worst-case complexity of global opti-
mization methods grows exponentially with the problem sizes n and m; the hope
is that in practice, for the particular problem instances encountered, the method is
far faster. While this favorable situation does occur, it is not typical. Even small
problems, with a few tens of variables, can take a very long time (e.g., hours or
days) to solve.

Global optimization is used for problems with a small number of variables, where
computing time is not critical, and the value of finding the true global solution is
very high. One example from engineering design is worst-case analysis or verifica-
tion of a high value or safety-critical system. Here the variables represent uncertain
parameters, that can vary during manufacturing, or with the environment or op-
erating condition. The objective function is a utility function, i.e., one for which
smaller values are worse than larger values, and the constraints represent prior
knowledge about the possible parameter values. The optimization problem (1.1) is
the problem of finding the worst-case values of the parameters. If the worst-case
value is acceptable, we can certify the system as safe or reliable (with respect to
the parameter variations).

A local optimization method can rapidly find a set of parameter values that
is bad, but not guaranteed to be the absolute worst possible. If a local optimiza-
tion method finds parameter values that yield unacceptable performance, it has
succeeded in determining that the system is not reliable. But a local optimization
method cannot certify the system as reliable; it can only fail to find bad parameter
values. A global optimization method, in contrast, will find the absolute worst val-
ues of the parameters, and if the associated performance is acceptable, can certify
the system as safe. The cost is computation time, which can be very large, even
for a relatively small number of parameters. But it may be worth it in cases where
the value of certifying the performance is high, or the cost of being wrong about
the reliability or safety is high.

Role of convex optimization in nonconvex problems
In this book we focus primarily on convex optimization problems, and applications

that can be reduced to convex optimization problems. But convex optimization
also plays an important role in problems that are not convex.
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Initialization for local optimization

One obvious use is to combine convex optimization with a local optimization
method. Starting with a nonconvex problem, we first find an approximate, but
convex, formulation of the problem. By solving this approximate problem, which
can be done easily and without an initial guess, we obtain the exact solution to the
approximate convex problem. This point is then used as the starting point for a
local optimization method, applied to the original nonconvex problem.

Convex heuristics for nonconvex optimization

Convex optimization is the basis for several heuristics for solving nonconvex prob-
lems. One interesting example we will see is the problem of finding a sparse vector
x (i.e., one with few nonzero entries) that satisfies some constraints. While this is
a difficult combinatorial problem, there are some simple heuristics, based on con-
vex optimization, that often find fairly sparse solutions. (These are described in
chapter 6.)

Another broad example is given by randomized algorithms, in which an ap-
proximate solution to a nonconvex problem is found by drawing some number of
candidates from a probability distribution, and taking the best one found as the
approximate solution. Now suppose the family of distributions from which we will
draw the candidates is parametrized, e.g., by its mean and covariance. We can then
pose the question, which of these distributions gives us the smallest expected value
of the objective? It turns out that this problem is sometimes a convex problem,
and therefore efficiently solved. (See, e.g., exercise 11.23.)

Bounds for global optimization

Many methods for global optimization require a cheaply computable lower bound
on the optimal value of the nonconvex problem. Two standard methods for doing
this are based on convex optimization. In relazation, each nonconvex constraint
is replaced with a looser, but convex, constraint. In Lagrangian relaxation, the
Lagrangian dual problem (described in chapter 5) is solved. This problem is convex,
and provides a lower bound on the optimal value of the nonconvex problem.

Outline

The book is divided into three main parts, titled Theory, Applications, and Algo-
rithms.

Part I: Theory

In part I, Theory, we cover basic definitions, concepts, and results from convex
analysis and convex optimization. We make no attempt to be encyclopedic, and
skew our selection of topics toward those that we think are useful in recognizing
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and formulating convex optimization problems. This is classical material, almost
all of which can be found in other texts on convex analysis and optimization. We
make no attempt to give the most general form of the results; for that the reader
can refer to any of the standard texts on convex analysis.

Chapters 2 and 3 cover convex sets and convex functions, respectively. We
give some common examples of convex sets and functions, as well as a number of
convex calculus rules, i.e., operations on sets and functions that preserve convexity.
Combining the basic examples with the convex calculus rules allows us to form
(or perhaps more importantly, recognize) some fairly complicated convex sets and
functions.

In chapter 4, Convex optimization problems, we give a careful treatment of op-
timization problems, and describe a number of transformations that can be used to
reformulate problems. We also introduce some common subclasses of convex opti-
mization, such as linear programming and geometric programming, and the more
recently developed second-order cone programming and semidefinite programming.

Chapter 5 covers Lagrangian duality, which plays a central role in convex opti-
mization. Here we give the classical Karush-Kuhn-Tucker conditions for optimality,
and a local and global sensitivity analysis for convex optimization problems.

Part Il: Applications

In part II, Applications, we describe a variety of applications of convex optimization,
in areas like probability and statistics, computational geometry, and data fitting.
We have described these applications in a way that is accessible, we hope, to a broad
audience. To keep each application short, we consider only simple cases, sometimes
adding comments about possible extensions. We are sure that our treatment of
some of the applications will cause experts to cringe, and we apologize to them
in advance. But our goal is to convey the flavor of the application, quickly and
to a broad audience, and not to give an elegant, theoretically sound, or complete
treatment. Our own backgrounds are in electrical engineering, in areas like control
systems, signal processing, and circuit analysis and design. Although we include
these topics in the courses we teach (using this book as the main text), only a few
of these applications are broadly enough accessible to be included here.

The aim of part II is to show the reader, by example, how convex optimization
can be applied in practice.

Part Ill: Algorithms

In part III, Algorithms, we describe numerical methods for solving convex opti-
mization problems, focusing on Newton’s algorithm and interior-point methods.
Part III is organized as three chapters, which cover unconstrained optimization,
equality constrained optimization, and inequality constrained optimization, respec-
tively. These chapters follow a natural hierarchy, in which solving a problem is
reduced to solving a sequence of simpler problems. Quadratic optimization prob-
lems (including, e.g., least-squares) form the base of the hierarchy; they can be
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solved exactly by solving a set of linear equations. Newton’s method, developed in
chapters 9 and 10, is the next level in the hierarchy. In Newton’s method, solving
an unconstrained or equality constrained problem is reduced to solving a sequence
of quadratic problems. In chapter 11, we describe interior-point methods, which
form the top level of the hierarchy. These methods solve an inequality constrained
problem by solving a sequence of unconstrained, or equality constrained, problems.

Overall we cover just a handful of algorithms, and omit entire classes of good
methods, such as quasi-Newton, conjugate-gradient, bundle, and cutting-plane al-
gorithms. For the methods we do describe, we give simplified variants, and not the
latest, most sophisticated versions. Our choice of algorithms was guided by several
criteria. We chose algorithms that are simple (to describe and implement), but
also reliable and robust, and effective and fast enough for most problems.

Many users of convex optimization end up using (but not developing) standard
software, such as a linear or semidefinite programming solver. For these users, the
material in part III is meant to convey the basic flavor of the methods, and give
some ideas of their basic attributes. For those few who will end up developing new
algorithms, we think that part III serves as a good introduction.

Appendices

There are three appendices. The first lists some basic facts from mathematics that
we use, and serves the secondary purpose of setting out our notation. The second
appendix covers a fairly particular topic, optimization problems with quadratic
objective and one quadratic constraint. These are nonconvex problems that never-
theless can be effectively solved, and we use the results in several of the applications
described in part II.

The final appendix gives a brief introduction to numerical linear algebra, con-
centrating on methods that can exploit problem structure, such as sparsity, to gain
efficiency. We do not cover a number of important topics, including roundoff analy-
sis, or give any details of the methods used to carry out the required factorizations.
These topics are covered by a number of excellent texts.

Comments on examples

In many places in the text (but particularly in parts II and III, which cover ap-
plications and algorithms, respectively) we illustrate ideas using specific examples.
In some cases, the examples are chosen (or designed) specifically to illustrate our
point; in other cases, the examples are chosen to be ‘typical’. This means that the
examples were chosen as samples from some obvious or simple probability distri-
bution. The dangers of drawing conclusions about algorithm performance from a
few tens or hundreds of randomly generated examples are well known, so we will
not repeat them here. These examples are meant only to give a rough idea of al-
gorithm performance, or a rough idea of how the computational effort varies with
problem dimensions, and not as accurate predictors of algorithm performance. In
particular, your results may vary from ours.
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Comments on exercises

Each chapter concludes with a set of exercises. Some involve working out the de-
tails of an argument or claim made in the text. Others focus on determining, or
establishing, convexity of some given sets, functions, or problems; or more gener-
ally, convex optimization problem formulation. Some chapters include numerical
exercises, which require some (but not much) programming in an appropriate high
level language. The difficulty level of the exercises is mixed, and varies without
warning from quite straightforward to rather tricky.

Notation

Our notation is more or less standard, with a few exceptions. In this section we
describe our basic notation; a more complete list appears on page 697.

We use R to denote the set of real numbers, R to denote the set of nonnegative
real numbers, and R,y to denote the set of positive real numbers. The set of real
n-vectors is denoted R", and the set of real m x n matrices is denoted R"™*". We
delimit vectors and matrices with square brackets, with the components separated
by space. We use parentheses to construct column vectors from comma separated
lists. For example, if a, b, ¢ € R, we have

a
(a,b,e)=| b | =[a b c]T,
c

which is an element of R®. The symbol 1 denotes a vector all of whose components
are one (with dimension determined from context). The notation x; can refer to
the ith component of the vector z, or to the ith element of a set or sequence of
vectors x1,T9,.... The context, or the text, makes it clear which is meant.

We use S* to denote the set of symmetric k X k matrices, Si to denote the
set of symmetric positive semidefinite k& x k& matrices, and S’i .+ to denote the set
of symmetric positive definite k& x k matrices. The curled inequality symbol >
(and its strict form >) is used to denote generalized inequality: between vectors,
it represents componentwise inequality; between symmetric matrices, it represents
matrix inequality. With a subscript, the symbol <x (or <) denotes generalized
inequality with respect to the cone K (explained in §2.4.1).

Our notation for describing functions deviates a bit from standard notation,
but we hope it will cause no confusion. We use the notation f : R? — R? to mean
that f is an R%-valued function on some subset of RP, specifically, its domain,
which we denote dom f. We can think of our use of the notation f : R? — RY as
a declaration of the function type, as in a computer language: f : R’ — R? means
that the function f takes as argument a real p-vector, and returns a real g-vector.
The set dom f, the domain of the function f, specifies the subset of R? of points
x for which f(z) is defined. As an example, we describe the logarithm function
as log : R — R, with domlog = R, . The notation log : R — R means that
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the logarithm function accepts and returns a real number; domlog = R, means
that the logarithm is defined only for positive numbers.

We use R" as a generic finite-dimensional vector space. We will encounter
several other finite-dimensional vector spaces, e.g., the space of polynomials of a
variable with a given maximum degree, or the space S* of symmetric k X k matrices.
By identifying a basis for a vector space, we can always identify it with R™ (where
n is its dimension), and therefore the generic results, stated for the vector space
R", can be applied. We usually leave it to the reader to translate general results
or statements to other vector spaces. For example, any linear function f : R" - R
can be represented in the form f(z) = ¢’x, where ¢ € R". The corresponding
statement for the vector space S* can be found by choosing a basis and translating.
This results in the statement: any linear function f : S* 5 R can be represented
in the form f(X) = tr(CX), where C € S*.
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Chapter 2

Convex sets

Affine and convex sets

Lines and line segments

Suppose x1 # x2 are two points in R". Points of the form
y="0x1+ (1—0)xs,

where 6 € R, form the line passing through x; and x5. The parameter value § = 0
corresponds to y = x3, and the parameter value § = 1 corresponds to y = z7.
Values of the parameter ¢ between 0 and 1 correspond to the (closed) line segment
between x; and xs.

Expressing y in the form

y=2x9+0(x1 — x2)

gives another interpretation: y is the sum of the base point x5 (corresponding
to 6 = 0) and the direction x1 — x5 (which points from zo to z1) scaled by the
parameter #. Thus, 6 gives the fraction of the way from zs to z; where y lies. As
0 increases from 0 to 1, the point y moves from x5 to z1; for # > 1, the point y lies
on the line beyond z7. This is illustrated in figure 2.1.

Affine sets

A set C C R" is affine if the line through any two distinct points in C' lies in C,
i.e., if for any 1, x9 € C and 6 € R, we have 0z + (1 —0)z2 € C. In other words,
C' contains the linear combination of any two points in C, provided the coefficients
in the linear combination sum to one.

This idea can be generalized to more than two points. We refer to a point
of the form 61z, + -+ - 4 Oz, where 61 + --- + 0, = 1, as an affine combination
of the points 21, ..., ;. Using induction from the definition of affine set (i.e.,
that it contains every affine combination of two points in it), it can be shown that
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Figure 2.1 The line passing through z: and x2 is described parametrically
by 0x1 4 (1 — 0)z2, where 0 varies over R. The line segment between x1 and
2, which corresponds to 6 between 0 and 1, is shown darker.

an affine set contains every affine combination of its points: If C' is an affine set,
x1,...,x € C,and 61 + - -+ 0, = 1, then the point 6,21 + - - - + 0z also belongs
to C.

If C is an affine set and xy € C, then the set

V=C—-zy={x—x9|zeC}

is a subspace, i.e., closed under sums and scalar multiplication. To see this, suppose
v1, v2 € V and a, B € R. Then we have v; + zg € C and v, + x¢ € C, and so

avy + P + x9 = a(vy + o) + f(va +20) + (1 —a — Bag € C,

since C is affine, and a4+ 4 (1 — o — ) = 1. We conclude that avy + v € V,
since avy + fvg + a9 € C.
Thus, the affine set C' can be expressed as

O=V+1‘0={’U+J?0|’U€V},

i.e., as a subspace plus an offset. The subspace V' associated with the affine set C'
does not depend on the choice of xg, so xy can be chosen as any point in C. We
define the dimension of an affine set C' as the dimension of the subspace V = C'—xz,
where x is any element of C.

Example 2.1 Solution set of linear equations. The solution set of a system of linear
equations, C = {z | Az = b}, where A € R™*"™ and b € R™, is an affine set. To
show this, suppose 1, x2 € C, i.e., Ax1 = b, Axre = b. Then for any 0, we have
A(@Il + (1 — G)Ig) = QAxi + (1 — 9)A.’L‘2

= 0b+(1-0)

= b,
which shows that the affine combination 6x1 + (1 — 0)x2 is also in C. The subspace
associated with the affine set C' is the nullspace of A.

We also have a converse: every affine set can be expressed as the solution set of a
system of linear equations.
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The set of all affine combinations of points in some set C' C R" is called the
affine hull of C, and denoted aff C"

aﬁ'C:{01z1+~~~+9k:1:k|z1,...,9:k€C’, 91++0k:1}

The affine hull is the smallest affine set that contains C', in the following sense: if
S is any affine set with C' C S, then aff C' C S.

Affine dimension and relative interior

We define the affine dimension of a set C' as the dimension of its affine hull. Affine
dimension is useful in the context of convex analysis and optimization, but is not
always consistent with other definitions of dimension. As an example consider the
unit circle in R?, i.e., {x € R* | 2} + 23 = 1}. Tts affine hull is all of R?, so its
affine dimension is two. By most definitions of dimension, however, the unit circle
in R? has dimension one.

If the affine dimension of a set C' C R" is less than n, then the set lies in
the affine set aff C' # R"™. We define the relative interior of the set C, denoted
relint C, as its interior relative to aff C:

relint C = {z € C | B(z,r)Naff C C C for some r > 0},

where B(z,r) = {y | |ly — z|| < r}, the ball of radius r and center x in the norm
|| - ||. (Here || - || is any norm; all norms define the same relative interior.) We can
then define the relative boundary of a set C' as clC'\ relint C', where clC is the
closure of C.

Example 2.2 Consider a square in the (1, 22)-plane in R?, defined as
C={zeR’| —1<e <1, -1<w; <1, 23 =0}

Its affine hull is the (z1, z2)-plane, i.c., aff C = { € R® | #3 = 0}. The interior of C
is empty, but the relative interior is

relintC = {z € R’ | —1 <z <1, -1 <2 <1, 33 =0}.
Its boundary (in R?) is itself; its relative boundary is the wire-frame outline,

{z € R® | max{|z1],|z2|} =1, 3 = 0}.

2.1.4 Convex sets

A set C'is conver if the line segment between any two points in C lies in C, i.e.,
if for any x1, x2 € C and any 6 with 0 < 8 < 1, we have

Oxq + (1 — 9)332 eC.
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Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

L] (e

Figure 2.3 The convex hulls of two sets in R?. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R?.

We call a point of the form 61z + - -+ + Opxy, where 1 + --- 4+ 6 = 1 and
0; >0,i=1,...,k, a convex combination of the points x1, ..., rr. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with #; the fraction of z; in the mixture.

The convez hull of a set C'; denoted conv C' is the set of all convex combinations
of points in C:

convC ={b1x1+- -+ Opxy |2, €C, 0, >0, i=1,....k 01 4+---+60, =1}

As the name suggests, the convex hull conv C' is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C', then conv C' C
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose 61,65, ...
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satisfy
0; >0, i=12.., > 6;=1,
i=1
and x1,%o2,... € C, where C C R" is convex. Then

i O;,x; € C,
i=1

if the series converges. More generally, suppose p : R" — R satisfies p(z) > 0 for
all z € C and [, p(x) de =1, where C' C R" is convex. Then

/ p(z)z dx € C,
c

if the integral exists.

In the most general form, suppose C C R is convex and z is a random vector
with x € C' with probability one. Then Ex € C. Indeed, this form includes all
the others as special cases. For example, suppose the random variable x only takes
on the two values z1 and z9, with prob(z = z1) = 6 and prob(z = 25) =1 — 0,
where 0 < 0 < 1. Then Ez = 621 + (1 — )25, and we are back to a simple convex
combination of two points.

Cones

A set C'is called a cone, or nonnegative homogeneous, if for every x € C' and 6 > 0
we have 0z € C. A set C is a convex cone if it is convex and a cone, which means
that for any x1, x2 € C' and 61, 03 > 0, we have

0121 + 0229 € C.

Points of this form can be described geometrically as forming the two-dimensional
pie slice with apex 0 and edges passing through z1 and x5. (See figure 2.4.)

A point of the form 6121 + --- + Opxp with 61,...,0; > 0 is called a conic
combination (or a nonnegative linear combination) of x1,...,xp. If x; are in a
convex cone C', then every conic combination of z; is in C. Conversely, a set C' is
a convex cone if and only if it contains all conic combinations of its elements. Like
convex (or affine) combinations, the idea of conic combination can be generalized
to infinite sums and integrals.

The conic hull of a set C' is the set of all conic combinations of points in C, i.e.,

{91x1+"'+0k$k|xieo, 6; >0, iZl,...,k},

which is also the smallest convex cone that contains C' (see figure 2.5).
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Ty

0

Figure 2.4 The pie slice shows all points of the form 61x1 + 6222, where
01, 62 > 0. The apex of the slice (which corresponds to 61 = 62 = 0) is at
0; its edges (which correspond to 1 = 0 or 02 = 0) pass through the points
1 and za.

0 0
Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.
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Some important examples

In this section we describe some important examples of convex sets which we will
encounter throughout the rest of the book. We start with some simple examples.

e The empty set (), any single point (i.e., singleton) {zg}, and the whole space
R" are affine (hence, convex) subsets of R".

e Any line is affine. If it passes through zero, it is a subspace, hence also a
convex cone.

e A line segment is convex, but not affine (unless it reduces to a point).

e A ray, which has the form {x + 6v | 6 > 0}, where v # 0, is convex, but not
affine. It is a convex cone if its base x is 0.

e Any subspace is affine, and a convex cone (hence convex).

Hyperplanes and halfspaces

A hyperplane is a set of the form
{w|aTz = b},

where a € R", a # 0, and b € R. Analytically it is the solution set of a nontrivial
linear equation among the components of z (and hence an affine set). Geometri-
cally, the hyperplane {z | a’z = b} can be interpreted as the set of points with a
constant inner product to a given vector a, or as a hyperplane with normal vector
a; the constant b € R determines the offset of the hyperplane from the origin. This
geometric interpretation can be understood by expressing the hyperplane in the
form
{z|a" (z —20) = 0},

where x is any point in the hyperplane (i.e., any point that satisfies a’x¢ = b).
This representation can in turn be expressed as

{z | aT(x—xo) =0} = zo 4 a’,

where a' denotes the orthogonal complement of a, i.e., the set of all vectors or-
thogonal to it:
at ={v|aTv=0}.

This shows that the hyperplane consists of an offset xg, plus all vectors orthog-
onal to the (normal) vector a. These geometric interpretations are illustrated in
figure 2.6.
A hyperplane divides R" into two halfspaces. A (closed) halfspace is a set of
the form
{z|a"z <D}, (2.1)

where a # 0, i.e., the solution set of one (nontrivial) linear inequality. Halfspaces
are convex, but not affine. This is illustrated in figure 2.7.



28 2 Convex sets

Lo

aTz =10

Figure 2.6 Hyperplane in R?, with normal vector a and a point zo in the
hyperplane. For any point z in the hyperplane, x — zo (shown as the darker
arrow) is orthogonal to a.

Zo

Figure 2.7 A hyperplane defined by a”z = b in R? determines two halfs-
paces. The halfspace determined by a”z > b (not shaded) is the halfspace
extending in the direction a. The halfspace determined by a”x < b (which
is shown shaded) extends in the direction —a. The vector a is the outward
normal of this halfspace.
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Figure 2.8 The shaded set is the halfspace determined by a” (z — z0) < 0.
The vector x1 —xp makes an acute angle with a, so 1 is not in the halfspace.
The vector x2 — xo makes an obtuse angle with a, and so is in the halfspace.

The halfspace (2.1) can also be expressed as
{z [ a”(x — z0) <0}, (2.2)

where z( is any point on the associated hyperplane, i.e., satisfies a’zg = b. The
representation (2.2) suggests a simple geometric interpretation: the halfspace con-
sists of g plus any vector that makes an obtuse (or right) angle with the (outward
normal) vector a. This is illustrated in figure 2.8.

The boundary of the halfspace (2.1) is the hyperplane {z | a’x = b}. The set
{z | a¥x < b}, which is the interior of the halfspace {z | aTz < b}, is called an
open halfspace.

Euclidean balls and ellipsoids
A (Euclidean) ball (or just ball) in R™ has the form
B(ae,r) = {z | o —zells < 7} = {z | (2 — 20)" (2 — xc) <7},
where r > 0, and || - [|2 denotes the Euclidean norm, i.e., ||ull2 = (uu)'/2. The
vector z. is the center of the ball and the scalar r is its radius; B(x.,r) consists

of all points within a distance r of the center z.. Another common representation
for the Fuclidean ball is

Blxe,r) = {xe +ru| [lul2 <1}.
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2.2.3

Figure 2.9 An ellipsoid in R?, shown shaded. The center z. is shown as a
dot, and the two semi-axes are shown as line segments.

A Euclidean ball is a convex set: if |1 — 2¢|la < 7, |22 — 2|2 < r, and
0<6 <1, then
1621 + (1 = O)xg —zclla = [|0(x1 — ) + (1 = 0)(22 — )2
Ollzr — zell2 + (1 = 0)[[w2 — zcll2

r.

IA A

(Here we use the homogeneity property and triangle inequality for ||-||2; see §A.1.2.)
A related family of convex sets is the ellipsoids, which have the form

E={z|(x—z)"P Ha—=) <1}, (2.3)

where P = PT = 0, i.e., P is symmetric and positive definite. The vector z. € R"
is the center of the ellipsoid. The matrix P determines how far the ellipsoid extends
in every direction from x.; the lengths of the semi-axes of £ are given by v/);, where
\; are the eigenvalues of P. A ball is an ellipsoid with P = r2I. Figure 2.9 shows
an ellipsoid in R?.

Another common representation of an ellipsoid is

& =A{rc+ Au | [lul2 <1}, (2.4)

where A is square and nonsingular. In this representation we can assume without
loss of generality that A is symmetric and positive definite. By taking A = P'/2,
this representation gives the ellipsoid defined in (2.3). When the matrix A in (2.4)
is symmetric positive semidefinite but singular, the set in (2.4) is called a degenerate
ellipsoid; its affine dimension is equal to the rank of A. Degenerate ellipsoids are
also convex.

Norm balls and norm cones

Suppose ||-|| is any norm on R™ (see §A.1.2). From the general properties of norms it
can be shown that a norm ball of radius r and center ., given by {z | [[z—z.| <7},
is convex. The norm cone associated with the norm || - || is the set

C={(t)]llz] <t} SR
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Figure 2.10 Boundary of second-order cone in R?, {(z1, z2,t) | (z7+23)"/? <

ny

It is (as the name suggests) a convex cone.

Example 2.3 The second-order cone is the norm cone for the Euclidean norm, i.e.,
C = {=t)eR"™||z]2 <t}

{EIETT A= o)

The second-order cone is also known by several other names. It is called the quadratic
cone, since it is defined by a quadratic inequality. It is also called the Lorentz cone
or ice-cream cone. Figure 2.10 shows the second-order cone in R3.

2.2.4 Polyhedra

A polyhedron is defined as the solution set of a finite number of linear equalities
and inequalities:

P ={z| asz:gbj, j=1,...,m, cfx:dj, j=1,....p} (2.5)
A polyhedron is thus the intersection of a finite number of halfspaces and hyper-
planes. Affine sets (e.g., subspaces, hyperplanes, lines), rays, line segments, and
halfspaces are all polyhedra. It is easily shown that polyhedra are convex sets.
A bounded polyhedron is sometimes called a polytope, but some authors use the
opposite convention (i.e., polytope for any set of the form (2.5), and polyhedron
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Figure 2.11 The polyhedron P (shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, ....,as.

when it is bounded). Figure 2.11 shows an example of a polyhedron defined as the
intersection of five halfspaces.
It will be convenient to use the compact notation

P={x]| Az <), Cx=d} (2.6)
for (2.5), where
af o
A= ) C= ’
al )

and the symbol < denotes vector inequality or componentwise inequality in R™:
u < v means u; < v; fort=1,...,m.

Example 2.4 The nonnegative orthant is the set of points with nonnegative compo-
nents, i.e.,

"={zeR"|2;>0,i=1,...,n}={z € R" |2 = 0}.

(Here R4 denotes the set of nonnegative numbers: Ry = {z € R | z > 0}.) The
nonnegative orthant is a polyhedron and a cone (and therefore called a polyhedral
cone).

Simplexes

Simplezes are another important family of polyhedra. Suppose the k + 1 points
vg,...,0x € R"™ are affinely independent, which means vy — vg,..., v, — vy are
linearly independent. The simplex determined by them is given by

C = conv{vy,...,v} = {Oovo + - -+ Oy | 0 =0, 170 =1}, (2.7)
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where 1 denotes the vector with all entries one. The affine dimension of this simplex
is k, so it is sometimes referred to as a k-dimensional simplex in R".

Example 2.5 Some common simplexes. A 1-dimensional simplex is a line segment;
a 2-dimensional simplex is a triangle (including its interior); and a 3-dimensional
simplex is a tetrahedron.

The unit simplex is the n-dimensional simplex determined by the zero vector and the
unit vectors, i.e., 0, e1,...,e, € R™. It can be expressed as the set of vectors that
satisfy

The probability simplex is the (n — 1)-dimensional simplex determined by the unit
vectors e1,...,e, € R™. Tt is the set of vectors that satisfy

x>0, 17z =1.

Vectors in the probability simplex correspond to probability distributions on a set
with n elements, with z; interpreted as the probability of the ith element.

To describe the simplex (2.7) as a polyhedron, i.e., in the form (2.6), we proceed
as follows. By definition, x € C if and only if z = Oyvg + 0101 + - - - + 0wy, for some
0 = 0 with 176 = 1. Equivalently, if we define y = (01,...,6;) and

B=[vi—v - vp—u | e R,
we can say that z € C if and only if
x =wvo+ By (2.8)

for some 3 = 0 with 17y < 1. Now we note that affine independence of the
points vy, ...,v; implies that the matrix B has rank k. Therefore there exists a
nonsingular matrix A = (A, Az) € R™™" such that

A | I
AB_[AJB_[O].
Multiplying (2.8) on the left with A, we obtain

Aix = Ajvg + Y, Asx = Aguyg.

From this we see that z € C if and only if Asx = Ajvg, and the vector y =
Az — Ajwg satisfies y = 0 and 17y < 1. In other words we have z € C if and only
if

Asx = Asvyg, Az = Ajvg, lTAlx <1+ ].TAlvo,

which is a set of linear equalities and inequalities in z, and so describes a polyhe-
dron.
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2.2.5

Convex hull description of polyhedra

The convex hull of the finite set {vy,...,v;} is
conv{vy,...,v} = {bhv1 + -+ 0pv | 0 = 0, 179 = 1}.

This set is a polyhedron, and bounded, but (except in special cases, e.g., a simplex)
it is not simple to express it in the form (2.5), i.e., by a set of linear equalities and
inequalities.

A generalization of this convex hull description is

{91v1+-~+0kvk|01+~~+0m:1, 9120, iil,...,k}, (29)

where m < k. Here we consider nonnegative linear combinations of v;, but only
the first m coefficients are required to sum to one. Alternatively, we can inter-
pret (2.9) as the convex hull of the points vy,..., v, plus the conic hull of the
points vp41,...,0k. The set (2.9) defines a polyhedron, and conversely, every
polyhedron can be represented in this form (although we will not show this).

The question of how a polyhedron is represented is subtle, and has very im-
portant practical consequences. As a simple example consider the unit ball in the
loo-norm in R™,

C={z||z;| <1,i=1,...,n}

The set C' can be described in the form (2.5) with 2n linear inequalities +efz < 1,
where e; is the ith unit vector. To describe it in the convex hull form (2.9) requires
at least 2" points:

C = conv{vy,...,von},

where v1,...,v9n are the 2™ vectors all of whose components are 1 or —1. Thus
the size of the two descriptions differs greatly, for large n.

The positive semidefinite cone
We use the notation S™ to denote the set of symmetric n X n matrices,
Sn _ {X c Rnxn | X:XT},

which is a vector space with dimension n(n 4 1)/2. We use the notation S’} to
denote the set of symmetric positive semidefinite matrices:

ST ={XeS"| X =0},
and the notation S'! | to denote the set of symmetric positive definite matrices:
ST, ={XeS"|X >0}

(This notation is meant to be analogous to R, which denotes the nonnegative
reals, and R, which denotes the positive reals.)
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Figure 2.12 Boundary of positive semidefinite cone in S2.

The set S} is a convex cone: if 61,6, > 0 and A, B € S’} , then ;A+60,B € S'}..
This can be seen directly from the definition of positive semidefiniteness: for any
z € R", we have

27(01A+ 02B)x = 0127 Az + 02" Bx > 0,

1fAiO,Bi0and01,€220

Example 2.6 Positive semidefinite cone in S?. We have

X:|:§ z:|€Si <~ x>0, z>0, a:zZyQ.

The boundary of this cone is shown in figure 2.12, plotted in R® as (z,y,2).

2.3 Operations that preserve convexity

In this section we describe some operations that preserve convexity of sets, or
allow us to construct convex sets from others. These operations, together with the
simple examples described in §2.2, form a calculus of convex sets that is useful for
determining or establishing convexity of sets.
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2.3.1

2.3.2

Intersection

Convexity is preserved under intersection: if S; and Sy are convex, then S; NS5 is
convex. This property extends to the intersection of an infinite number of sets: if
Sy is convex for every o € A, then (), 4 Sa is convex. (Subspaces, affine sets, and
convex cones are also closed under arbitrary intersections.) As a simple example,
a polyhedron is the intersection of halfspaces and hyperplanes (which are convex),
and therefore is convex.

Example 2.7 The positive semidefinite cone S’ can be expressed as

({xes™|z"xz >0}
z#0
For each z # 0, 27 X z is a (not identically zero) linear function of X, so the sets
{Xes"|z"Xz>0}

are, in fact, halfspaces in S™. Thus the positive semidefinite cone is the intersection
of an infinite number of halfspaces, and so is convex.

Example 2.8 We consider the set
S={zeR"||pt)] <1 for |t| < m/3}, (2.10)

where p(t) = Z;n:l i coskt. The set S can be expressed as the intersection of an
infinite number of slabs: S = ﬂ|t|<ﬂ/3 S, where

S; ={x| —1< (cost,...,cosmt)"xz <1},

and so is convex. The definition and the set are illustrated in figures 2.13 and 2.14,
for m = 2.

In the examples above we establish convexity of a set by expressing it as a
(possibly infinite) intersection of halfspaces. We will see in §2.5.1 that a converse
holds: every closed convex set S is a (usually infinite) intersection of halfspaces.
In fact, a closed convex set S is the intersection of all halfspaces that contain it:

S = m {H | H halfspace, S C H}.

Affine functions

Recall that a function f : R"™ — R™ is affine if it is a sum of a linear function and
a constant, i.e., if it has the form f(z) = Ax + b, where A € R™*" and b € R™.
Suppose S C R" is convex and f : R™ — R™ is an affine function. Then the image
of S under f,

f(8) ={f(z) [z €S},
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0 /3 ; 27/3 i
Figure 2.13 Three trigonometric polynomials associated with points in the
set S defined in (2.10), for m = 2. The trigonometric polynomial plotted
with dashed line type is the average of the other two.

2

—2

-2 1 2

1

Figure 2.14 The set S defined in (2.10), for m = 2, is shown as the white
area in the middle of the plot. The set is the intersection of an infinite
number of slabs (20 of which are shown), hence convex.
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is convex. Similarly, if f: R¥ — R" is an affine function, the inverse image of S
under f,
F7H8) =A{z | f(z) € S},
is convex.
Two simple examples are scaling and translation. If S C R" is convex, a € R,
and a € R", then the sets S and S + a are convex, where

aS ={ax |z e S}, S+a={r+alxzeS}

The projection of a convex set onto some of its coordinates is convex: if S C
R™ x R" is convex, then

T ={z1 € R" | (x1,22) € S for some z5 € R"}

1S convex.
The sum of two sets is defined as

S1+Sy={z+y|xz eSS, ye S}

If S; and Sy are convex, then Sy + S is convex. To see this, if S; and Sy are
convex, then so is the direct or Cartesian product

Sl X 52 = {(.’171,1‘2) | xr1 € Sl, To € SQ}

The image of this set under the linear function f(z1,22) = x1 + x2 is the sum
S1 + Ss.
We can also consider the partial sum of S1, So € R™ x R™, defined as

S = {(xayl +y2) ‘ (xayl) € Sl7 (ﬂf,yg) € S2}7

where z € R" and y; € R™. For m = 0, the partial sum gives the intersection of
Sy and So; for n = 0, it is set addition. Partial sums of convex sets are convex (see
exercise 2.16).

Example 2.9 Polyhedron. The polyhedron {z | Az < b, Cx = d} can be expressed as
the inverse image of the Cartesian product of the nonnegative orthant and the origin
under the affine function f(z) = (b — Az,d — Cx):

{z| Az <b, Cx=d} ={z| f(z) e R} x {0}}.

Example 2.10 Solution set of linear matriz inequality. The condition
Alz) =x214A1 4+ -+ znAn 2 B, (2.11)

where B, A; € S™, is called a linear matriz inequality (LMI) in x. (Note the similarity
to an ordinary linear inequality,

aTz:zlal + -4 xpan, < b,
with b, a; € R.)

The solution set of a linear matrix inequality, {z | A(z) =< B}, is convex. Indeed,
it is the inverse image of the positive semidefinite cone under the affine function
f:R"™ — S™ given by f(z) = B — A(z).
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Example 2.11 Hyperbolic cone. The set
{z| 2" Pz < ("z)?, "2z >0}

where P € S’y and ¢ € R", is convex, since it is the inverse image of the second-order
cone,
{(z,t) | 272z <, t >0},

under the affine function f(z) = (P*/?z,c"z).

Example 2.12 FEllipsoid. The ellipsoid
E={o|(w—w) P (w—wm) <1}
where P € S7,, is the image of the unit Euclidean ball {u | |Jul|2 < 1} under the

affine mapping f(u) = PY2y 4z, (It is also the inverse image of the unit ball under
the affine mapping g(z) = P~"2(z — z.).)

Linear-fractional and perspective functions

In this section we explore a class of functions, called linear-fractional, that is more
general than affine but still preserves convexity.

The perspective function

We define the perspective function P : R"™ — R"™, with domain dom P = R™ x
Ry, as P(z,t) = z/t. (Here R4 denotes the set of positive numbers: R} =
{z € R |z > 0}.) The perspective function scales or normalizes vectors so the last
component is one, and then drops the last component.

Remark 2.1 We can interpret the perspective function as the action of a pin-hole
camera. A pin-hole camera (in RS) consists of an opaque horizontal plane x3 = 0,
with a single pin-hole at the origin, through which light can pass, and a horizontal
image plane z3 = —1. An object at =, above the camera (i.e., with z3 > 0), forms
an image at the point —(x1/x3,z2/x3,1) on the image plane. Dropping the last
component of the image point (since it is always —1), the image of a point at x
appears at y = —(z1/x3,22/x3) = —P(z) on the image plane. This is illustrated in
figure 2.15.

If C C dom P is convex, then its image
P(C) ={P(z) |z € C}

is convex. This result is certainly intuitive: a convex object, viewed through a
pin-hole camera, yields a convex image. To establish this fact we show that line
segments are mapped to line segments under the perspective function. (This too
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Figure 2.15 Pin-hole camera interpretation of perspective function. The
dark horizontal line represents the plane x3 = 0 in R?, which is opaque,
except for a pin-hole at the origin. Objects or light sources above the plane
appear on the image plane x3 = —1, which is shown as the lighter horizontal
line. The mapping of the position of a source to the position of its image is
related to the perspective function.

makes sense: a line segment, viewed through a pin-hole camera, yields a line seg-
ment image.) Suppose that & = (Z,2,11), ¥ = (§,Yns1) € R"™ with 2,41 > 0,
Yn+1 > 0. Then for 0 <0 <1,

i+ (1-0)7
0zni1 + (1= 0)yns1

P(fx + (1 -0)y) = pP(@) + (1 = p)Py),

where
Ox n+1

m= 02n11+ (1= 0)yns1

This correspondence between 6 and p is monotonic: as 6 varies between 0 and 1
(which sweeps out the line segment [z, y]), u varies between 0 and 1 (which sweeps
out the line segment [P(z), P(y)]). This shows that P([z,y]) = [P(x), P(y)].

Now suppose C' is convex with C C dom P (i.e., 2,41 > 0 for all x € C), and
x, y € C. To establish convexity of P(C) we need to show that the line segment
[P(z), P(y)] is in P(C). But this line segment is the image of the line segment
[z,y] under P, and so lies in P(C).

The inverse image of a convex set under the perspective function is also convex:
if C C R" is convex, then

€ [0,1].

PHC) = {(x,t) e R"™ |2/t € C, t > 0}

is convex. To show this, suppose (z,t) € P~1(C), (y,s) € P~1(C),and 0 < 0 < 1.
We need to show that

0(z,t) + (1 — 0)(y,s) € P~H0),

i.e., that
Oz + (1 -0)y

it (1—6)s - C
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(0t + (1 — 0)s > 0 is obvious). This follows from

g = )+ (1= (/).
where B o .
=g a—gs < 0

Linear-fractional functions

A linear-fractional function is formed by composing the perspective function with
an affine function. Suppose ¢ : R™ — R™ " is affine, i.e.,

g(x)={c‘i]x+{2y (2.12)

where A € R™", b€ R™, c € R”, and d € R. The function f : R" — R™ given
by f=Pog, ie.,

f(x) = (Az +b)/(c"x + d), dom f = {z | "'z +d > 0}, (2.13)

is called a linear-fractional (or projective) function. If ¢ = 0 and d > 0, the domain
of fis R", and f is an affine function. So we can think of affine and linear functions
as special cases of linear-fractional functions.

Remark 2.2 Projective interpretation. It is often convenient to represent a linear-
fractional function as a matrix

Q= { C’i Z } e Rt (2.14)

that acts on (multiplies) points of form (z, 1), which yields (Az + b,c"« + d). This
result is then scaled or normalized so that its last component is one, which yields
(f(x),1).

This representation can be interpreted geometrically by associating R™ with a set
of rays in R™"! as follows. With each point z in R™ we associate the (open) ray
P(z) = {t(z,1) | t > 0} in R""*. The last component of this ray takes on positive
values. Conversely any ray in R""!, with base at the origin and last component
which takes on positive values, can be written as P(v) = {t(v,1) | t > 0} for some
v € R"™. This (projective) correspondence P between R™ and the halfspace of rays
with positive last component is one-to-one and onto.

The linear-fractional function (2.13) can be expressed as
@) =P (QP(=).

Thus, we start with € dom f, i.e., ¢c'x 4+ d > 0. We then form the ray P(z) in
R""!. The linear transformation with matrix @ acts on this ray to produce another
ray QP(z). Since z € dom f, the last component of this ray assumes positive values.
Finally we take the inverse projective transformation to recover f(z).
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Figure 2.16 Left. A set C C R?. The dashed line shows the boundary of
the domain of the linear-fractional function f(x) = z/(z1 + x2 + 1) with
dom f = {(z1,22) | 1 + z2 + 1 > 0}. Right. Image of C under f. The
dashed line shows the boundary of the domain of f~*.

Like the perspective function, linear-fractional functions preserve convexity. If

C is convex and lies in the domain of f (i.e., cf'x +d > 0 for z € C), then its
image f(C) is convex. This follows immediately from results above: the image of C
under the affine mapping (2.12) is convex, and the image of the resulting set under
the perspective function P, which yields f(C), is convex. Similarly, if C' C R™ is
convex, then the inverse image f~!(C) is convex.

Example 2.13 Conditional probabilities. Suppose u and v are random variables
that take on values in {1,...,n} and {1,...,m}, respectively, and let p;; denote
prob(u = i¢,v = j). Then the conditional probability f;; = prob(u = i|lv = j) is
given by
fij = npij :
Zk:l Dkj

Thus f is obtained by a linear-fractional mapping from p.

It follows that if C'is a convex set of joint probabilities for (u,v), then the associated
set of conditional probabilities of u given v is also convex.

Figure 2.16 shows a set C C R?, and its image under the linear-fractional

function

1

—_—u, dom f ={(z1,22) | z1 + 22 + 1 > 0}.
P f=A(z1,22) | 21 + 22 }

fx) =
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2.4 Generalized inequalities

Generalized inequalities

Proper cones and generalized inequalities

A cone K C R" is called a proper cone if it satisfies the following:

e K is convex.
e K is closed.
e K is solid, which means it has nonempty interior.

e K is pointed, which means that it contains no line (or equivalently, = €
K, —ze K = z=0).

A proper cone K can be used to define a generalized inequality, which is a partial
ordering on R" that has many of the properties of the standard ordering on R.
We associate with the proper cone K the partial ordering on R" defined by

rT3xy <= y—xr < K.

We also write = > y for y <k . Similarly, we define an associated strict partial
ordering by
T <gyY <= y—zEcint K,

and write © =) y for y <x z. (To distinguish the generalized inequality =g
from the strict generalized inequality, we sometimes refer to <k as the nonstrict
generalized inequality.)

When K = R, the partial ordering <k is the usual ordering < on R, and
the strict partial ordering <x is the same as the usual strict ordering < on R.
So generalized inequalities include as a special case ordinary (nonstrict and strict)
inequality in R.

Example 2.14 Nonnegative orthant and componentwise inequality. The nonnegative
orthant K = R is a proper cone. The associated generalized inequality <x corre-
sponds to componentwise inequality between vectors: x <y y means that z; < y;,
i = 1,...,n. The associated strict inequality corresponds to componentwise strict
inequality: © <k y means that z; < y;, it =1,...,n.

The nonstrict and strict partial orderings associated with the nonnegative orthant
arise so frequently that we drop the subscript R ; it is understood when the symbol
= or < appears between vectors.

Example 2.15 Positive semidefinite cone and matrixz inequality. The positive semidef-
inite cone S% is a proper cone in S™. The associated generalized inequality <k is the
usual matrix inequality: X <g Y means Y — X is positive semidefinite. The inte-
rior of S (in S™) consists of the positive definite matrices, so the strict generalized
inequality also agrees with the usual strict inequality between symmetric matrices:
X <k Y means Y — X is positive definite.

Here, too, the partial ordering arises so frequently that we drop the subscript: for
symmetric matrices we write simply X <Y or X < Y. It is understood that the
generalized inequalities are with respect to the positive semidefinite cone.
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Example 2.16 Cone of polynomials nonnegative on [0,1]. Let K be defined as
K={ceR"|ci+cat+ - +ecat" " >0fortel01]}, (2.15)
i.e., K is the cone of (coefficients of) polynomials of degree n— 1 that are nonnegative

on the interval [0,1]. It can be shown that K is a proper cone; its interior is the set
of coefficients of polynomials that are positive on the interval [0, 1].

Two vectors ¢, d € R" satisfy ¢ <k d if and only if
et ottt ent" T <di A dat A+ dpt™ T

for all ¢ € [0,1].

Properties of generalized inequalities

A generalized inequality <y satisfies many properties, such as
o <y is preserved under addition: if x < y and u <k v, then r+u <g y+v.
e =<y is transitive: if x <k y and y <k z then z <k z.

o <y is preserved under nonnegative scaling: if x <k y and o > 0 then
ar g ay.

o <y is reflevive: v <k .
o =g is antisymmetric: if v X y and y <k x, then x = y.

o <y is preserved under limits: if x; < y; fori =1, 2,..., x; > xand y; — y
as i — 0o, then x <k .

The corresponding strict generalized inequality < satisfies, for example,
o if v <) y then z <k y.
e if v <) yand u <k v then r +u <x y + v.
o if v <) y and a > 0 then ax <k ay.
o x Ai x.
e if x <) y, then for v and v small enough, x +u <x y + v.

These properties are inherited from the definitions of <k and <y, and the prop-
erties of proper cones; see exercise 2.30.
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Minimum and minimal elements

The notation of generalized inequality (i.e., =k, <) is meant to suggest the
analogy to ordinary inequality on R (i.e., <, <). While many properties of ordinary
inequality do hold for generalized inequalities, some important ones do not. The
most obvious difference is that < on R is a linear ordering: any two points are
comparable, meaning either x < y or y < x. This property does not hold for
other generalized inequalities. One implication is that concepts like minimum and
maximum are more complicated in the context of generalized inequalities. We
briefly discuss this in this section.

We say that « € S is the minimum element of S (with respect to the general-
ized inequality <) if for every y € S we have © <i y. We define the mazimum
element of a set S, with respect to a generalized inequality, in a similar way. If a
set has a minimum (maximum) element, then it is unique. A related concept is
minimal element. We say that « € S is a minimal element of S (with respect to
the generalized inequality <k ) if y € S, y <k « only if y = x. We define maxi-
mal element in a similar way. A set can have many different minimal (maximal)
elements.

We can describe minimum and minimal elements using simple set notation. A
point x € S is the minimum element of S if and only if

SCzx+ K.

Here = + K denotes all the points that are comparable to  and greater than or
equal to z (according to < ). A point € S is a minimal element if and only if

(x —K)NnS = {z}.

Here x — K denotes all the points that are comparable to x and less than or equal
to  (according to <k ); the only point in common with S is x.

For K = R, which induces the usual ordering on R, the concepts of minimal
and minimum are the same, and agree with the usual definition of the minimum
element of a set.

Example 2.17 Consider the cone RZ, which induces componentwise inequality in
R?. Here we can give some simple geometric descriptions of minimal and minimum
elements. The inequality x < y means y is above and to the right of x. To say that
x € S is the minimum element of a set S means that all other points of S lie above
and to the right. To say that x is a minimal element of a set S means that no other
point of S lies to the left and below x. This is illustrated in figure 2.17.

Example 2.18 Minimum and minimal elements of a set of symmetric matrices. We
associate with each A € S, an ellipsoid centered at the origin, given by

Ea={z|a"A e <1}
We have A < B if and only if £4 C Ep.
Let v1,...,ux € R" be given and define

S={PeSt,|vfP v;<1,i=1,...,k},
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2.5

2.5.1

S

L1

Figure 2.17 Left. The set Si has a minimum element z; with respect to
componentwise inequality in R?. The set z; + K is shaded lightly; x; is
the minimum element of S; since S1 C x1 + K. Right. The point x2 is a
minimal point of S2. The set x2 — K is shown lightly shaded. The point z2
is minimal because 2 — K and S> intersect only at zs.

which corresponds to the set of ellipsoids that contain the points vi,...,vk. The
set S does not have a minimum element: for any ellipsoid that contains the points
v1,...,Vr we can find another one that contains the points, and is not comparable
to it. An ellipsoid is minimal if it contains the points, but no smaller ellipsoid does.
Figure 2.18 shows an example in R? with k = 2.

Separating and supporting hyperplanes

Separating hyperplane theorem

In this section we describe an idea that will be important later: the use of hyper-
planes or affine functions to separate convex sets that do not intersect. The basic
result is the separating hyperplane theorem: Suppose C' and D are nonempty dis-
joint convex sets, i.e., C' N D = (). Then there exist a # 0 and b such that a”z < b
forall z € C and aT2 > b for all z € D. In other words, the affine function a”z —b
is nonpositive on C' and nonnegative on D. The hyperplane {z | a’z = b} is called
a separating hyperplane for the sets C' and D, or is said to separate the sets C' and
D. This is illustrated in figure 2.19.

Proof of separating hyperplane theorem

Here we consider a special case, and leave the extension of the proof to the gen-
eral case as an exercise (exercise 2.22). We assume that the (Euclidean) distance
between C and D, defined as

dist(C,D) = inf{|lu —v|2 |u € C, v € D},
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Figure 2.18 Three ellipsoids in R?, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
&1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., £3). &3 is not minimal for the same reason. The ellipsoid
& is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in &,.

Figure 2.19 The hyperplane {z | «”2 = b} separates the disjoint convex sets
C and D. The affine function a¥z — b is nonpositive on C' and nonnegative
on D.
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Figure 2.20 Construction of a separating hyperplane between two convex
sets. The points ¢ € C' and d € D are the pair of points in the two sets that
are closest to each other. The separating hyperplane is orthogonal to, and
bisects, the line segment between ¢ and d.

is positive, and that there exist points ¢ € C' and d € D that achieve the minimum
distance, i.e., |[c — d||2 = dist(C, D). (These conditions are satisfied, for example,
when C' and D are closed and one set is bounded.)

Define ) )
) a3 — el

:d—
a c, 5

We will show that the affine function
fl@)=a"e—b=(d—c)"(z - (1/2)(d+¢))

is nonpositive on C' and nonnegative on D, i.e., that the hyperplane {x | a”2 = b}
separates C' and D. This hyperplane is perpendicular to the line segment between
c and d, and passes through its midpoint, as shown in figure 2.20.

We first show that f is nonnegative on D. The proof that f is nonpositive on
C'is similar (or follows by swapping C' and D and considering — f). Suppose there
were a point u € D for which

f(u) = (d—c)"(u—(1/2)(d+c)) < 0. (2.16)
We can express f(u) as
flu)=(d =) (u—d+(1/2)(d - ¢)) = (d = )" (u—d) + (1/2)||d - cl3.

We see that (2.16) implies (d — ¢)” (u — d) < 0. Now we observe that

d
—|d + t(u — d) — |3 =2(d—¢)"(u—d) <0,
dt =0

so for some small £ > 0, with ¢t < 1, we have

ld+t(u—d) —cll2 < [ld = cll2,
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i.e., the point d + t(u — d) is closer to ¢ than d is. Since D is convex and contains
d and u, we have d+t(u —d) € D. But this is impossible, since d is assumed to be
the point in D that is closest to C.

Example 2.19 Separation of an affine and a convex set. Suppose C' is convex and
D is affine, i.e., D = {Fu+g | u € R™}, where F € R"*™. Suppose C and D are
disjoint, so by the separating hyperplane theorem there are a # 0 and b such that
aTz <bforallz € C and aTz > b for all z € D.

Now aTaz > b for all z € D means a¥ Fu > b — aTg for all w € R™. But a linear
function is bounded below on R™ only when it is zero, so we conclude a” F = 0 (and
hence, b < a”g).

Thus we conclude that there exists a # 0 such that FTa = 0 and aTa < aTg¢ for all
xeC.

Strict separation

The separating hyperplane we constructed above satisfies the stronger condition
that a’2 < b for all z € C and e’z > b for all z € D. This is called strict
separation of the sets C' and D. Simple examples show that in general, disjoint
convex sets need not be strictly separable by a hyperplane (even when the sets are
closed; see exercise 2.23). In many special cases, however, strict separation can be
established.

Example 2.20 Strict separation of a point and a closed convex set. Let C be a closed
convex set and xo ¢ C. Then there exists a hyperplane that strictly separates xg
from C.

To see this, note that the two sets C' and B(zo,€) do not intersect for some € > 0.
By the separating hyperplane theorem, there exist a # 0 and b such that o« < b for
z € C and aTz > b for x € B(xo,e¢).

Using B(zo,€) = {xo + u | ||ul|2 < €}, the second condition can be expressed as
a’(zo4u) >b forall ||lull2 <e.
The u that minimizes the lefthand side is u = —ea/||al|2; using this value we have
a’xo — €l|all2 > b.
Therefore the affine function
f(&) =Tz — b ellalla/2

is negative on C and positive at xo.

As an immediate consequence we can establish a fact that we already mentioned
above: a closed convex set is the intersection of all halfspaces that contain it. Indeed,
let C' be closed and convex, and let S be the intersection of all halfspaces containing
C. Obviously z € C = x € S. To show the converse, suppose there exists x € S,
x ¢ C. By the strict separation result there exists a hyperplane that strictly separates
x from C, i.e., there is a halfspace containing C but not z. In other words, = ¢ S.
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Converse separating hyperplane theorems

The converse of the separating hyperplane theorem (i.e., existence of a separating
hyperplane implies that C' and D do not intersect) is not true, unless one imposes
additional constraints on C' or D, even beyond convexity. As a simple counterex-
ample, consider C' = D = {0} C R. Here the hyperplane = 0 separates C' and
D.

By adding conditions on C' and D various converse separation theorems can be
derived. As a very simple example, suppose C' and D are convex sets, with C' open,
and there exists an affine function f that is nonpositive on C' and nonnegative on
D. Then C and D are disjoint. (To see this we first note that f must be negative
on (' for if f were zero at a point of C' then f would take on positive values near
the point, which is a contradiction. But then C' and D must be disjoint since f
is negative on C' and nonnegative on D.) Putting this converse together with the
separating hyperplane theorem, we have the following result: any two convex sets
C' and D, at least one of which is open, are disjoint if and only if there exists a
separating hyperplane.

Example 2.21 Theorem of alternatives for strict linear inequalities. We derive the
necessary and sufficient conditions for solvability of a system of strict linear inequal-
ities

Az <. (2.17)

These inequalities are infeasible if and only if the (convex) sets
C={b— Az |z € R"}, D=RY, ={yeR"|y> 0}

do not intersect. The set D is open; C is an affine set. Hence by the result above, C'
and D are disjoint if and only if there exists a separating hyperplane, i.e., a nonzero
A€ R™ and g € R such that ATy < o on C and ATy > pon D.

Each of these conditions can be simplified. The first means A7 (b — Az) < p for all z.
This implies (as in example 2.19) that AT A = 0 and ATb < p. The second inequality
means ATy > p for all y = 0. This implies 1 < 0 and X = 0, A # 0.

Putting it all together, we find that the set of strict inequalities (2.17) is infeasible if
and only if there exists A € R™ such that
A0, A= 0, ATx =0, Ab <o. (2.18)

This is also a system of linear inequalities and linear equations in the variable A € R™.
We say that (2.17) and (2.18) form a pair of alternatives: for any data A and b, exactly
one of them is solvable.

Supporting hyperplanes
Suppose C' C R", and x¢ is a point in its boundary bd C, i.e.,
xg €bdC =clC\ int C.

If a # 0 satisfies a’x < a’'xg for all x € C, then the hyperplane {z | a’x = aTz¢}
is called a supporting hyperplane to C' at the point xg. This is equivalent to saying
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Figure 2.21 The hyperplane {z | a”x = a”xo} supports C at xo.

that the point z and the set C' are separated by the hyperplane {x | a”2 = a”x¢}.
The geometric interpretation is that the hyperplane {x | a’2 = a®x¢} is tangent
to C at z¢, and the halfspace {z | a2 < aTxy} contains C. This is illustrated in
figure 2.21.

A basic result, called the supporting hyperplane theorem, states that for any
nonempty convex set C', and any xg € bd C, there exists a supporting hyperplane to
C at xg. The supporting hyperplane theorem is readily proved from the separating
hyperplane theorem. We distinguish two cases. If the interior of C' is nonempty,
the result follows immediately by applying the separating hyperplane theorem to
the sets {z¢} and int C. If the interior of C' is empty, then C' must lie in an affine
set of dimension less than n, and any hyperplane containing that affine set contains
C and zy, and is a (trivial) supporting hyperplane.

There is also a partial converse of the supporting hyperplane theorem: If a set
is closed, has nonempty interior, and has a supporting hyperplane at every point
in its boundary, then it is convex. (See exercise 2.27.)

Dual cones and generalized inequalities

Dual cones

Let K be a cone. The set
K*={y|2Ty>0foralzc K} (2.19)

is called the dual cone of K. As the name suggests, K* is a cone, and is always
convex, even when the original cone K is not (see exercise 2.31).

Geometrically, y € K™ if and only if —y is the normal of a hyperplane that
supports K at the origin. This is illustrated in figure 2.22.

Example 2.22 Subspace. The dual cone of a subspace V' C R™ (which is a cone) is
its orthogonal complement V+* = {y | vTy =0 for all v € V'}.
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Figure 2.22 Left. The halfspace with inward normal y contains the cone K,
so y € K*. Right. The halfspace with inward normal z does not contain K,
soz & K*.

Example 2.23 Nonnegative orthant. The cone R is its own dual:
xTyEOforallmEO — y>=0.

We call such a cone self-dual.

Example 2.24 Positive semidefinite cone. On the set of symmetric n X n matrices
S™, we use the standard inner product tr(XY) = Z:J.zl Xi;Yi; (see §A.1.1). The
positive semidefinite cone S} is self-dual, i.e., for X, Y € 8",

tr(XY)>0forall X =0 < Y = 0.
We will establish this fact.
Suppose Y ¢ S”'. Then there exists ¢ € R"™ with
" Yq=tr(qd"Y) <O0.

Hence the positive semidefinite matrix X = g¢” satisfies tr(XY) < 0; it follows that
Y ¢ (S1)".

Now suppose X, Y € S. We can express X in terms of its eigenvalue decomposition
as X = Z:;l \igiq? , where (the eigenvalues) \; > 0,4 =1,...,n. Then we have

tr(YX) = tr (YZ Nigig! ) =Y gl Ya >0

i=1 i=1

This shows that Y € (S™)*.

Example 2.25 Dual of a norm cone. Let || - || be a norm on R™. The dual of the
associated cone K = {(x,t) € R™™ | ||z|| <t} is the cone defined by the dual norm,
i.e.,

K" ={(u,0) € R"" | JJull. < v},
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where the dual norm is given by |ul|. = sup{u”z | ||z|| < 1} (see (A.1.6)).

To prove the result we have to show that
" u + tv > 0 whenever ||z <t <= ||ull. <. (2.20)

Let us start by showing that the righthand condition on (u,v) implies the lefthand
condition. Suppose [|ull« < v, and ||z|| <t for some ¢ > 0. (If ¢ = 0, = must be zero,
so obviously u”z + vt > 0.) Applying the definition of the dual norm, and the fact
that || —z/t|] < 1, we have

u' (= /t) < Jlul+ < v,
and therefore uTz + vt > 0.
Next we show that the lefthand condition in (2.20) implies the righthand condition
in (2.20). Suppose ||ul|« > v, i.e., that the righthand condition does not hold. Then
by the definition of the dual norm, there exists an = with ||z|| < 1 and z7u > v.
Taking ¢t = 1, we have

u(—z) +v <0,

which contradicts the lefthand condition in (2.20).

Dual cones satisfy several properties, such as:
e K™ is closed and convex.

e K C K, implies K5 C K7.

If K has nonempty interior, then K* is pointed.

If the closure of K is pointed then K* has nonempty interior.

e K** is the closure of the convex hull of K. (Hence if K is convex and closed,
K* =K.

(See exercise 2.31.) These properties show that if K is a proper cone, then so is its
dual K*, and moreover, that K** = K.

Dual generalized inequalities

Now suppose that the convex cone K is proper, so it induces a generalized inequality
<k-. Then its dual cone K* is also proper, and therefore induces a generalized
inequality. We refer to the generalized inequality <+ as the dual of the generalized
inequality <f.

Some important properties relating a generalized inequality and its dual are:

e r =y y if and only if M < )\Ty for all A =x= 0.
e z < y if and only if ATz < ATy for all A =g~ 0, A # 0.

Since K = K**, the dual generalized inequality associated with <g+ is <, so
these properties hold if the generalized inequality and its dual are swapped. As a
specific example, we have A <g- p if and only if AT < p7x for all =k 0.
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Example 2.26 Theorem of alternatives for linear strict generalized inequalities. Sup-
pose K C R is a proper cone. Consider the strict generalized inequality

Az <5 b, (2.21)

where x € R".

We will derive a theorem of alternatives for this inequality. Suppose it is infeasible,
i.e., the affine set {b — Az | z € R"} does not intersect the open convex set int K.
Then there is a separating hyperplane, i.e., a nonzero A € R™ and p € R such that
MT(b— Az) < p for all z, and ATy > p for all y € int K. The first condition implies
ATX =0 and ATb < . The second condition implies ATy > p for all y € K, which
can only happen if A € K* and p < 0.

Putting it all together we find that if (2.21) is infeasible, then there exists A such that
A£0,  A=g<0, ATx=0, Ab<o. (2.22)

Now we show the converse: if (2.22) holds, then the inequality system (2.21) cannot
be feasible. Suppose that both inequality systems hold. Then we have /\T(b — Azx) >
0, since A # 0, A =g+ 0, and b — Az >k 0. But using ATX = 0 we find that
AT(b— Az) = \Tb < 0, which is a contradiction.

Thus, the inequality systems (2.21) and (2.22) are alternatives: for any data A, b,

exactly one of them is feasible. (This generalizes the alternatives (2.17), (2.18) for
the special case K = R".)

Minimum and minimal elements via dual inequalities

We can use dual generalized inequalities to characterize minimum and minimal
elements of a (possibly nonconvex) set S C R™ with respect to the generalized
inequality induced by a proper cone K.

Dual characterization of minimum element

We first consider a characterization of the minimum element: z is the minimum
element of S, with respect to the generalized inequality <, if and only if for all
A =f- 0, z is the unique minimizer of A7z over z € S. Geometrically, this means
that for any A =g~ 0, the hyperplane

{z| \'(z —2) =0}

is a strict supporting hyperplane to S at z. (By strict supporting hyperplane, we
mean that the hyperplane intersects S only at the point x.) Note that convexity
of the set S is not required. This is illustrated in figure 2.23.

To show this result, suppose z is the minimum element of S, i.e., z <k z for
all z € S, and let A\ =g+ 0. Let z € S, z # . Since z is the minimum element of
S, we have z —x = 0. From A =g+« 0 and z —x =g 0, z — & # 0, we conclude
M'(z —x) > 0. Since z is an arbitrary element of S, not equal to z, this shows
that x is the unique minimizer of ATz over z € S. Conversely, suppose that for all
A =g~ 0, z is the unique minimizer of ATz over z € S, but z is not the minimum
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Figure 2.23 Dual characterization of minimum element. The point x is the
minimum element of the set S with respect to Ri. This is equivalent to:

for every A > 0, the hyperplane {z | AT (z — ) = 0} strictly supports S at
x, i.e., contains S on one side, and touches it only at x.

glcmcnt of S. :l‘hcn there exists z € S with z /k . Since z — x % 0, there exists
A =k~ 0 with AT (2 —2) < 0. Hence AT (z—x) < 0 for A -k~ 0 in the neighborhood
of X\. This contradicts the assumption that z is the unique minimizer of A\ z over

S.

Dual characterization of minimal elements

We now turn to a similar characterization of minimal elements. Here there is a gap
between the necessary and sufficient conditions. If A - 0 and 2 minimizes ATz
over z € S, then x is minimal. This is illustrated in figure 2.24.

To show this, suppose that A >+ 0, and = minimizes A z over S, but z is not
minimal, i.e., there exists a z € S, z # 2, and z < x. Then AT (z — 2) > 0, which
contradicts our assumption that z is the minimizer of ATz over S.

The converse is in general false: a point x can be minimal in .S, but not a
minimizer of ATz over z € S, for any A, as shown in figure 2.25. This figure
suggests that convexity plays an important role in the converse, which is correct.
Provided the set S is convex, we can say that for any minimal element x there
exists a nonzero A = g+ 0 such that z minimizes ATz over z € S.

To show this, suppose z is minimal, which means that ((x — K) \ {z})NnS = 0.
Applying the separating hyperplane theorem to the convex sets (z — K) \ {z} and
S, we conclude that there is a A # 0 and p such that AT (z —y) < p forally € K,
and ATz > u for all z € S. From the first inequality we conclude X =g+ 0. Since
z € S and x € x — K, we have ATx = u, so the second inequality implies that
is the minimum value of ATz over S. Therefore, x is a minimizer of ATz over S,
where A #£ 0, A\ =~ 0.

This converse theorem cannot be strengthened to A >g+ 0. Examples show
that a point 2 can be a minimal point of a convex set .S, but not a minimizer of
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A1

€

A2
T2

Figure 2.24 A set S C R?. Its set of minimal points, with respect to Ri, is
shown as the darker section of its (lower, left) boundary. The minimizer of
ATz over S is z1, and is minimal since A\; = 0. The minimizer of A3z over
S is xa, which is another minimal point of S, since Ay > 0.

Figure 2.25 The point z is a minimal element of S C R? with respect to
RZ. However there exists no A for which  minimizes A7z over z € S.
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Figure 2.26 Left. The point x1 € Si is minimal, but is not a minimizer of
ATz over S, for any A > 0. (It does, however, minimize ATz over z € S, for
A =(1,0).) Right. The point x2 € S3 is not minimal, but it does minimize
ATz over z € Sy for A = (0,1) > 0.

ATz over z € S for any A\ =~ 0. (See figure 2.26, left.) Nor is it true that any
minimizer of ATz over z € S, with A\ =+ 0, is minimal (see figure 2.26, right.)

Example 2.27 Pareto optimal production frontier. We consider a product which
requires n resources (such as labor, electricity, natural gas, water) to manufacture.
The product can be manufactured or produced in many ways. With each production
method, we associate a resource vector x € R", where z; denotes the amount of
resource i consumed by the method to manufacture the product. We assume that x; >
0 (i.e., resources are consumed by the production methods) and that the resources
are valuable (so using less of any resource is preferred).

The production set P C R" is defined as the set of all resource vectors = that
correspond to some production method.

Production methods with resource vectors that are minimal elements of P, with
respect to componentwise inequality, are called Pareto optimal or efficient. The set
of minimal elements of P is called the efficient production frontier.

We can give a simple interpretation of Pareto optimality. We say that one production
method, with resource vector x, is better than another, with resource vector y, if
x; < y; for all 4, and for some i, x; < y;. In other words, one production method
is better than another if it uses no more of each resource than another method, and
for at least one resource, actually uses less. This corresponds to = < y,  # y. Then
we can say: A production method is Pareto optimal or efficient if there is no better
production method.
We can find Pareto optimal production methods (i.e., minimal resource vectors) by
minimizing

)\Tm =Mx1+-+ )\nxn
over the set P of production vectors, using any \ that satisfies A = 0.
Here the vector A has a simple interpretation: A; is the price of resource i. By
minimizing ATz over P we are finding the overall cheapest production method (for
the resource prices \;). As long as the prices are positive, the resulting production
method is guaranteed to be efficient.

These ideas are illustrated in figure 2.27.
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Ty

x9 5 T4
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labor

Figure 2.27 The production set P, for a product that requires labor and
fuel to produce, is shown shaded. The two dark curves show the efficient
production frontier. The points x1, z2 and x3 are efficient. The points x4
and x5 are not (since in particular, 22 corresponds to a production method
that uses no more fuel, and less labor). The point 1 is also the minimum
cost production method for the price vector A (which is positive). The point
xo is efficient, but cannot be found by minimizing the total cost ATz for any
price vector \ > 0.
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2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Exercises

Definition of convexity

Let C C R" be a convex set, with z1,...,x2r € C, and let 61,...,0, € R satisfy 6; > 0,
01+ -+ 0, = 1. Show that 6121 + - - - + Oxxy, € C. (The definition of convexity is that
this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.

Show that a set is convex if and only if its intersection with any line is convex. Show that
a set is affine if and only if its intersection with any line is affine.

Midpoint convexity. A set C' is midpoint convez if whenever two points a, b are in C, the
average or midpoint (a4 b)/2 is in C. Obviously a convex set is midpoint convex. It can
be proved that under mild conditions midpoint convexity implies convexity. As a simple
case, prove that if C' is closed and midpoint convex, then C' is convex.

Show that the convex hull of a set S is the intersection of all convex sets that contain S.
(The same method can be used to show that the conic, or affine, or linear hull of a set S
is the intersection of all conic sets, or affine sets, or subspaces that contain S.)

Examples

What is the distance between two parallel hyperplanes {x € R™ | "2 = b1} and {z €
R" | a"x = b2 }?

When does one halfspace contain another? Give conditions under which
{z|a"z<b} C{x|a"z<b}

(where a # 0, @ # 0). Also find the conditions under which the two halfspaces are equal.

Voronoi description of halfspace. Let a and b be distinct points in R"™. Show that the set
of all points that are closer (in Euclidean norm) to a than b, i.e., {z | ||z —all2 < ||z —b||2},
is a halfspace. Describe it explicitly as an inequality of the form ¢Ta < d. Draw a picture.

Which of the following sets S are polyhedra? If possible, express S in the form S =
{z| Ax X b, Fx = g}.

(a) S={yia1 +y2a2 | -1 <y1 <1, =1 <y, <1}, where a1,a2 € R".

by S ={z e R" |z >0 1Tz =1, Yo wiai = b, Yo zia? = by}, where
ai,...,an € Rand b1,b2 € R.

() S={xcR" |z =0, 2Ty <1 for all y with |jy|2 = 1}.
(d) S={zeR"|z=0, 2"y <1forally with >." |y|=1}.

Voronoi sets and polyhedral decomposition. Let xo,...,xx € R"™ be distinct. Consider
the set of points that are closer (in Euclidean norm) to z¢ than the other z;, i.e.,

V=A{zeR"||z—mzoll2 <[z —zill2, i=1,...,K}.
V' is called the Voronoi region around zo with respect to z1,...,zk.

(a) Show that V is a polyhedron. Express V in the form V = {z | Az < b}.

(b) Conversely, given a polyhedron P with nonempty interior, show how to find zo, ..., zx
so that the polyhedron is the Voronoi region of x¢ with respect to z1,...,zxk.

(c) We can also consider the sets
Vi ={z € R" | [lz — 2ll2 < [lz — @ill, @ # k}.

The set Vj, consists of points in R™ for which the closest point in the set {zo, ..., 2k}
is L.
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The sets Vo, ..., Vik give a polyhedral decomposition of R"™. More precisely, the sets
Vi are polyhedra with nonempty interior, Uf:o Vi =R" and int V; Nint V; = ()
for ¢ # j, i.e., Vi and Vj intersect at most along a boundary.

Suppose that Pi,..., P, are polyhedra with nonempty interior such that U:;l P =
R”, int P, Nint P; = 0 for ¢ # j. Can this polyhedral decomposition of R" be
described as the Voronoi regions generated by an appropriate set of points?

2.10 Solution set of a quadratic inequality. Let C' C R™ be the solution set of a quadratic
inequality,
C={zeR"|z"Az+b"z+¢c<0},

with A € 8", b e R", and ¢ € R.

(a) Show that C is convex if A > 0.

(b) Show that the intersection of C' and the hyperplane defined by ¢”'z + h = 0 (where

g # 0) is convex if A+ Agg” = 0 for some A € R.

Are the converses of these statements true?

2.11 Hyperbolic sets. Show that the hyperbolic set {x € R2+ | ziz2 > 1} is convex. As a
generalization, show that {# € R} | [[I", s > 1} is convex. Hint. If a,b > 0 and

0 <60 <1, then a’b' =% < fa + (1 — 0)b; see §3.1.9.
2.12 Which of the following sets are convex?

(a) A slab, i.e., a set of the form {z € R" | a < a”z < B}

(b) A rectangle, i.e., a set of the form {x € R" | a; < x; < 4, i =1,...,n}. Arectangle
is sometimes called a hyperrectangle when n > 2.

(c) A wedge, i.e., {x € R™ | alx < b, ajx < ba}.

d) The set of points closer to a given point than a given set, i.e.,
g g
{z |z —zoll2 < [z — yll2 for all y € S}
where S C R".

(e) The set of points closer to one set than another, i.e.,
{z | dist(z, S) < dist(z,T)},
where S, T C R", and
dist(z, S) = inf{|lz — 2|2 | z € S}.

(f) [HUL93, volume 1, page 93] The set {x | x + S2 C S1}, where S1,S2 C R"™ with S
convex.
(g) The set of points whose distance to a does not exceed a fixed fraction 6 of the

distance to b, i.e., the set {z | ||z — a|l2 < 0|z — b||]2}. You can assume a # b and
0<0<1.

2.13 Conic hull of outer products. Consider the set of rank-k outer products, defined as
{XXT| X e R™" rank X = k}. Describe its conic hull in simple terms.

2.14 Ezpanded and restricted sets. Let S C R", and let || - || be a norm on R".

(a) For a > 0 we define S, as {z | dist(z,S) < a}, where dist(z,S) = infycs ||z — ¥y
We refer to S, as S expanded or extended by a. Show that if S is convex, then S,
is convex.

(b) For a > 0 we define S_, = {z | B(z,a) C S}, where B(z,a) is the ball (in the norm
Il - 1), centered at z, with radius a. We refer to S_, as S shrunk or restricted by a,
since S_, consists of all points that are at least a distance a from R™\S. Show that
if S is convex, then S_, is convex.
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2.15

2.16

2.17

2.18

2.19

Some sets of probability distributions. Let x be a real-valued random variable with
prob(z = a;) = pi, i = 1,...,n, where a1 < az < -+ < an. Of course p € R" lies
in the standard probability simplex P = {p | 1Tp=1, p*> 0}. Which of the following
conditions are convex in p? (That is, for which of the following conditions is the set of
p € P that satisfy the condition convex?)

(a) o < Ef(z) < B, where E f(x) is the expected value of f(z), i.e., E f(z) =
pif(ai). (The function f: R — R is given.)

Operations that preserve convexity

Show that if S; and Sy are convex sets in R™™, then so is their partial sum
S={(z,y1+y2) |z €R™, y1, y2 € R",(z,31) € S1, (x,y2) € Sa}.

Image of polyhedral sets under perspective function. In this problem we study the image
of hyperplanes, halfspaces, and polyhedra under the perspective function P(z,t) = z/t,
with dom P = R"™ x R4 4. For each of the following sets C', give a simple description of

P(C)={v/t| (v,t) € C, t > 0}.

(a) The polyhedron C' = conv{(v1,t1),..., (vk,tx)} where v; € R™ and ¢; > 0.
(b) The hyperplane C = {(v,t) | f"v + gt = h} (with f and g not both zero).

(c) The halfspace C' = {(v,t) | f"v + gt < h} (with f and g not both zero).

(d) The polyhedron C' = {(v,t) | Fv + gt < h}.
Invertible linear-fractional functions. Let f: R™ — R"™ be the linear-fractional function

f(z) = (Az +b)/(c"z + d), dom f = {z|c"z+d>0}.
Suppose the matrix
o= 4]

is nonsingular. Show that f is invertible and that f~! is a linear-fractional mapping.
Give an explicit expression for f~! and its domain in terms of A, b, ¢, and d. Hint. It
may be easier to express f~! in terms of Q.

Linear-fractional functions and conver sets. Let f : R™ — R"™ be the linear-fractional
function

f(z) = (Az +b)/(c"z + d), dom f = {z|c"z+d>0}.
In this problem we study the inverse image of a convex set C under f, i.e.,
FHC)={zedomf| f(zx) € C}.

For each of the following sets C' C R", give a simple description of f~*(C).

(a) The halfspace C = {y | gy < h} (with g # 0).

(b) The polyhedron C' = {y | Gy < h}.
(¢) The ellipsoid {y | y" P~y < 1} (where P € S7.,).

)

(d) The solution set of a linear matrix inequality, C = {y | y1 41 + -+ + ynAn < B},
where A1, ..., A,, B € SP.
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Exercises

Separation theorems and supporting hyperplanes

Strictly positive solution of linear equations. Suppose A € R™*™ b € R™, with b € R(A).
Show that there exists an z satisfying

z >0, Ax =b
if and only if there exists no A with
ATx =0, ATx 40, bTa <.
Hint. First prove the following fact from linear algebra: ¢’z = d for all z satisfying

Az = b if and only if there is a vector X such that ¢ = ATX, d = b7 \.

The set of separating hyperplanes. Suppose that C' and D are disjoint subsets of R".
Consider the set of (a,b) € R™! for which a’z < b for all € C, and aT2 > b for all
x € D. Show that this set is a convex cone (which is the singleton {0} if there is no
hyperplane that separates C' and D).

Finish the proof of the separating hyperplane theorem in §2.5.1: Show that a separating
hyperplane exists for two disjoint convex sets C' and D. You can use the result proved
in §2.5.1, i.e., that a separating hyperplane exists when there exist points in the two sets
whose distance is equal to the distance between the two sets.

Hint. If C and D are disjoint convex sets, then the set {z —y |z € C, y € D} is convex
and does not contain the origin.

Give an example of two closed convex sets that are disjoint but cannot be strictly sepa-
rated.

Supporting hyperplanes.

(a) Express the closed convex set {z € R3 | z122 > 1} as an intersection of halfspaces.
(b) Let C = {z € R" | ||z]loc < 1}, the foc-norm unit ball in R", and let & be a point
in the boundary of C. Identify the supporting hyperplanes of C' at & explicitly.
Inner and outer polyhedral approximations. Let C C R™ be a closed convex set, and
suppose that z1, ..., zx are on the boundary of C. Suppose that for each i, a; (z—z;) = 0
defines a supporting hyperplane for C at 2, i.c., C C {z | a] (x — ;) < 0}. Consider the
two polyhedra

}Dinner - conv{xl,. . 7$K}7 Pouter = {.T) | a;F(.T — .Tl) S O, 1= 17 .. 7I(}

Show that Piner € C' C Pouter- Draw a picture illustrating this.
Support function. The support function of a set C' C R" is defined as

Sc(y) = sup{y" = |z € C}.
(We allow Sc(y) to take on the value +00.) Suppose that C' and D are closed convex sets
in R"™. Show that C' = D if and only if their support functions are equal.

Converse supporting hyperplane theorem. Suppose the set C' is closed, has nonempty
interior, and has a supporting hyperplane at every point in its boundary. Show that C is
convex.

Convex cones and generalized inequalities

Positive semidefinite cone for n = 1, 2, 3. Give an explicit description of the positive
semidefinite cone S, in terms of the matrix coefficients and ordinary inequalities, for
n =1, 2, 3. To describe a general element of S", for n = 1, 2, 3, use the notation

XTo T4 X5

X1 X2 X3
|
xrs3 Ts5 6
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2.29 Cones in R?. Suppose K C R? is a closed convex cone.

(a) Give a simple description of K in terms of the polar coordinates of its elements
(z = r(cos ¢,sin ¢) with r > 0).

(b) Give a simple description of K*, and draw a plot illustrating the relation between
K and K*.

(¢) When is K pointed?

(d) When is K proper (hence, defines a generalized inequality)? Draw a plot illustrating
what * <g y means when K is proper.

2.30 Properties of generalized inequalities. Prove the properties of (nonstrict and strict) gen-
eralized inequalities listed in §2.4.1.

2.31 Properties of dual cones. Let K* be the dual cone of a convex cone K, as defined in (2.19).
Prove the following.

(a) K~ is indeed a convex cone.
) K1 C K> implies K5 C K.
(¢) K™ is closed.
(d) The interior of K* is given by int K* = {y | y" = > 0 for all x € cl K'}.
) If K has nonempty interior then K* is pointed.
) K™ is the closure of K. (Hence if K is closed, K** = K.)
(g) If the closure of K is pointed then K™ has nonempty interior.
2.32 Find the dual cone of {Az | z = 0}, where A € R™*"™.

2.33 The monotone nonnegative cone. We define the monotone nonnegative cone as
Kny={zeR" |z >22> - >z, >0}
i.e., all nonnegative vectors with components sorted in nonincreasing order.

(a) Show that K4 is a proper cone.
(b) Find the dual cone Ky, . Hint. Use the identity

inyz‘ = (1 —m2)y1+ (x2 —x3)(y1 +y2) + (@3 —2a) (Y1 + y2 +y3) + - -
i=1

+ (Tn1 — @) Y1+ F Yn-1) F Ta(yr + -+ Yn)-
2.34 The lezicographic cone and ordering. The lexicographic cone is defined as
Kiex ={0}U{z e R" |21 =+ =2, =0, 241 >0, for some k, 0 < k < n},

i.e., all vectors whose first nonzero coefficient (if any) is positive.

(a) Verify that Kiex is a cone, but not a proper cone.

(b) We define the lezicographic ordering on R™ as follows: x <iex y if and only if
y — = € Kiex. (Since Kiex is not a proper cone, the lexicographic ordering is not a
generalized inequality.) Show that the lexicographic ordering is a linear ordering:
for any z, y € R", either  <jex y or y <jex x. Therefore any set of vectors can be
sorted with respect to the lexicographic cone, which yields the familiar sorting used
in dictionaries.

(¢) Find K7.,.

2.35 Copositive matrices. A matrix X € S" is called copositive if 2T Xz > 0 for all z = 0.
Verify that the set of copositive matrices is a proper cone. Find its dual cone.
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Euclidean distance matrices. Let x1,...,2, € R”*. The matrix D € S™ defined by Di; =
lzi — x;|3 is called a Euclidean distance matriz. It satisfies some obvious properties such
as D;; = Dj;, Dy =0, D;; > 0, and (from the triangle inequality) Dil,f < Dl-lj/2 + Djl.,éQ.
We now pose the question: When is a matrix D € S™ a Euclidean distance matrix (for
some points in R¥, for some k)? A famous result answers this question: D € S™ is a
Euclidean distance matrix if and only if D;; = 0 and 2T Dz < 0 for all  with 172z = 0.
(See §8.3.3.)

Show that the set of Euclidean distance matrices is a convex cone.
Nonnegative polynomials and Hankel LMIs. Let Kpol be the set of (coefficients of) non-
negative polynomials of degree 2k on R:

Kpor = {z € R*" | 21 + 2ot + 23t° + -+ 4+ zop 17" > 0 for all t € R}.

a) Show that Kpe is a proper cone.
p

(b) A basic result states that a polynomial of degree 2k is nonnegative on R if and only
if it can be expressed as the sum of squares of two polynomials of degree k or less.
In other words, = € Ko if and only if the polynomial

p(t) = x1 + xat + a3t® + - + Top gt
can be expressed as
p(t) = r(t)* + s(1)*
where r and s are polynomials of degree k.
Use this result to show that

Ko =<(x € R | g = E Y for some Y € Si“
m—+4n=i+1

In other words, p(t) =21 + oot + a3t -+ x2k+1t2k is nonnegative if and only if
there exists a matrix Y € ST‘I such that

1 = Yn

2 = Yia+ Yo

3 = Yiz+ Y +Y3
Tokt1 = Yeg1k41-

(c) Show that K}, = Khan where

Kuan = {z € R* ™ | H(2) = 0}

and
21 22 Z3 ce 2k Zk+1
%) z3 zZ4 te Zk+1 Zk+4-2
Z3 24 25 ot Zk42 Zk+4
H(z) =
2k Zk+1  Rk+4+2 0 2Z2k—1 22k
Zk+1  Rk+2  Rk+4+3 22k Z2k+41

(This is the Hankel matriz with coefficients z1, ..., zok41.)
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(d) Let Kmom be the conic hull of the set of all vectors of the form (1,t,t2, ..., %),
where t € R. Show that y € Kmom if and only if y1 > 0 and

y:yl(l,Eu,EUQ,...,Eu%)

for some random variable u. In other words, the elements of Kmom are nonnegative
multiples of the moment vectors of all possible distributions on R. Show that Ky =
K;lOIIl'

(e) Combining the results of (c¢) and (d), conclude that Knan = €l Kmom-
As an example illustrating the relation between Kmom and Khan, take k = 2 and
z = (1,0,0,0,1). Show that z € Khan, 2 € Kmom. Find an explicit sequence of
points in Kmom which converge to z.

2.38 [Roc70, pages 15, 61] Convex cones constructed from sets.

(a) The barrier cone of a set C is defined as the set of all vectors y such that yZx is
bounded above over x € C. In other words, a nonzero vector y is in the barrier cone
if and only if it is the normal vector of a halfspace {z | y“2 < a} that contains C.
Verify that the barrier cone is a convex cone (with no assumptions on C).

(b) The recession cone (also called asymptotic cone) of a set C' is defined as the set of
all vectors y such that for each x € C, x —ty € C for all ¢t > 0. Show that the
recession cone of a convex set is a convex cone. Show that if C' is nonempty, closed,
and convex, then the recession cone of C' is the dual of the barrier cone.

(¢) The normal cone of a set C' at a boundary point zg is the set of all vectors y such
that y” (x — 20) < 0 for all 2 € C (i.e., the set of vectors that define a supporting
hyperplane to C' at zp). Show that the normal cone is a convex cone (with no
assumptions on C). Give a simple description of the normal cone of a polyhedron
{z | Az < b} at a point in its boundary.

2.39 Separation of cones. Let K and K be two convex cones whose interiors are nonempty and
disjoint. Show that there is a nonzero y such that y € K*, —y € K™.
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Chapter 3

Convex functions

Basic properties and examples
Definition

A function f : R" — R is convezr if dom f is a convex set and if for all x,
y € dom f, and 6 with 0 < 0 < 1, we have

S0z + (1 —0)y) <0f(x)+(1—0)f(y) (3.1)

Geometrically, this inequality means that the line segment between (z, f(z)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convez if strict inequality holds in (3.1) whenever z # y
and 0 < 0 < 1. We say f is concave if —f is convex, and strictly concave if —f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all z € dom f and

(v, f(y))
(z, f(z))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.
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all v, the function g(t) = f(x +tv) is convex (on its domain, {¢ | z+tv € dom f}).
This property is very useful, since it allows us to check whether a function is convex
by restricting it to a line.

The analysis of convex functions is a well developed field, which we will not
pursue in any depth. One simple result, for example, is that a convex function is
continuous on the relative interior of its domain; it can have discontinuities only
on its relative boundary.

Extended-value extensions

It is often convenient to extend a convex function to all of R" by defining its value
to be oo outside its domain. If f is convex we define its extended-value extension
f:R" = RU{oo} by

=y | flx) zedomf
f(x)—{ oo z¢&domf.

The extension f is defined on all R™, and takes values in R U {oo}. We can recover
the domain of the original function f from the extension f as dom f = {z | f(x) <
oo}

The extension can simplify notation, since we do not need to explicitly describe
the domain, or add the qualifier ‘for all z € dom [’ every time we refer to f(x).
Consider, for example, the basic defining inequality (3.1). In terms of the extension
f, we can express it as: for 0 < 6 < 1,

F0x+ (1—0)y) <O0f(x) + (1 —0)f(y)

for any x and y. (For # = 0 or = 1 the inequality always holds.) Of course here we
must interpret the inequality using extended arithmetic and ordering. For x and y
both in dom f, this inequality coincides with (3.1); if either is outside dom f, then
the righthand side is oo, and the inequality therefore holds. As another example
of this notational device, suppose f1 and f5 are two convex functions on R"™. The
pointwise sum f = f; + f3 is the function with domain dom f = dom f; Ndom f5,
with f(z) = fi(z) + fa(z) for any = € dom f. Using extended-value extensions we
can simply say that for any z, f(z) = fi(z) + fo(z). In this equation the domain
of f has been automatically defined as dom f = dom f; Ndom f, since f(z) = 0o
whenever x ¢ dom f; or x € dom f5. In this example we are relying on extended
arithmetic to automatically define the domain.

In this book we will use the same symbol to denote a convex function and its
extension, whenever there is no harm from the ambiguity. This is the same as
assuming that all convex functions are implicitly extended, i.e., are defined as oo
outside their domains.

Example 3.1 Indicator function of a convex set. Let C' C R"™ be a convex set, and
consider the (convex) function I¢ with domain C' and I¢(z) = 0 for all z € C. In
other words, the function is identically zero on the set C'. Its extended-value extension
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f(y)
f@)+ V@) (y— )

(z, f(z))

Figure 3.2 If f is convex and differentiable, then f(z)+V f(z)" (y—x) < f(y)
for all z, y € dom f.

is given by

ew ={ 2, 156

The convex function I¢ is called the indicator function of the set C.

We can play several notational tricks with the indicator function Ic. For example
the problem of minimizing a function f (defined on all of R", say) on the set C is the
same as minimizing the function f + I over all of R™. Indeed, the function f + I¢
is (by our convention) f restricted to the set C.

In a similar way we can extend a concave function by defining it to be —oo
outside its domain.

First-order conditions

Suppose f is differentiable (i.e., its gradient V[ exists at each point in dom f,
which is open). Then f is convex if and only if dom f is convex and

fy) = f(2) + V@) (y - ) (3.2)

holds for all x, y € dom f. This inequality is illustrated in figure 3.2.

The affine function of y given by f(x)+V f(z)T (y—=x) is, of course, the first-order
Taylor approximation of f near x. The inequality (3.2) states that for a convex
function, the first-order Taylor approximation is in fact a global underestimator of
the function. Conversely, if the first-order Taylor approximation of a function is
always a global underestimator of the function, then the function is convex.

The inequality (3.2) shows that from local information about a convex function
(i.e., its value and derivative at a point) we can derive global information (i.e., a
global underestimator of it). This is perhaps the most important property of convex
functions, and explains some of the remarkable properties of convex functions and
convex optimization problems. As one simple example, the inequality (3.2) shows
that if Vf(z) = 0, then for all y € dom f, f(y) > f(z), i.e., x is a global minimizer
of the function f.
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Strict convexity can also be characterized by a first-order condition: f is strictly
convex if and only if dom f is convex and for z, y € dom f, = # y, we have

f) > f@)+ V@) (y— ). (3.3)

For concave functions we have the corresponding characterization: f is concave
if and only if dom f is convex and

fy) < fl2) + V(@) (y - )

for all z, y € dom f.

Proof of first-order convexity condition

To prove (3.2), we first consider the case n = 1: We show that a differentiable
function f: R — R is convex if and only if

f) =z f@)+ f(2)(y — o) (34)

for all x and y in dom f.

Assume first that f is convex and z, y € dom f. Since dom f is convex (i.e.,
an interval), we conclude that for all 0 < ¢t < 1, z + t(y — =) € dom f, and by
convexity of f,

flat+tly—2) <@ =0)f(z) +tf(y)
If we divide both sides by ¢, we obtain

fx+ty—x)) = fz)
t )

fly) > f(x) +

and taking the limit as ¢t — 0 yields (3.4).

To show sufficiency, assume the function satisfies (3.4) for all z and y in dom f
(which is an interval). Choose any x # y, and 0 < § < 1, and let z = 0z + (1 —6)y.
Applying (3.4) twice yields

f@) = f()+ f ()@ —2),  fly) = fl2)+ f(2)y—2).
Multiplying the first inequality by 6, the second by 1 — 6, and adding them yields

0f(x) + (1 =0)f(y) = f(2),

which proves that f is convex.

Now we can prove the general case, with f : R" — R. Let 2, y € R" and
consider f restricted to the line passing through them, i.e., the function defined by
g(t) = f(ty + (1 = t)z), 50 g'(t) = Vf(ty + (1 - t)x)" (y — x).

First assume f is convex, which implies g is convex, so by the argument above
we have g(1) > ¢g(0) + ¢’(0), which means

fly) = fz) + V@) (y - x).

Now assume that this inequality holds for any x and y, so if ty + (1 — t)z € dom f
and ty + (1 — t)z € dom f, we have

flty+ (1 =t)z) > flly+ (1 =) + Vf(ty+ (1 =) (y — x)(t = 1),

i.e., g(t) > g(t) + ¢’ (t)(t — t). We have seen that this implies that g is convex.
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Second-order conditions

We now assume that f is twice differentiable, that is, its Hessian or second deriva-
tive V2f exists at each point in dom f, which is open. Then f is convex if and
only if dom f is convex and its Hessian is positive semidefinite: for all x € dom f,

V2 f(z) = 0.

For a function on R, this reduces to the simple condition f”(z) > 0 (and dom f
convex, i.e., an interval), which means that the derivative is nondecreasing. The
condition V2 f(x) = 0 can be interpreted geometrically as the requirement that the
graph of the function have positive (upward) curvature at . We leave the proof
of the second-order condition as an exercise (exercise 3.8).

Similarly, f is concave if and only if dom f is convex and V2f(z) < 0 for
all z € dom f. Strict convexity can be partially characterized by second-order
conditions. If V2f(x) = 0 for all x € dom f, then f is strictly convex. The
converse, however, is not true: for example, the function f : R — R given by
f(x) = 2* is strictly convex but has zero second derivative at z = 0.

Example 3.2 Quadratic functions. Consider the quadratic function f : R" — R, with
dom f = R", given by

fl@) = (1/2)2" Pz +q"x +,
with P € 8", ¢ € R™, and r € R.. Since V?f(x) = P for all z, f is convex if and only
if P > 0 (and concave if and only if P < 0).

For quadratic functions, strict convexity is easily characterized: f is strictly convex
if and only if P > 0 (and strictly concave if and only if P < 0).

Remark 3.1 The separate requirement that dom f be convex cannot be dropped from
the first- or second-order characterizations of convexity and concavity. For example,
the function f(x) = 1/22, with dom f = {z € R | = # 0}, satisfies f”(z) > 0 for all
r € dom f, but is not a convex function.

Examples

We have already mentioned that all linear and affine functions are convex (and
concave), and have described the convex and concave quadratic functions. In this
section we give a few more examples of convex and concave functions. We start
with some functions on R, with variable x.

axr

e Ezxponential. e is convex on R, for any a € R.
e Powers. % is convex on R4 whena > 1ora < 0, and concave for 0 < a < 1.
e Powers of absolute value. |x|P, for p > 1, is convex on R.

e Logarithm. logz is concave on R ;.
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flx,y)

Figure 3.3 Graph of f(z,y) = 2%/y.

e Negative entropy. xlogz (either on Ry, or on Ry, defined as 0 for = 0)
is convex.

Convexity or concavity of these examples can be shown by verifying the ba-
sic inequality (3.1), or by checking that the second derivative is nonnegative or
nonpositive. For example, with f(z) = zlogz we have

fl@)=logz+1,  f'(z)=1/x,

so that f”(z) > 0 for x > 0. This shows that the negative entropy function is
(strictly) convex.
We now give a few interesting examples of functions on R".

e Norms. Every norm on R" is convex.
e Maz function. f(x) = max{x1,...,x,} is convex on R".
e Quadratic-over-linear function. The function f(z,y) = 22 /y, with
dom f =R xRy, = {(z,y) e R” | y > 0},
is convex (figure 3.3).
e Log-sum-exp. The function f(z) = log(e™ + -+ e®) is convex on R".

This function can be interpreted as a differentiable (in fact, analytic) approx-
imation of the max function, since

max{z1,...,x,} < f(x) <max{zy,...,z,} + logn

for all z. (The second inequality is tight when all components of x are equal.)
Figure 3.4 shows f for n = 2.
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Figure 3.4 Graph of f(z,y) = log(e” + €Y).

e Geometric mean. The geometric mean f(z) = ([}, xi)l/n is concave on

dom f =R .

e Log-determinant. The function f(X) = logdet X is concave on dom f =
M
Convexity (or concavity) of these examples can be verified in several ways,
such as directly verifying the inequality (3.1), verifying that the Hessian is positive
semidefinite, or restricting the function to an arbitrary line and verifying convexity
of the resulting function of one variable.

Norms. If f: R"™ — R is a norm, and 0 < 6 < 1, then

f0z + (1= 0)y) < f(0x) + f((1=0)y) =0f(z)+ (1 -0)f(y).

The inequality follows from the triangle inequality, and the equality follows from
homogeneity of a norm.

Max function. The function f(z) = max; x; satisfies, for 0 <0 <1,
[0z + (1 —=0)y) = max(6z; + (1 —0)y)
< fmaxz; + (1 —0)maxy;

= 0f(x)+ (1 =0)f(y).

Quadratic-over-linear function. To show that the quadratic-over-linear function
f(z,y) = 22 /y is convex, we note that (for y > 0),

2 2 _ 2 r
V2f($,y):y3{_yxy xgy]:yg[_yx][_yx} >~ 0.
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Log-sum-exp. The Hessian of the log-sum-exp function is

V2 f(z) =

i72)? (172) diag(z) — 22"),

where z = (e*1,...,e%"). To verify that V2f(z) = 0 we must show that for all v,
vIV2f(z)v >0, d.e.,

n n n 2
2 1 2
o'V f(z)v= W (Z; Zl> (201 Z7,> - (2 vizi> > 0.

But this follows from the Cauchy-Schwarz inequality (a”a)(b?b) > (aTb)? applied
to the vectors with components a; = v;1/2;, b; = /2.

Geometric mean. In a similar way we can show that the geometric mean f(z) =
(IT, xi)l/n is concave on dom f = R} | . Its Hessian V?f(x) is given by

8 f(z) I, =)™ 02 @) (1 =)"
oz —(n—1) n?zi Oxpdz;,  nlapw for k21

and can be expressed as

n 1/n
2 __H¢:133i/ . 2 2y T
V() = =T (ndiag(1/a?, ., 1/43) — qd”)

where ¢; = 1/z;. We must show that V2f(z) < 0, i.e., that

n 1/n n n 2
T2 _ [[im) 7 2.2 o
v'V f(a:)v——in2 n E_l vy fxi — (E vl/x,> <0

i=1

for all v. Again this follows from the Cauchy-Schwarz inequality (aa)(bTb) >
(aT'b)?, applied to the vectors a = 1 and b; = v;/x;.

Log-determinant. For the function f(X) = logdet X, we can verify concavity by
considering an arbitrary line, given by X = Z + ¢V, where Z, V € S". We define
g(t) = f(Z +1tV), and restrict g to the interval of values of ¢ for which Z 4+ ¢V > 0.
Without loss of generality, we can assume that ¢ = 0 is inside this interval, i.e.,
Z » 0. We have

g(t) = logdet(Z +1tV)
= logdet(ZYV2(I +tz=Y2vZz=Y/%)7'/?)
= ) log(1+1tA;) +logdet Z
i=1
where A1, ..., \, are the eigenvalues of Z~1/2V Z~1/2, Therefore we have

! o )‘i 7 _ - )‘12
g(t)’zuui’ 91 = Z(1+t/\i)2'

=1 i=1

Since ¢”(t) < 0, we conclude that f is concave.
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Sublevel sets

The a-sublevel set of a function f: R"™ — R is defined as
Co={redomf]| f(x) <a}l.

Sublevel sets of a convex function are convex, for any value of a. The proof is
immediate from the definition of convexity: if z, y € C,, then f(x) < a and
fly) <a,and so f(lx+ (1 —0)y) < afor 0 <60 <1, and hence fz+ (1 —0)y € C,.

The converse is not true: a function can have all its sublevel sets convex, but
not be a convex function. For example, f(z) = —e® is not convex on R (indeed, it
is strictly concave) but all its sublevel sets are convex.

If f is concave, then its a-superlevel set, given by {x € dom f | f(x) > a}, is a
convex set. The sublevel set property is often a good way to establish convexity of
a set, by expressing it as a sublevel set of a convex function, or as the superlevel
set of a concave function.

Example 3.3 The geometric and arithmetic means of x € Rl are, respectively,

1
G = i 9 = - 2
i=1 i=1
(where we take 0V/™ = 0 in our definition of G). The arithmetic-geometric mean
inequality states that G(z) < A(z).
Suppose 0 < o < 1, and consider the set
{z € R} | G(2) > aA@)},

i.e., the set of vectors with geometric mean at least as large as a factor o times the
arithmetic mean. This set is convex, since it is the 0-superlevel set of the function
G(z) — aA(z), which is concave. In fact, the set is positively homogeneous, so it is a
convex cone.

Epigraph

The graph of a function f : R™ — R is defined as

{(z, f(2)) | € dom f},
which is a subset of R"'. The epigraph of a function f : R" — R is defined as

epi f = {(z,1) |z € dom f, f(z) <t},

which is a subset of R"™'. (‘Epi’ means ‘above’ so epigraph means ‘above the
graph’.) The definition is illustrated in figure 3.5.

The link between convex sets and convex functions is via the epigraph: A
function is convex if and only if its epigraph is a convex set. A function is concave
if and only if its hypograph, defined as

hypo f = {(z,t) [t < f(2)},

is a convex set.
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epi f

Figure 3.5 Epigraph of a function f, shown shaded. The lower boundary,
shown darker, is the graph of f.

Example 3.4 Matriz fractional function. The function f: R"™ x S™ — R, defined as
fz,Y)=2"Y "z

is convex on dom f = R" x S” . (This generalizes the quadratic-over-linear function
f(z,y) = 2*/y, with dom f = R x Ry,.)

One easy way to establish convexity of f is via its epigraph:

epif = {(z,V,t)|Y =0, 2" Y 'z <t}
Y =z

using the Schur complement condition for positive semidefiniteness of a block matrix
(see §A.5.5). The last condition is a linear matrix inequality in (z,Y,t), and therefore
epi f is convex.

>O7Y>0},

For the special case n = 1, the matrix fractional function reduces to the quadratic-
over-linear function x?/y, and the associated LMI representation is

Yy X
—
[m t}_O, y >0

(the graph of which is shown in figure 3.3).

Many results for convex functions can be proved (or interpreted) geometrically

using epigraphs, and applying results for convex sets. As an example, consider the
first-order condition for convexity:

Fy) = f(z) + V@) (y — ),

where f is convex and z, y € dom f. We can interpret this basic inequality
geometrically in terms of epi f. If (y,t) € epi f, then

t>fly) > f@)+ Vi) (y—x).
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(Vf(z), =1)

Figure 3.6 For a differentiable convex function f, the vector (Vf(z),—1)
defines a supporting hyperplane to the epigraph of f at x.

We can express this as:

ncoms = [T (2] ) o

This means that the hyperplane defined by (Vf(x),—1) supports epi f at the
boundary point (z, f(z)); see figure 3.6.

Jensen’s inequality and extensions

The basic inequality (3.1), i.e.,
fOx+ (1 —0)y) <O0f(x)+(1-0)f(y),

is sometimes called Jensen’s inequality. 1t is easily extended to convex combinations
of more than two points: If f is convex, x1,...,x; € dom f, and 01,...,0, > 0
with 61 + --- + 0, = 1, then

flbrxy 4+ -+ 0pzr) <01 f(x1) + -+ O f(zp).

As in the case of convex sets, the inequality extends to infinite sums, integrals, and
expected values. For example, if p(z) > 0 on S C dom f, fs p(x) de =1, then

1( [ oo as) < [ o) as

provided the integrals exist. In the most general case we can take any probability
measure with support in dom f. If x is a random variable such that = € dom f
with probability one, and f is convex, then we have

f(Ez) <Ef(z), (3.5)

provided the expectations exist. We can recover the basic inequality (3.1) from
this general form, by taking the random variable x to have support {x, x5}, with
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prob(z = 1) = 6, prob(z = 29) = 1 — 0. Thus the inequality (3.5) characterizes
convexity: If f is not convex, there is a random variable x, with x € dom f with
probability one, such that f(Ex) > E f(x).

All of these inequalities are now called Jensen’s inequality, even though the
inequality studied by Jensen was the very simple one

f (w;ry> < f(ff);rf(y)

Remark 3.2 We can interpret (3.5) as follows. Suppose z € dom f C R" and z is
any zero mean random vector in R"™. Then we have

Ef(z+2) > f(x).

Thus, randomization or dithering (i.e., adding a zero mean random vector to the
argument) cannot decrease the value of a convex function on average.

Inequalities

Many famous inequalities can be derived by applying Jensen’s inequality to some
appropriate convex function. (Indeed, convexity and Jensen’s inequality can be
made the foundation of a theory of inequalities.) As a simple example, consider
the arithmetic-geometric mean inequality:

Vab < (a+b)/2 (3.6)
for a,b > 0. The function — log z is convex; Jensen’s inequality with § = 1/2 yields

b —1 —logb
—log(a;— )S oga2 ogb

Taking the exponential of both sides yields (3.6).
As a less trivial example we prove Holder’s inequality: forp > 1, 1/p+1/q =1,

and z, y € R",
n n 1/? n 1/q
inyi < <Z|$z|p> (Zhﬁq) -
i=1 i=1 i=1

By convexity of —log z, and Jensen’s inequality with general 8, we obtain the more
general arithmetic-geometric mean inequality

a’bt =% < fa+ (1 -0,
valid for a, b > 0 and 0 < 6§ < 1. Applying this with

| [P o Jwl®

JR D b= ———
Z:;l:l |$]|p7 Z;L::l |y.]|q7

1/p 1/q
|z: [P lyil < |z;]? " |y |?
n n f— n n .
Zj:l |25 |P Zj:l ly;]4 ij:1 |z ;[P qzj:l |y

Summing over ¢ then yields Holder’s inequality.

0=1/p,

a =

yields
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Operations that preserve convexity

In this section we describe some operations that preserve convexity or concavity
of functions, or allow us to construct new convex and concave functions. We start
with some simple operations such as addition, scaling, and pointwise supremum,
and then describe some more sophisticated operations (some of which include the
simple operations as special cases).

Nonnegative weighted sums

Evidently if f is a convex function and « > 0, then the function af is convex.
If f1 and f5 are both convex functions, then so is their sum f; + fo. Combining
nonnegative scaling and addition, we see that the set of convex functions is itself a
convex cone: a nonnegative weighted sum of convex functions,

f:w1f1+"'+wmfma

is convex. Similarly, a nonnegative weighted sum of concave functions is concave. A
nonnegative, nonzero weighted sum of strictly convex (concave) functions is strictly
convex (concave).

These properties extend to infinite sums and integrals. For example if f(z,y)
is convex in z for each y € A, and w(y) > 0 for each y € A, then the function g
defined as

(@) = [ wl) o) dy
A
is convex in z (provided the integral exists).
The fact that convexity is preserved under nonnegative scaling and addition is

easily verified directly, or can be seen in terms of the associated epigraphs. For
example, if w > 0 and f is convex, we have

epi(wf) = { é 3} }epif,

which is convex because the image of a convex set under a linear mapping is convex.

Composition with an affine mapping
Suppose f: R" - R, A € R""™, and b € R". Define g: R™ — R by
g(z) = f(Az + ),

with domg = {x | Az + b € dom f}. Then if f is convex, so is g; if f is concave,
so is g.
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Pointwise maximum and supremum

If f1 and fy are convex functions then their pointwise mazximum f, defined by

f(x) = max{ fi(x), fo()},

with dom f = dom f; Ndom f5, is also convex. This property is easily verified: if
0<6<1andz, ye€domf, then

[0z +(1—=0)y) = max{fi(6z+ (1-0)y), f2(fz + (1 -0)y)}
max{0f1(z) + (1 - 0) f1(y),0f2(z) + (1 = 0) f2(y) }
0 max{f1(z), f2(z)} + (1 — 6) max{f1(y), f2(y)}
0f(z)+(1-0)f(y),

which establishes convexity of f. It is easily shown that if fi,..., f, are convex,
then their pointwise maximum

f(CU) = max{fl(m)v .- 7fm(x)}

IN A

is also convex.

Example 3.5 Piecewise-linear functions. The function
f(z) =max{al @ +b1,...,alz+ by}

defines a piecewise-linear (or really, affine) function (with L or fewer regions). It is
convex since it is the pointwise maximum of affine functions.

The converse can also be shown: any piecewise-linear convex function with L or fewer
regions can be expressed in this form. (See exercise 3.29.)

Example 3.6 Sum of r largest components. For x € R™ we denote by x[; the ith
largest component of z, i.e.,

Ty 2 T[] = 2 Bp)

are the components of = sorted in nonincreasing order. Then the function

T

flz) = ch[ilv

i=1

i.e., the sum of the r largest elements of x, is a convex function. This can be seen by
writing it as

f(z):me:max{:ci1+-~~+:cir\1§i1<i2<~~-<i,«§n},
i=1

i.e., the maximum of all possible sums of r different components of x. Since it is the
pointwise maximum of n!/(r!(n — r)!) linear functions, it is convex.

As an extension it can be shown that the function 22:1 w;[;) is convex, provided
w1 > wz > -+ > wyr > 0. (See exercise 3.19.)
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The pointwise maximum property extends to the pointwise supremum over an
infinite set of convex functions. If for each y € A, f(x,y) is convex in z, then the
function g, defined as

g(x) = sup f(x,y) (3.7)
yeA

is convex in x. Here the domain of ¢ is

domg={z|(z,y) edom f for all y € A, sup f(z,y) < co}.
yeA

Similarly, the pointwise infimum of a set of concave functions is a concave function.
In terms of epigraphs, the pointwise supremum of functions corresponds to the
intersection of epigraphs: with f, g, and A as defined in (3.7), we have

epig= (] epif(~y).
ycA

Thus, the result follows from the fact that the intersection of a family of convex
sets is convex.

Example 3.7 Support function of a set. Let C C R", with C # (). The support
function Sc associated with the set C' is defined as

Sc(z) = sup{a’y | y € C}
(and, naturally, dom S¢ = {z | sup,¢ Ty < oo}).

For each y € C, 2Ty is a linear function of x, so S is the pointwise supremum of a
family of linear functions, hence convex.

Example 3.8 Distance to farthest point of a set. Let C C R". The distance (in any
norm) to the farthest point of C,

f(x) = sup |z —yl,
yeC

is convex. To see this, note that for any y, the function ||z — y|| is convex in z. Since
f is the pointwise supremum of a family of convex functions (indexed by y € C), it
is a convex function of z.

Example 3.9 Least-squares cost as a function of weights. Let a1,...,a, € R™. In a
weighted least-squares problem we minimize the objective function Z;;l wi(aZT:r -
b;)? over x € R™. We refer to w; as weights, and allow negative w; (which opens the
possibility that the objective function is unbounded below).

We define the (optimal) weighted least-squares cost as

g(w) = inf Z wial © —b;)?,
i=1

domg = {w

with domain

infz wi(a;fpa: — bi)2 > —oo} .
i=1
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Since g is the infimum of a family of linear functions of w (indexed by = € R™), it is
a concave function of w.

We can derive an explicit expression for g, at least on part of its domain. Let

W = diag(w), the diagonal matrix with elements w1, ...,w,, and let A € R™*™
have rows a; , so we have

g(w) = inf(Az — b)"W(Az — b) = inf(z” A" W Az — 206" W Az + b" Wb).

From this we see that if ATWA ¥ 0, the quadratic function is unbounded below
in z, so g(w) = —o0, e, w ¢ domg. We can give a simple expression for g
when ATWA > 0 (which defines a strict linear matrix inequality), by analytically
minimizing the quadratic function:

gw) = b'Wb—b"WAATWA)TATWD

-1

n n n

_ 2 2,2 T T

= w;b; — w; bja; w;ia;a; a;.
i=1 i=1 j=1

Concavity of g from this expression is not immediately obvious (but does follow, for
example, from convexity of the matrix fractional function; see example 3.4).

Example 3.10 Mazimum eigenvalue of a symmetric matriz. The function f(X) =
Amax(X), with dom f = S™, is convex. To see this, we express f as

F(X) =sup{y" Xy | [lyll2 = 1},

i.e., as the pointwise supremum of a family of linear functions of X (i.e., y* Xy)
indexed by y € R™.

Example 3.11 Norm of a matriz. Consider f(X) = || X||2 with dom f = RP*?,
where || - ||2 denotes the spectral norm or maximum singular value. Convexity of f
follows from

F(X) = sup{u’ Xv [ |Jull2 = 1, [Jo]l2 = 1},

which shows it is the pointwise supremum of a family of linear functions of X.

As a generalization suppose || - ||« and || - ||» are norms on R? and R?, respectively.
The induced norm of a matrix X € RP*? is defined as
Xv
1X oy = sup 120le
vt vl

(This reduces to the spectral norm when both norms are Euclidean.) The induced
norm can be expressed as

[ Xllap = sup{[[Xvlla|[lv]ls =1}
= sup{u’ Xv | [lullax =1, [[o]ly = 1},
where || - ||« is the dual norm of || - ||, and we use the fact that

T
”'ZH‘Z = sup{u z ‘ ”uHa* - 1}

Since we have expressed || X ||o,» as a supremum of linear functions of X, it is a convex
function.
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Representation as pointwise supremum of affine functions

The examples above illustrate a good method for establishing convexity of a func-
tion: by expressing it as the pointwise supremum of a family of affine functions.
Except for a technical condition, a converse holds: almost every convex function
can be expressed as the pointwise supremum of a family of affine functions. For
example, if f: R"™ — R is convex, with dom f = R", then we have

f(z) =sup{g(z) | g affine, g(z) < f(z) for all z}.

In other words, f is the pointwise supremum of the set of all affine global under-
estimators of it. We give the proof of this result below, and leave the case where
dom f # R" as an exercise (exercise 3.28).

Suppose f is convex with dom f = R™. The inequality

f(z) > sup{g(z) | g affine, g(z) < f(z) for all z}

is clear, since if g is any affine underestimator of f, we have g(z) < f(x). To
establish equality, we will show that for each x € R", there is an affine function g,
which is a global underestimator of f, and satisfies g(x) = f(x).

The epigraph of f is, of course, a convex set. Hence we can find a supporting
hyperplane to it at (x, f(z)), i.e., a € R" and b € R with (a,b) # 0 and

T
HErE
for all (z,t) € epi f. This means that
a’(x —2) +b(f(x) = f(2) —s) <0 (3.8)

for all z € dom f = R"™ and all s > 0 (since (z,t) € epi f means t = f(z) + s for
some s > 0). For the inequality (3.8) to hold for all s > 0, we must have b > 0.
If b = 0, then the inequality (3.8) reduces to a”(z — z) < 0 for all 2 € R", which
implies a = 0 and contradicts (a,b) # 0. We conclude that b > 0, i.e., that the
supporting hyperplane is not vertical.

Using the fact that b > 0 we rewrite (3.8) for s = 0 as

9(2) = f(2) + (a/b)" (z — 2) < f(2)

for all z. The function ¢ is an affine underestimator of f, and satisfies g(x) = f(x).

Composition

In this section we examine conditions on & : R¥ — R and g:R" — R” that
guarantee convexity or concavity of their composition f = hog: R" — R, defined
by

f(z) = h(g(x)), dom f = {z € domy | g(x) € dom h}.
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Scalar composition

We first consider the case k =1, s0 h : R = R and g : R" — R. We can restrict
ourselves to the case n = 1 (since convexity is determined by the behavior of a
function on arbitrary lines that intersect its domain).

To discover the composition rules, we start by assuming that h and g are twice
differentiable, with dom g = domh = R.. In this case, convexity of f reduces to
f” > 0 (meaning, f”(x) >0 for all x € R).

The second derivative of the composition function f = ho g is given by

f'(x) = h"(g(x))g' (2)* + I (9(2))g" (). (3.9)

Now suppose, for example, that g is convex (so ¢’ > 0) and h is convex and
nondecreasing (so h’/ > 0 and A’ > 0). It follows from (3.9) that " >0, i.e., f is
convex. In a similar way, the expression (3.9) gives the results:

f is convex if h is convex and nondecreasing, and g is convex,

f is convex if h is convex and nonincreasing, and ¢ is concave, (3.10)
f is concave if h is concave and nondecreasing, and g is concave,

f is concave if h is concave and nonincreasing, and ¢ is convex.

These statements are valid when the functions g and h are twice differentiable and
have domains that are all of R. It turns out that very similar composition rules
hold in the general case n > 1, without assuming differentiability of A and g, or
that dom g = R" and domh = R:

f is convex if h is convex, h is nondecreasing, and ¢ is convex,

f is convex if h is convex, h is nonincreasing, and g is concave, (3.11)
f is concave if h is concave, h is nondecreasing, and ¢ is concave,

f is concave if h is concave, h is nonincreasing, and g is convex.

Here h denotes the extended-value extension of the function h, which assigns the
value co (—00) to points not in dom h for h convex (concave). The only difference
between these results, and the results in (3.10), is that we require that the extended-
value extension function h be nonincreasing or nondecreasing, on all of R.

To understand what this means, suppose h is convex, so h takes on the value oo
outside dom h. To say that h is nondecreasing means that for any x, y € R, with
x <y, we have h(z) < h(y). In particular, this means that if y € dom h, then x €
dom h. In other words, the domain of h extends infinitely in the negative direction;
it is either R, or an interval of the form (—oo0,a) or (—oo,al. In a similar way, to
say that h is convex and h is nonincreasing means that h is nonincreasing and
dom h extends infinitely in the positive direction. This is illustrated in figure 3.7.

Example 3.12 Some simple examples will illustrate the conditions on h that appear
in the composition theorems.

e The function h(z) = logz, with domh = Ry, is concave and satisfies h
nondecreasing.
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epi f epi f

0 1 0 1
x x

Figure 3.7 Left. The function z?, with domain R, is convex and nonde-
creasing on its domain, but its extended-value extension is not nondecreas-
ing. Right. The function max{z,0}?, with domain R, is convex, and its
extended-value extension is nondecreasing.

e The function h(z) = z'/?, with domh = Ry, is concave and satisfies the
condition h nondecreasing.

e The function h(z) = 2%/% with dom h = Ry, is convex but does not satisfy the
condition h nondecreasing. For example, we have h(—1) = oo, but h(1) = 1.

e The function h(z) = /2 for x > 0, and h(x) = 0 for z < 0, with domh =R,
is convex and does satisfy the condition h nondecreasing.

The composition results (3.11) can be proved directly, without assuming dif-
ferentiability, or using the formula (3.9). As an example, we will prove the fol-
lowing composition theorem: if g is convex, h is convex, and h is nondecreasing,
then f = ho g is convex. Assume that z, y € dom f, and 0 < 6 < 1. Since
x, y € dom f, we have that 2, y € domg and g(x), ¢g(y) € domh. Since dom g
is convex, we conclude that 0z + (1 — )y € dom g, and from convexity of g, we
have

g0 + (1 - 0)y) < 0g(x) + (1 — O)g(y). (3.12)

Since g(z), g(y) € domh, we conclude that Og(x) + (1 — 0)g(y) € domh, i.e.,
the righthand side of (3.12) is in domh. Now we use the assumption that h
is nondecreasing, which means that its domain extends infinitely in the negative
direction. Since the righthand side of (3.12) is in dom h, we conclude that the
lefthand side, i.e., g(0x+(1—0)y) € dom h. This means that 0z+(1—0)y € dom f.
At this point, we have shown that dom f is convex.

Now using the fact that his nondecreasing and the inequality (3.12), we get

h(g(0x + (1 = 0)y)) < h(Og(x) + (1 —0)g(y)). (3.13)

From convexity of h, we have

h(0g(z) + (1 —0)g(y)) < 0h(g(x)) + (1 — O)h(g(y))- (3.14)
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Putting (3.13) and (3.14) together, we have

h(g(0x + (1 = 0)y)) < Oh(g(x)) + (1 = 0)h(g(y)).

which proves the composition theorem.

Example 3.13 Simple composition results.

e If g is convex then exp g(z) is convex.

e If g is concave and positive, then log g(x) is concave.

If g is concave and positive, then 1/g(z) is convex.

If g is convex and nonnegative and p > 1, then g(z)? is convex.

e If g is convex then —log(—g(z)) is convex on {z | g(z) < 0}.

Remark 3.3 The requirement that monotonicity hold for the extended-value extension
h, and not just the function h, cannot be removed. For example, consider the function
g(z) = 2%, with domg = R, and h(z) = 0, with domh = [1,2]. Here g is convex,
and h is convex and nondecreasing. But the function f = h o g, given by

f(z) =0, dom f = [f\/i, —-1] U [1,\/5],

is not convex, since its domain is not convex. Here, of course, the function h is not
nondecreasing.

Vector composition

We now turn to the more complicated case when k > 1. Suppose

f(@) = h(g(x)) = h(g1(z), ..., gr(x)),

withh: R¥ = R, ¢; : R" — R. Again without loss of generality we can assume n =
1. Asin the case k = 1, we start by assuming the functions are twice differentiable,
with dom g = R and dom h = R”, in order to discover the composition rules. We
have

f'(x) = ' ()" V?h(g(2))g' () + Vh(g(2)) 9" (@), (3.15)

which is the vector analog of (3.9). Again the issue is to determine conditions under
which f”(x) > 0 for all « (or f(x) < 0 for all z for concavity). From (3.15) we
can derive many rules, for example:

f is convex if h is convex, h is nondecreasing in each argument,
and g; are convex,

f is convex if h is convex, h is nonincreasing in each argument,
and g; are concave,

f is concave if h is concave, h is nondecreasing in each argument,
and g; are concave.
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As in the scalar case, similar composition results hold in general, with n > 1, no as-
sumption of differentiability of h or g, and general domains. For the general results,
the monotonicity condition on h must hold for the extended-value extension h.
To understand the meaning of the condition that the extended-value exten-
sion h be monotonic, we consider the case where h : Rk — R is convex, and h
nondecreasing, i.e., whenever u =< v, we have h(u) < h(v). This implies that if
v € domh, then so is u: the domain of & must extend infinitely in the —R’fr

directions. We can express this compactly as dom h — Ri = dom h.

Example 3.14 Vector composition examples.

o Let h(z) = 217+ - -+ 2, the sum of the 7 largest components of z € R*. Then
h is convex and nondecreasing in each argument. Suppose g1, ..., gr are convex
functions on R"™. Then the composition function f = h o g, i.e., the pointwise
sum of the r largest g;’s, is convex.

e The function h(z) = log(}_;_, €*) is convex and nondecreasing in each argu-
k N
ment, so log(d ;| €9") is convex whenever g; are.

e For 0 < p < 1, the function h(z) = (Zle 2P)V/P on RE is concave, and
its extension (which has the value —oo for z % 0) is nondecreasing in each

component. So if g; are concave and nonnegative, we conclude that f(z) =

(Zle gi(2)P)Y/P is concave.

e Suppose p > 1, and g1, ..., gr are convex and nonnegative. Then the function
(Zle gi(2)P)Y/P is convex.

To show this, we consider the function i : R* — R defined as

k 1/p
h(z) = (Z max{z;, O}p> ,

with domh = R*, so h = h. This function is convex, and nondecreasing, so
we conclude h(g(x)) is a convex function of xz. For z > 0, we have h(z) =

I.C_ 2P)1/P 5o our conclusion is that I.C_ i (2)P)V/? is convex.
(Zz_l 7 ? z_lg

e The geometric mean h(z) = ([[;_, 2)'/* on RE is concave and its extension

is nondecreasing in each argument. It follows that if g1, ..., gx are nonnegative
concave functions, then so is their geometric mean, (I—If:1 gi)l/k.

Minimization

We have seen that the maximum or supremum of an arbitrary family of convex
functions is convex. It turns out that some special forms of minimization also yield
convex functions. If f is convex in (x,y), and C' is a convex nonempty set, then
the function

g(z) = ;gg f(z,y) (3.16)



88

3 Convex functions

is convex in x, provided g(z) > —oo for all z. The domain of g is the projection of
dom f on its z-coordinates, i.e.,

domg = {z | (z,y) € dom f for some y € C}.

We prove this by verifying Jensen’s inequality for 1, 2o € domg. Let € > 0.
Then there are y1, yo € C such that f(z;,y;) < g(x;) + € for i = 1, 2. Now let
6 € [0,1]. We have

g0z + (1 —O)zg) = yilelgf(@l’l +(1—0)xa,y)
f(Ozy + (1 = 0)z2, 0y1 + (1 — 0)y2)

Of(w1,y1) + (1 = 0)f(w2,y2)
0g(x1) + (1 — 0)g(x2) + €.

IAIACIA

Since this holds for any ¢ > 0, we have
9(0z1 + (1 — 0)z2) < Og(z1) + (1 — 0)g(z2).

The result can also be seen in terms of epigraphs. With f, g, and C' defined as
in (3.16), and assuming the infimum over y € C' is attained for each x, we have

epig = {(z,t) | (z,y,t) € epi f for some y € C}.

Thus epig is convex, since it is the projection of a convex set on some of its
components.

Example 3.15 Schur complement. Suppose the quadratic function
f(z,y) =27 Az + 22" By +y" Cy,
(where A and C' are symmetric) is convex in (x,y), which means
[ A B

BT C > 0.

We can express g(z) = inf, f(z,y) as

g(z) =2" (A - BC"B" )z,
where CT is the pseudo-inverse of C' (see §A.5.4). By the minimization rule, g is
convex, so we conclude that A — BCTBT > 0.

If C is invertible, i.e., C' > 0, then the matrix A — BC!BT is called the Schur
complement of C in the matrix

A B

BT «©

(see §A.5.5).

Example 3.16 Distance to a set. The distance of a point x to a set S C R", in the
norm || - ||, is defined as
dist(z, S) = inf ||z — y]|.
yes

The function ||z —y|| is convex in (z,y), so if the set S is convex, the distance function
dist(z, S) is a convex function of z.
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Example 3.17 Suppose h is convex. Then the function g defined as

g(z) = inf{h(y) | Ay =z}

is convex. To see this, we define f by

Flo,y) = { h(y) if Ay==x

%9 otherwise,

which is convex in (z,y). Then g is the minimum of f over y, and hence is convex.
(It is not hard to show directly that g is convex.)

Perspective of a function
If f:R™ — R, then the perspective of f is the function ¢ : R"™* — R defined by

gla,t) = tf(x/t),

with domain
domg = {(z,t) | ¢/t € dom f, t > 0}.

The perspective operation preserves convexity: If f is a convex function, then so
is its perspective function g. Similarly, if f is concave, then so is g.

This can be proved several ways, for example, direct verification of the defining
inequality (see exercise 3.33). We give a short proof here using epigraphs and the
perspective mapping on R described in §2.3.3 (which will also explain the name
‘perspective’). For ¢ > 0 we have

(x,t,s) €epig <= tf(z/t) <s
—  f(z/t) < s/t
< (x/t,s/t) € epif.
Therefore epi g is the inverse image of epi f under the perspective mapping that

takes (u, v, w) to (u,w)/v. It follows (see §2.3.3) that epi g is convex, so the function
g is convex.

Example 3.18 Fuclidean norm squared. The perspective of the convex function
f(z) =27z on R" is

{ETI'

9(@,t) = t(z/t)" (a/t) = —,

which is convex in (z,t) for t > 0.

We can deduce convexity of g using several other methods. First, we can express g as
the sum of the quadratic-over-linear functions z? /t, which were shown to be convex
in §3.1.5. We can also express g as a special case of the matrix fractional function
2T (tI) 'z (see example 3.4).
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Example 3.19 Negative logarithm. Consider the convex function f(x) = —logz on
R . Its perspective is

g(z,t) = —tlog(z/t) = tlog(t/x) = tlogt — tlogx,

and is convex on R?H_. The function g is called the relative entropy of t and x. For
x =1, g reduces to the negative entropy function.

From convexity of g we can establish convexity or concavity of several interesting
related functions. First, the relative entropy of two vectors u, v € R}, defined as

Z U; log(ui/vi),
=1

is convex in (u,v), since it is a sum of relative entropies of u;, v;.

A closely related function is the Kullback-Leibler divergence between u, v € R,
given by

n
Dia(u,v) =Y (uilog(ui/vi) = wi +vs), (3.17)
i=1
which is convex, since it is the relative entropy plus a linear function of (u,v). The
Kullback-Leibler divergence satisfies Dyi(u,v) > 0, and Dy (u,v) = 0 if and only if
u = v, and so can be used as a measure of deviation between two positive vectors; see
exercise 3.13. (Note that the relative entropy and the Kullback-Leibler divergence
are the same when u and v are probability vectors, i.e., satisfy 174 = 1Ty = 1.)

If we take v; = 17w in the relative entropy function, we obtain the concave (and
homogeneous) function of u € R}, given by

Z uilog(1Tw/u;) = (17 w) Z zi log(1/z),

i=1 i=1
where z = u/(17u), which is called the normalized entropy function. The vector
z=u/ 17y is a normalized vector or probability distribution, since its components

sum to one; the normalized entropy of u is 17 times the entropy of this normalized
distribution.

Example 3.20 Suppose f : R™ — R is convex, and A € R™*", b € R™, c € R",
and d € R. We define

g9(z) = ("z + d)f ((Az +b)/(c"z + d)) ,

with
domg={z|c"z+d>0, (Az+b)/(c" = +d) € dom f}.
Then g is convex.

3.3 The conjugate function

In this section we introduce an operation that will play an important role in later
chapters.
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f(x)

0 - w))

Figure 3.8 A function f : R — R, and a value y € R. The conjugate
function f*(y) is the maximum gap between the linear function yx and
f(x), as shown by the dashed line in the figure. If f is differentiable, this
occurs at a point x where f'(z) = y.

Definition and examples
Let f: R"™ — R. The function f*: R" — R, defined as

)= sw (y'z—f(z)), (3.18)
z€dom f

is called the conjugate of the function f. The domain of the conjugate function
consists of y € R" for which the supremum is finite, i.e., for which the difference
yT'x — f(x) is bounded above on dom f. This definition is illustrated in figure 3.8.

We see immediately that f* is a convex function, since it is the pointwise
supremum of a family of convex (indeed, affine) functions of y. This is true whether
or not f is convex. (Note that when f is convex, the subscript z € dom f is not
necessary since, by convention, y’x — f(z) = —oo for z ¢ dom f.)

We start with some simple examples, and then describe some rules for conjugat-
ing functions. This allows us to derive an analytical expression for the conjugate
of many common convex functions.

Example 3.21 We derive the conjugates of some convex functions on R.

e Affine function. f(x) = ax +b. As a function of z, yz — ax — b is bounded if
and only if y = a, in which case it is constant. Therefore the domain of the
conjugate function f* is the singleton {a}, and f*(a) = —b.

e Negative logarithm. f(x) = —logx, with dom f = R44. The function zy+log =
is unbounded above if y > 0 and reaches its maximum at x = —1/y otherwise.
Therefore, dom f* = {y | y < 0} = —R44 and f*(y) = —log(—y)—1 for y < 0.

e FEzxponential. f(x) = e®. xy — €% is unbounded if y < 0. For y > 0, zy — €”
reaches its maximum at z = logy, so we have f*(y) = ylogy —y. For y = 0,
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f*(y) = sup, —€® = 0. In summary, dom f* = R4 and f*(y) = ylogy — y
(with the interpretation 0log0 = 0).

e Negative entropy. f(z) = xlogz, with dom f = R4 (and f(0) = 0). The
function zy — xlog z is bounded above on R for all 4, hence dom f* = R.. It
attains its maximum at z = V™', and substituting we find f*(y) = e¥~".

e Inverse. f(x) = 1/x on Ry4. For y > 0, yr — 1/ is unbounded above. For
y = 0 this function has supremum 0; for y < 0 the supremum is attained at
x = (—y) "2 Therefore we have f*(y) = —2(—y)'/?, with dom f* = —R..

Example 3.22 Strictly convex quadratic function. Consider f(x) = %zTQx, with
Q € S .. The function yTa — %xTQx is bounded above as a function of = for all y.
It attains its maximum at z = Q 'y, so

f )= %yTQ’ly

Example 3.23 Log-determinant. We consider f(X) = logdet X~* on ST,. The
conjugate function is defined as

F5(Y) = sup (tr(Y X) + logdet X),
X0

since tr(Y X) is the standard inner product on S™. We first show that tr(YX) +
log det X is unbounded above unless Y < 0. If Y £ 0, then Y has an eigenvector v,
with |[v]|2 = 1, and eigenvalue A > 0. Taking X = I + tvv” we find that

tr(YX) +logdet X = trY + tA 4 logdet(I + tov”) = tr'Y + tA + log(1 + t),

which is unbounded above as t — oo.
Now consider the case Y < 0. We can find the maximizing X by setting the gradient
with respect to X equal to zero:

Vx (tr(YX) +logdet X) =Y + X ' =0

(see §A.4.1), which yields X = —Y ™! (which is, indeed, positive definite). Therefore
we have
(V) =logdet(=Y) ' —n,

with dom f* = —S7} | .

Example 3.24 Indicator function. Let Is be the indicator function of a (not neces-
sarily convex) set S C R", i.e., Is(z) =0 on dom Is = S. Its conjugate is

I5(y) = supy’ =,
zeS

which is the support function of the set S.
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Example 3.25 Log-sum-exp function. To derive the conjugate of the log-sum-exp
function f(z) = log(} " ™), we first determine the values of y for which the
maximum over z of y7z — f(x) is attained. By setting the gradient with respect to
x equal to zero, we obtain the condition

T4

e
j=1

These equations are solvable for z if and only if ¥ > 0 and 17y = 1. By substituting
the expression for y; into y” z— f(2) we obtain f*(y) = Z?:1 yi log y;. This expression
for f* is still correct if some components of y are zero, as long as y = 0 and 1Ty =1,
and we interpret 0log0 as 0.

In fact the domain of f* is exactly given by 17y = 1, y > 0. To show this, suppose
that a component of y is negative, say, yx < 0. Then we can show that y" = — f(x) is
unbounded above by choosing xx = —t, and x; = 0, i # k, and letting ¢ go to infinity.

If y = 0 but 1Ty # 1, we choose x = 1, so that
vz — flz)=t1Ty —t —logn.
If 17y > 1, this grows unboundedly as t — oo; if 17y < 1, it grows unboundedly as
t — —oo0.
In summary,

Fy) = St yilogy: ify=0and 17y =1
Y= « otherwise.

In other words, the conjugate of the log-sum-exp function is the negative entropy
function, restricted to the probability simplex.

Example 3.26 Norm. Let ||| be a norm on R", with dual norm || - ||.. We will
show that the conjugate of f(z) = ||z|| is

f*(y):{ 0yl <1

oo otherwise,

i.e., the conjugate of a norm is the indicator function of the dual norm unit ball.
If ||y||« > 1, then by definition of the dual norm, there is a z € R"™ with ||z]| < 1 and
yTz > 1. Taking = = tz and letting ¢t — oo, we have

T T
y o — |zl =ty 2z = [[2]]) = oo,

which shows that f*(y) = co. Conversely, if ||y|l. < 1, then we have y"x < ||z||||y]|«
for all z, which implies for all z, y"2 — |lz|| < 0. Therefore z = 0 is the value that
maximizes y”z — |||, with maximum value 0.

Example 3.27 Norm squared. Now consider the function f(x) = (1/2)]|=||?, where ||-||
is a norm, with dual norm ||-||... We will show that its conjugate is f*(y) = (1/2)||y||2.
From "z < ||y||+||z, we conclude

y e = (1/2)lz)* < llyll el - (1/2) )]
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for all . The righthand side is a quadratic function of ||z||, which has maximum
value (1/2)||y||2. Therefore for all z, we have

y e —(1/2)]el* < (1/2)llyl2,
which shows that f*(y) < (1/2)]|y||3.

To show the other inequality, let = be any vector with y”z = ||y||.||z||, scaled so that
lz|l = |ly]|«. Then we have, for this z,

y'e = (1/2)lz)* = 1/2)]y]Z,
which shows that f*(y) > (1/2)|ly|%.

Example 3.28 Revenue and profit functions. We consider a business or enterprise that
consumes n resources and produces a product that can be sold. Welet r = (r1,...,7x)
denote the vector of resource quantities consumed, and S(r) denote the sales revenue
derived from the product produced (as a function of the resources consumed). Now
let p; denote the price (per unit) of resource 4, so the total amount paid for resources
by the enterprise is p” r. The profit derived by the firm is then S(r) —p”r. Let us fix
the prices of the resources, and ask what is the maximum profit that can be made, by
wisely choosing the quantities of resources consumed. This maximum profit is given
by
M(p) = sup (S(r) —p'r).

The function M (p) gives the maximum profit attainable, as a function of the resource
prices. In terms of conjugate functions, we can express M as

M(p) = (=5)"(=p).
Thus the maximum profit (as a function of resource prices) is closely related to the
conjugate of gross sales (as a function of resources consumed).

Basic properties

Fenchel’s inequality

From the definition of conjugate function, we immediately obtain the inequality

@)+ ff(y) ="y

for all , y. This is called Fenchel’s inequality (or Young’s inequality when f is
differentiable).
For example with f(z) = (1/2)z” Qz, where Q € S}, we obtain the inequality

)= (
oy < (1/2)2" Qu + (1/2)y" Q™ 'y.

Conjugate of the conjugate

The examples above, and the name ‘conjugate’, suggest that the conjugate of the
conjugate of a convex function is the original function. This is the case provided a
technical condition holds: if f is convex, and f is closed (i.e., epi f is a closed set;
see §A.3.3), then f** = f. For example, if dom f = R", then we have f** = f,
i.e., the conjugate of the conjugate of f is f again (see exercise 3.39).
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Differentiable functions

The conjugate of a differentiable function f is also called the Legendre transform
of f. (To distinguish the general definition from the differentiable case, the term
Fenchel conjugate is sometimes used instead of conjugate.)

Suppose f is convex and differentiable, with dom f = R". Any maximizer z*
of yTx — f(x) satisfies y = Vf(2*), and conversely, if 2* satisfies y = V f(2*), then
x* maximizes y”x — f(z). Therefore, if y = Vf(x*), we have

Fly) =2 TV f(a*) - f(z").

This allows us to determine f*(y) for any y for which we can solve the gradient
equation y = V f(z) for z.

We can express this another way. Let z € R" be arbitrary and define y = V f(2).
Then we have

[ (y) = 2"V f(2) = f(2).
Scaling and composition with affine transformation

For a > 0 and b € R, the conjugate of g(z) = af(z) +bis ¢*(y) = af*(y/a) — .
Suppose A € R™™" is nonsingular and b € R". Then the conjugate of g(z) =
f(Az+0) is
9" (y) = f(A7Ty) —bT ATy,
with dom ¢g* = AT dom f*.

Sums of independent functions

If f(u,v) = fi(u) + f2(v), where f; and fo are convex functions with conjugates
fr and f5, respectively, then

fr(w, z) = fi(w) + f3(2).

In other words, the conjugate of the sum of independent convex functions is the sum
of the conjugates. (‘Independent’ means they are functions of different variables.)

Quasiconvex functions

Definition and examples

A function f: R"™ — R is called quasiconvez (or unimodal) if its domain and all
its sublevel sets

So ={z €dom | f(z) < a},

for @ € R, are convex. A function is quasiconcave if —f is quasiconvex, i.e., every
superlevel set {z | f(z) > a} is convex. A function that is both quasiconvex and
quasiconcave is called quasilinear. If a function f is quasilinear, then its domain,
and every level set {z | f(x) = a} is convex.
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a b ¢

Figure 3.9 A quasiconvex function on R. For each «a, the a-sublevel set S,
is convex, i.e., an interval. The sublevel set S, is the interval [a,b]. The
sublevel set S3 is the interval (—oo, c].

For a function on R, quasiconvexity requires that each sublevel set be an interval
(including, possibly, an infinite interval). An example of a quasiconvex function on
R is shown in figure 3.9.

Convex functions have convex sublevel sets, and so are quasiconvex. But simple
examples, such as the one shown in figure 3.9, show that the converse is not true.

Example 3.29 Some examples on R:

e Logarithm. logx on R4 is quasiconvex (and quasiconcave, hence quasilinear).
o (Ceiling function. ceil(xz) = inf{z € Z | z > =z} is quasiconvex (and quasicon-
cave).

These examples show that quasiconvex functions can be concave, or discontinuous.
We now give some examples on R".

Example 3.30 Length of a vector. We define the length of x € R" as the largest
index of a nonzero component, i.e.,

f(z) = max{i | z; # 0}.

(We define the length of the zero vector to be zero.) This function is quasiconvex on
R, since its sublevel sets are subspaces:

flz)<a <= z;=0fori=|a]+1,...,n.

Example 3.31 Consider f: R?> — R, with dom f = R and f(z1,22) = 2122. This
function is neither convex nor concave since its Hessian

V(@) = [‘f H
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is indefinite; it has one positive and one negative eigenvalue. The function f is
quasiconcave, however, since the superlevel sets

{x € RY | z122 > a}

are convex sets for all a. (Note, however, that f is not quasiconcave on RQ.)

Example 3.32 Linear-fractional function. The function

atx+b

@) =T a

with dom f = {x | ¢"x + d > 0}, is quasiconvex, and quasiconcave, i.e., quasilinear.
Its a-sublevel set is

So = {z|cz+d>0, (a"z+b)/(c"z+d) <a}
= {z|cz+d>0, d"z+b<alcz+d)},

which is convex, since it is the intersection of an open halfspace and a closed halfspace.
(The same method can be used to show its superlevel sets are convex.)

Example 3.33 Distance ratio function. Suppose a,b € R", and define

_ llz—al:

i.e., the ratio of the Euclidean distance to a to the distance to b. Then f is quasiconvex
on the halfspace {z | ||z — a||2 < ||z — b|]|2}. To see this, we consider the a-sublevel
set of f, with o < 1 since f(z) <1 on the halfspace {z | ||z — al|2 < ||z — b||2}. This
sublevel set is the set of points satisfying

[z —all2 < alz —b|2.
Squaring both sides, and rearranging terms, we see that this is equivalent to

(1—a®)z"e —2(a—a’b) s +a"a—a’b"b<0.

This describes a convex set (in fact a Euclidean ball) if o < 1.

Example 3.34 Internal rate of return. Let © = (xo,x1,...,2,) denote a cash flow
sequence over n periods, where x; > 0 means a payment to us in period ¢, and x; < 0
means a payment by us in period i. We define the present value of a cash flow, with
interest rate » > 0, to be

n

PV(z,r) = Z(l + )
i=0
(The factor (14 7)~" is a discount factor for a payment by or to us in period i.)

Now we consider cash flows for which 9 < 0 and z¢9 + 21 + --- + 2, > 0. This
means that we start with an investment of |xo| in period 0, and that the total of the
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remaining cash flow, z1 + - + x,, (not taking any discount factors into account)
exceeds our initial investment.

For such a cash flow, PV(z,0) > 0 and PV(z,r) = zo < 0 as r — oo, so it follows
that for at least one r > 0, we have PV(z,r) = 0. We define the internal rate of
return of the cash flow as the smallest interest rate » > 0 for which the present value
is zero:

IRR(z) = inf{r > 0 | PV(z,r) = 0}.

Internal rate of return is a quasiconcave function of x (restricted to zo < 0, 1 +-- -+
xn > 0). To see this, we note that

IRR(z) > R <= PV(z,r) >0for 0 <r < R.

The lefthand side defines the R-superlevel set of IRR. The righthand side is the
intersection of the sets {x | PV(z,r) > 0}, indexed by r, over the range 0 < r < R.
For each r, PV(x,r) > 0 defines an open halfspace, so the righthand side defines a
convex set.

Basic properties

The examples above show that quasiconvexity is a considerable generalization of
convexity. Still, many of the properties of convex functions hold, or have analogs,
for quasiconvex functions. For example, there is a variation on Jensen’s inequality
that characterizes quasiconvexity: A function f is quasiconvex if and only if dom f
is convex and for any z, y € dom f and 0 < 6 <1,

f(0z + (1= 0)y) < max{f(z), f(y)}, (3.19)

i.e., the value of the function on a segment does not exceed the maximum of
its values at the endpoints. The inequality (3.19) is sometimes called Jensen’s
inequality for quasiconvex functions, and is illustrated in figure 3.10.

Example 3.35 Cardinality of a nonnegative vector. The cardinality or size of a
vector z € R™ is the number of nonzero components, and denoted card(z). The
function card is quasiconcave on R’ (but not R™). This follows immediately from
the modified Jensen inequality

card(z + y) > min{card(z), card(y)},

which holds for z, y > 0.

Example 3.36 Rank of positive semidefinite matriz. The function rank X is quasi-
concave on S'. This follows from the modified Jensen inequality (3.19),

rank(X +Y) > min{rank X, rank Y}

which holds for X, ¥ € S8”. (This can be considered an extension of the previous
example, since rank(diag(z)) = card(x) for z > 0.)
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Figure 3.10 A quasiconvex function on R. The value of f between x and y
is no more than max{f(z), f(y)}.

Like convexity, quasiconvexity is characterized by the behavior of a function f
on lines: f is quasiconvex if and only if its restriction to any line intersecting its
domain is quasiconvex. In particular, quasiconvexity of a function can be verified by
restricting it to an arbitrary line, and then checking quasiconvexity of the resulting
function on R.

Quasiconvex functions on R

We can give a simple characterization of quasiconvex functions on R. We consider
continuous functions, since stating the conditions in the general case is cumbersome.
A continuous function f: R — R is quasiconvex if and only if at least one of the
following conditions holds:

e f is nondecreasing
e f is nonincreasing

e there is a point ¢ € dom f such that for ¢t < ¢ (and ¢ € dom f), [ is
nonincreasing, and for ¢t > ¢ (and ¢t € dom f), f is nondecreasing.

The point ¢ can be chosen as any point which is a global minimizer of f. Figure 3.11
illustrates this.

Differentiable quasiconvex functions

First-order conditions

Suppose f: R"™ — R is differentiable. Then f is quasiconvex if and only if dom f
is convex and for all z, y € dom f

fy) < f@) = V@) (y —2) <0. (3.20)
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Figure 3.11 A quasiconvex function on R. The function is nonincreasing for
t < ¢ and nondecreasing for ¢ > c.

Figure 3.12 Three level curves of a quasiconvex function f are shown. The
vector V f(x) defines a supporting hyperplane to the sublevel set {z | f(z) <

f(x)} at x.

This is the analog of inequality (3.2), for quasiconvex functions. We leave the proof
as an exercise (exercise 3.43).

The condition (3.20) has a simple geometric interpretation when V f(x) # 0. It
states that V f(z) defines a supporting hyperplane to the sublevel set {y | f(y) <
f(x)}, at the point z, as illustrated in figure 3.12.

While the first-order condition for convexity (3.2), and the first-order condition
for quasiconvexity (3.20) are similar, there are some important differences. For
example, if f is convex and V f(x) = 0, then z is a global minimizer of f. But this
statement is false for quasiconvex functions: it is possible that V f(z) = 0, but =
is not a global minimizer of f.
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Second-order conditions

Now suppose [ is twice differentiable. If f is quasiconvex, then for all x € dom f,
and all y € R", we have

yI'Vf(x) =0= y'V2f(x)y > 0. (3.21)
For a quasiconvex function on R, this reduces to the simple condition
fll@)=0= f"(z) 20,

i.e., at any point with zero slope, the second derivative is nonnegative. For a
quasiconvex function on R", the interpretation of the condition (3.21) is a bit
more complicated. As in the case n = 1, we conclude that whenever V f(z) = 0,
we must have V2f(z) = 0. When Vf(x) # 0, the condition (3.21) means that
V2 f(z) is positive semidefinite on the (n — 1)-dimensional subspace V f(z)+. This
implies that V2 f(z) can have at most one negative eigenvalue.

As a (partial) converse, if f satisfies

yIVf(z)=0= yTV2f(z)y >0 (3.22)

for all z € dom f and all y € R"™, y = 0, then f is quasiconvex. This condition is
the same as requiring V2 f(z) to be positive definite for any point with V f(x) = 0,
and for all other points, requiring V2 f(z) to be positive definite on the (n — 1)-

dimensional subspace V f(z)*+.

Proof of second-order conditions for quasiconvexity

By restricting the function to an arbitrary line, it suffices to consider the case in
which f: R — R.

We first show that if f : R — R is quasiconvex on an interval (a,b), then it
must satisfy (3.21), i.e., if f'(¢) = 0 with ¢ € (a,b), then we must have f”(¢) > 0. If
f'(¢) = 0with ¢ € (a,b), f(c) < 0, then for small positive e we have f(c—e) < f(c)
and f(c+¢€) < f(c). It follows that the sublevel set {z | f(z) < f(c) — €} is
disconnected for small positive €, and therefore not convex, which contradicts our
assumption that f is quasiconvex.

Now we show that if the condition (3.22) holds, then f is quasiconvex. Assume
that (3.22) holds, i.e., for each ¢ € (a,b) with f/(¢) = 0, we have f”(c) > 0. This
means that whenever the function f’ crosses the value 0, it is strictly increasing.
Therefore it can cross the value 0 at most once. If f’ does not cross the value
0 at all, then f is either nonincreasing or nondecreasing on (a,b), and therefore
quasiconvex. Otherwise it must cross the value 0 exactly once, say at ¢ € (a,b).
Since f’(c) > 0, it follows that f/'(t) <0 for a <t < ¢, and f/(t) > 0 for ¢ <t < b.
This shows that f is quasiconvex.

Operations that preserve quasiconvexity

Nonnegative weighted maximum
A nonnegative weighted maximum of quasiconvex functions, i.e.,

f = max{wlfl7"' 7wmfm}7
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with w; > 0 and f; quasiconvex, is quasiconvex. The property extends to the
general pointwise supremum

f(x) = sup(w(y)g(z,y))
yel

where w(y) > 0 and g(z,y) is quasiconvex in z for each y. This fact can be easily
verified: f(z) < « if and only if

w(y)g(z,y) < aforaly e C,

i.e., the a-sublevel set of f is the intersection of the a-sublevel sets of the functions
w(y)g(z,y) in the variable x.

Example 3.37 Generalized eigenvalue. The maximum generalized eigenvalue of a
pair of symmetric matrices (X,Y’), with Y > 0, is defined as

uT Xu

Amax (X, Y) = SUD TV sup{\ | det(A\Y — X) = 0}.

(See §A.5.3). This function is quasiconvex on dom f = S™ x S7 .
To see this we consider the expression

T
u” Xu
Amax(X,Y) = —_
(X Y) = sup Uy

For each u # 0, the function u” Xu/u”Ywu is linear-fractional in (X,Y), hence a
quasiconvex function of (X,Y). We conclude that Amax is quasiconvex, since it is the
supremum of a family of quasiconvex functions.

Composition

If g: R" — R is quasiconvex and h : R — R is nondecreasing, then f = hog is
quasiconvex.

The composition of a quasiconvex function with an affine or linear-fractional
transformation yields a quasiconvex function. If f is quasiconvex, then g(z) =
f(Az +b) is quasiconvex, and g(z) = f((Az +b)/(c'z + d)) is quasiconvex on the
set

{z|c"z+d>0, (Az +b)/(c"x + d) € dom f}.

Minimization
If f(x,y) is quasiconvex jointly in = and y and C' is a convex set, then the function

g(x) = yirelgf(w, Y)

is quasiconvex.
To show this, we need to show that {z | g(z) < a} is convex, where o € R is
arbitrary. From the definition of g, g(z) < « if and only if for any € > 0 there exists
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ay € C with f(z,y) < a+ e Now let z; and xo be two points in the a-sublevel
set of g. Then for any € > 0, there exists y1, y2 € C' with

f(x17y1)§a+€a f(x27y2)§a+€a

and since f is quasiconvex in x and y, we also have
f(el'l + (1 - 9)'2:2792/1 + (1 - e)yQ) <a+ €,

for 0 < 0 < 1. Hence g(fz1 + (1 — 0)x2) < «, which proves that {z | g(z) < o} is
convex.

Representation via family of convex functions

In the sequel, it will be convenient to represent the sublevel sets of a quasiconvex
function f (which are convex) via inequalities of convex functions. We seek a family
of convex functions ¢; : R" — R, indexed by t € R, with

flz) <t <= ¢(x) <0, (3.23)

i.e., the t-sublevel set of the quasiconvex function f is the 0-sublevel set of the
convex function ¢;. Evidently ¢; must satisfy the property that for all z € R",
pr(x) <0 = ¢s(x) < 0 for s > t. This is satisfied if for each z, ¢:(z) is a
nonincreasing function of ¢, i.e., ¢s(x) < ¢¢(x) whenever s > t.

To see that such a representation always exists, we can take

(Mm):{ 0 flz)<t

oo otherwise,

i.e., ¢ is the indicator function of the t-sublevel of f. Obviously this representation
is not unique; for example if the sublevel sets of f are closed, we can take

¢u(x) = dist (z,{z | f(z) <1}).

We are usually interested in a family ¢, with nice properties, such as differentia-
bility.

Example 3.38 Convez over concave function. Suppose p is a convex function, ¢ is a
concave function, with p(z) > 0 and g(z) > 0 on a convex set C. Then the function
f defined by f(z) = p(z)/q(x), on C, is quasiconvex.

Here we have
f(z) <t <= p(x) —tq(x) <0,

so we can take ¢(z) = p(z) — tq(z) for ¢ > 0. For each ¢, ¢ is convex and for each
x, ¢(x) is decreasing in t.
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3.5
3.5.1

Log-concave and log-convex functions
Definition

A function f : R" — R is logarithmically concave or log-concave if f(x) > 0
for all z € dom f and log f is concave. It is said to be logarithmically convex
or log-convez if log f is convex. Thus f is log-convex if and only if 1/f is log-
concave. It is convenient to allow f to take on the value zero, in which case we
take log f(x) = —oo. In this case we say f is log-concave if the extended-value
function log f is concave.

We can express log-concavity directly, without logarithms: a function f : R"™ —
R, with convex domain and f(x) > 0 for all z € dom f, is log-concave if and only
if for all z, y € dom f and 0 < 0 < 1, we have

f0z+ (1 —0)y) > f(2)" f(y)' .

In particular, the value of a log-concave function at the average of two points is at
least the geometric mean of the values at the two points.

From the composition rules we know that e” is convex if h is convex, so a log-
convex function is convex. Similarly, a nonnegative concave function is log-concave.
It is also clear that a log-convex function is quasiconvex and a log-concave function
is quasiconcave, since the logarithm is monotone increasing.

Example 3.39 Some simple examples of log-concave and log-convez functions.

o Affine function. f(x) = a”x + b is log-concave on {x | a’z + b > 0}.
e Powers. f(z) =x% on Ryy, is log-convex for a < 0, and log-concave for a > 0.
e Exponentials. f(x) = e** is log-convex and log-concave.

e The cumulative distribution function of a Gaussian density,

[ :
D(x) = \/727’/ e/ du,

is log-concave (see exercise 3.54).

e Gamma function. The Gamma function,

I'(z) :/ u e du,
0

is log-convex for « > 1 (see exercise 3.52).
o Determinant. det X is log concave on S’ | .

e Determinant over trace. det X/tr X is log concave on S’ (see exercise 3.49).

Example 3.40 Log-concave density functions. Many common probability density
functions are log-concave. Two examples are the multivariate normal distribution,

f(x) = ;6_%("”_5)7“271(1—5)

(2m)™ det 3
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(where Z € R™ and ¥ € S7 ), and the exponential distribution on R,

” T
flz) = <H /\i> e M
i=1
(where X\ > 0). Another example is the uniform distribution over a convex set C,

{ 1l/a zeC

f(x) = 0 z¢C

where a = vol(C) is the volume (Lebesgue measure) of C. In this case log f takes
on the value —oo outside C, and —loga on C, hence is concave.

As a more exotic example consider the Wishart distribution, defined as follows. Let

Z1,...,2p € R™ be independent Gaussian random vectors with zero mean and co-
variance ¥ € 8™, with p > n. The random matrix X = Zle z;zl has the Wishart
density

F(X) = a(det X)Pn=D/2 =3 02X
with dom f = S7 ,, and a is a positive constant. The Wishart density is log-concave,
since

log f(X) =loga+ 1%71 logdet X — %tr(EilX),

which is a concave function of X.

Properties

Twice differentiable log-convex/concave functions

Suppose f is twice differentiable, with dom f convex, so

v - L v V@)
oy V@~ V@V

We conclude that f is log-convex if and only if for all z € dom f,
F@)V2f(x) = Vf(x)V (),
and log-concave if and only if for all x € dom f,

@)V f(z) 2 V(@) V()"

Vlog f(z) =

Multiplication, addition, and integration

Log-convexity and log-concavity are closed under multiplication and positive scal-
ing. For example, if f and g are log-concave, then so is the pointwise product
h(z) = f(x)g(x), since log h(x) = log f(x) +log g(z), and log f(x) and log g(z) are
concave functions of x.

Simple examples show that the sum of log-concave functions is not, in general,
log-concave. Log-convexity, however, is preserved under sums. Let f and g be log-
convex functions, i.e., F' = log f and G = log g are convex. From the composition
rules for convex functions, it follows that

log (exp F' + exp G) = log(f + g)
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is convex. Therefore the sum of two log-convex functions is log-convex.
More generally, if f(x,y) is log-convex in « for each y € C' then

g(x) = Lf(x7y) dy

is log-convex.

Example 3.41 Laplace transform of a nonnegative function and the moment and
cumulant generating functions. Suppose p : R™ — R satisfies p(z) > 0 for all z. The
Laplace transform of p,

P(2) = / pla)e="" de,

is log-convex on R". (Here dom P is, naturally, {z | P(z) < co}.)

Now suppose p is a density, i.e., satisfies fp(:r,) dz = 1. The function M (z) = P(—z)
is called the moment generating function of the density. It gets its name from the fact
that the moments of the density can be found from the derivatives of the moment
generating function, evaluated at z = 0, e.g.,

VM(0)=Ev, V’M(0)=Euw",

where v is a random variable with density p.

The function log M (z), which is convex, is called the cumulant generating function
for p, since its derivatives give the cumulants of the density. For example, the first
and second derivatives of the cumulant generating function, evaluated at zero, are
the mean and covariance of the associated random variable:

ViegM(0) =Ev,  V’logM(0) =E(v—Ev)(v—Ev)".

Integration of log-concave functions

In some special cases log-concavity is preserved by integration. If f : R"xR™ — R
is log-concave, then

g(z) = /f(fﬂ, y) dy

is a log-concave function of x (on R™). (The integration here is over R™.) A proof
of this result is not simple; see the references.

This result has many important consequences, some of which we describe in
the rest of this section. It implies, for example, that marginal distributions of log-
concave probability densities are log-concave. It also implies that log-concavity is
closed under convolution, i.c., if f and g are log-concave on R™, then so is the
convolution

(fxg)(z) = /f(:v —y)g(y) dy.

(To see this, note that g(y) and f(x—y) are log-concave in (z,y), hence the product
f(z —y)g(y) is; then the integration result applies.)
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Suppose C' C R" is a convex set and w is a random vector in R" with log-
concave probability density p. Then the function

f(z) = prob(z +w € C)

is log-concave in x. To see this, express f as

f(a) = / oz + w)p(w) dw,

where ¢ is defined as
(u) = 1 wel
W=V 0 wec,

(which is log-concave) and apply the integration result.

Example 3.42 The cumulative distribution function of a probability density function
f:R™ — R is defined as

F(ac):prob(wjgg):/In.../m1 f(z)dz - dzn,

where w is a random variable with density f. If f is log-concave, then F' is log-
concave. We have already encountered a special case: the cumulative distribution
function of a Gaussian random variable,

fla) = \/% / e dt,

is log-concave. (See example 3.39 and exercise 3.54.)

Example 3.43 Yield function. Let x € R"™ denote the nominal or target value of a
set of parameters of a product that is manufactured. Variation in the manufacturing
process causes the parameters of the product, when manufactured, to have the value
x + w, where w € R" is a random vector that represents manufacturing variation,
and is usually assumed to have zero mean. The yield of the manufacturing process,
as a function of the nominal parameter values, is given by

Y (z) = prob(z +w € S),

where S C R" denotes the set of acceptable parameter values for the product, i.e.,
the product specifications.

If the density of the manufacturing error w is log-concave (for example, Gaussian) and
the set S of product specifications is convex, then the yield function Y is log-concave.
This implies that the a-yield region, defined as the set of nominal parameters for
which the yield exceeds «, is convex. For example, the 95% yield region

{z|Y(z) >0.95} = {z | logY(z) > log0.95}

is convex, since it is a superlevel set of the concave function log Y.
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3.6

3.6.1

Example 3.44 Volume of polyhedron. Let A € R™*"™. Define
P, ={x e R" | Ax < u}.

Then its volume vol P, is a log-concave function of .

To prove this, note that the function

1 Az =<u
W(w,u) = { 0 otherwise,

is log-concave. By the integration result, we conclude that

/\Il(x,u) dx = vol P,

is log-concave.

Convexity with respect to generalized inequalities

We now consider generalizations of the notions of monotonicity and convexity, using
generalized inequalities instead of the usual ordering on R.

Monotonicity with respect to a generalized inequality

Suppose K C R is a proper cone with associated generalized inequality <. A
function f : R"™ — R is called K-nondecreasing if

2y = flz) < fy),

and K-increasing if
T2k y, v Fy= f(z) < f(y).

We define K-nonincreasing and K-decreasing functions in a similar way.

Example 3.45 Monotone vector functions. A function f: R™ — R is nondecreasing
with respect to R% if and only if

for all z, y. This is the same as saying that f, when restricted to any component x;
(i.e., m; is considered the variable while z; for j # ¢ are fixed), is nondecreasing.

Example 3.46 Matriz monotone functions. A function f : S" — R is called ma-
triz monotone (increasing, decreasing) if it is monotone with respect to the posi-
tive semidefinite cone. Some examples of matrix monotone functions of the variable
X es™
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e tr(WX), where W € S™, is matrix nondecreasing if W > 0, and matrix in-
creasing if W > 0 (it is matrix nonincreasing if W =< 0, and matrix decreasing
if W <0).

e tr(X ') is matrix decreasing on S .

e det X is matrix increasing on S’ ,, and matrix nondecreasing on S’} .

Gradient conditions for monotonicity

Recall that a differentiable function f : R — R, with convex (i.e., interval) domain,
is nondecreasing if and only if f/(z) > 0 for all z € dom f, and increasing if
f'(x) > 0 for all x € dom f (but the converse is not true). These conditions
are readily extended to the case of monotonicity with respect to a generalized
inequality. A differentiable function f, with convex domain, is K-nondecreasing if
and only if

Vf(x) =g+ 0 (3.24)
for all x+ € dom f. Note the difference with the simple scalar case: the gradi-
ent must be nonnegative in the dual inequality. For the strict case, we have the
following: If

V() =g+ 0 (3.25)
for all z € dom f, then f is K-increasing. As in the scalar case, the converse is
not true.

Let us prove these first-order conditions for monotonicity. First, assume that

f satisfies (3.24) for all , but is not K-nondecreasing, i.e., there exist x, y with
x 2x yand f(y) < f(z). By differentiability of f there exists a ¢ € [0, 1] with

SHtly — ) = Vi + iy~ 0) (-~ ) <0,
Since y — x € K this means
Vi@ +ily — ) & K,

which contradicts our assumption that (3.24) is satisfied everywhere. In a similar
way it can be shown that (3.25) implies f is K-increasing.

It is also straightforward to see that it is necessary that (3.24) hold everywhere.
Assume (3.24) does not hold for = z. By the definition of dual cone this means
there exists a v € K with

Vf(z)Tv <o.
Now consider h(t) = f(z + tv) as a function of . We have h'(0) = Vf(2)Tv < 0,
and therefore there exists ¢t > 0 with h(t) = f(z + tv) < h(0) = f(z), which means
f is not K-nondecreasing.

Convexity with respect to a generalized inequality

Suppose K C R™ is a proper cone with associated generalized inequality <. We
say f:R" — R™ is K-convez if for all z, y, and 0 < 0 <1,

f0z+ (1-0)y) <k Of(z)+ (1-0)f(y).
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The function is strictly K-convex if

fx+ (1 —=0)y) <x 0f(x)+(1-0)f(y)

for all x # y and 0 < @ < 1. These definitions reduce to ordinary convexity and
strict convexity when m =1 (and K = R4).

Example 3.47 Convexity with respect to componentwise inequality. A function f :
R"™ — R™ is convex with respect to componentwise inequality (i.e., the generalized
inequality induced by RT') if and only if for all z, y and 0 <0 <1,

fOx+ (1 =0)y) 20f(x)+ (1 —-0)f(y),

i.e., each component f; is a convex function. The function f is strictly convex with
respect to componentwise inequality if and only if each component f; is strictly con-
vex.

Example 3.48 Matriz convezity. Suppose f is a symmetric matrix valued function,
i.e., f: R™ — S™. The function f is convex with respect to matrix inequality if

[0z + (1 —=0)y) 20f(x)+(1-0)f(y)

for any = and y, and for 6 € [0,1]. This is sometimes called matriz convezity. An
equivalent definition is that the scalar function z” f(x)z is convex for all vectors z.
(This is often a good way to prove matrix convexity). A matrix function is strictly
matrix convex if

fOx+ (1 —=0)y) <0f(x)+(1—-0)f(y)
when z # y and 0 < 6 < 1, or, equivalently, if 27 fz is strictly convex for every z # 0.

Some examples:
e The function f(X) = XX where X € R™ ™ is matrix convex, since for

fixed z the function 27" X X7z = || X7 2||3 is a convex quadratic function of (the
components of) X. For the same reason, f(X) = X? is matrix convex on S".

e The function X7 is matrix convex on S| for 1 <p <2 or —1 < p <0, and
matrix concave for 0 < p < 1.

e The function f(X) = ™ is not matrix convex on 8", for n > 2.

Many of the results for convex functions have extensions to K-convex functions.
As a simple example, a function is K-convex if and only if its restriction to any
line in its domain is K-convex. In the rest of this section we list a few results for
K-convexity that we will use later; more results are explored in the exercises.

Dual characterization of K-convexity

A function f is K-convex if and only if for every w =g~ 0, the (real-valued) function
wT f is convex (in the ordinary sense); f is strictly K-convex if and only if for every
nonzero w =g+ 0 the function w? f is strictly convex. (These follow directly from
the definitions and properties of dual inequality.)
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Differentiable K -convex functions

A differentiable function f is K-convex if and only if its domain is convex, and for
all z, y € dom f,

fy) =k f(x) + Df(x)(y — ).

(Here Df(x) € R™*" is the derivative or Jacobian matrix of f at x; see §A.4.1.)
The function f is strictly K-convex if and only if for all z, y € dom f with = # y,

fy) =k f(z) + Df(x)(y — ).

Composition theorem

Many of the results on composition can be generalized to K-convexity. For example,
if g: R" — R? is K-convex, h : R — R is convex, and h (the extended-value
extension of h) is K-nondecreasing, then h o g is convex. This generalizes the fact
that a nondecreasing convex function of a convex function is convex. The condition
that h be K-nondecreasing implies that dom h — K = dom h.

Example 3.49 The quadratic matrix function g : R™*™ — S™ defined by
g(X)=X"AX+B"X +X"B+C,

where A € S™, B € R™*"™, and C € S", is convex when A > 0.

The function h : S™ — R defined by h(Y) = —logdet(—Y") is convex and increasing
on domh = —S% .

By the composition theorem, we conclude that
f(X) = —logdet(—(X"AX + B"X + X" B+ (C))
is convex on
domf={XecR™" | X"AX+B" X+ X"B+C <0}.
This generalizes the fact that
—log(—(az® + bz +¢))

is convex on

{z € R|az” + bz + c < 0},
provided a > 0.
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Exercises

Definition of convexity

3.1 Suppose f: R — R is convex, and a, b € dom f with a < b.
(a) Show that

b—=x T —a

J@) € =2 f @)+ 3

f(®)

—a
for all = € [a, b].

(b) Show that
f(z) = fla) _ J(b) = fla) _ F(b) — f(z)

r—a b—a - b—x

for all x € (a,b). Draw a sketch that illustrates this inequality.
(c) Suppose f is differentiable. Use the result in (b) to show that
1) ~ fla) _

b—a -

f'a) < F' ().

Note that these inequalities also follow from (3.2):
)= fla)+ f(a)(b—a),  fla)> f(b)+ f'(b)(a—0b).

(d) Suppose f is twice differentiable. Use the result in (c) to show that f”(a) > 0 and
f"(b) 2 0.

3.2 Level sets of convex, concave, quasiconver, and quasiconcave functions. Some level sets
of a function f are shown below. The curve labeled 1 shows {z | f(z) = 1}, etc.

3
2

Could f be convex (concave, quasiconvex, quasiconcave)? Explain your answer. Repeat
for the level curves shown below.
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3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Inverse of an increasing convez function. Suppose f : R — R is increasing and convex
on its domain (a,b). Let g denote its inverse, i.e., the function with domain (f(a), f(b))
and g(f(x)) = = for a < z < b. What can you say about convexity or concavity of g?
[RV73, page 15] Show that a continuous function f: R™ — R is convex if and only if for
every line segment, its average value on the segment is less than or equal to the average
of its values at the endpoints of the segment: For every x, y € R",

/1f(x+x(yx))dng(m);f(y).

[RV73, page 22] Running average of a convex function. Suppose f : R — R is convex,
with R4+ C dom f. Show that its running average F', defined as

F(z) = i/ f(t)dt, domF =Ry,
0

is convex. Hint. For each s, f(sz) is convex in z, so fol f(sz) ds is convex.

Functions and epigraphs. When is the epigraph of a function a halfspace? When is the
epigraph of a function a convex cone? When is the epigraph of a function a polyhedron?

Suppose f : R" — R is convex with dom f = R", and bounded above on R"™. Show that
f is constant.

Second-order condition for convezity. Prove that a twice differentiable function f is convex
if and only if its domain is convex and V2 f(x) = 0 for all x € dom f. Hint. First consider
the case f : R — R. You can use the first-order condition for convexity (which was proved
on page 70).

Second-order conditions for converity on an affine set. Let F € R"*™, & € R". The
restriction of f: R™ — R to the affine set {Fz+ & | z € R™} is defined as the function
f:R™ — R with

f(z) = f(Fz+ &), dom f = {z | Fz+ & € dom f}.
Suppose f is twice differentiable with a convex domain.
(a) Show that f is convex if and only if for all z € dom f
F'V?f(Fz+2)F = 0.

(b) Suppose A € RP*™ is a matrix whose nullspace is equal to the range of F, i.e.,
AF =0 and rank A = n —rank F'. Show that f is convex if for all z € dom f there
exists a A € R such that

V2f(Fz+2)+ A ATA = 0.

Hint. Use the following result: If B € 8™ and A € RP*", then 7 Bz > 0 for all
x € N(A) if there exists a A such that B+ AT A = 0.

An extension of Jensen’s inequality. One interpretation of Jensen’s inequality is that
randomization or dithering hurts, i.e., raises the average value of a convex function: For
f convex and v a zero mean random variable, we have E f(zo + v) > f(xo). This leads
to the following conjecture. If f is convex, then the larger the variance of v, the larger
E f(ﬂ,’o =+ ’U).

(a) Give a counterexample that shows that this conjecture is false. Find zero mean
random variables v and w, with var(v) > var(w), a convex function f, and a point
xo, such that E f(zo + v) < E f(zo + w).
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(b) The conjecture is true when v and w are scaled versions of each other. Show that
E f(xo + tv) is monotone increasing in ¢ > 0, when f is convex and v is zero mean.

3.11 Monotone mappings. A function ¢ : R" — R" is called monotone if for all z, y € dom ),

(W(@) = ¥(y)" (@ —y) > 0.

(Note that ‘monotone’ as defined here is not the same as the definition given in §3.6.1.
Both definitions are widely used.) Suppose f : R" — R is a differentiable convex function.
Show that its gradient Vf is monotone. Is the converse true, i.e., is every monotone
mapping the gradient of a convex function?

3.12 Suppose f : R" — R is convex, g : R" — R is concave, dom f = domg = R", and
for all z, g(z) < f(z). Show that there exists an affine function h such that for all z,
g(z) < h(z) < f(x). In other words, if a concave function g is an underestimator of a
convex function f, then we can fit an affine function between f and g.

3.13 Kullback-Leibler divergence and the information inequality. Let Dy be the Kullback-
Leibler divergence, as defined in (3.17). Prove the information inequality: Di(u,v) > 0
for all u, v € R} ,. Also show that Di(u,v) = 0 if and only if u = v.

Hint. The Kullback-Leibler divergence can be expressed as

Dia(u,v) = f(u) = f(v) = VF(0)" (u—0),

where f(v) = > "  wilogw; is the negative entropy of v.

3.14 Convez-concave functions and saddle-points. We say the function f : R" x R™ — R
is convez-concave if f(x,z) is a concave function of z, for each fixed z, and a convex
function of z, for each fixed z. We also require its domain to have the product form
dom f = A x B, where A C R" and B C R™ are convex.

(a) Give a second-order condition for a twice differentiable function f: R" x R™ — R
to be convex-concave, in terms of its Hessian V?f(z, 2).

(b) Suppose that f : R"xR™ — R is convex-concave and differentiable, with V f(Z, 2) =
0. Show that the saddle-point property holds: for all x, z, we have

f(&,2) < f(2,2) < f(=,2).
Show that this implies that f satisfies the strong maz-min property:

sup inf f(z,2) = inf sup f(z, z)

z T T z

(and their common value is f(z, Z)).

(c) Now suppose that f: R™ x R™ — R is differentiable, but not necessarily convex-
concave, and the saddle-point property holds at z, z:

f(@,2) < f(&,2) < f(z,2)
for all z, z. Show that Vf(z,2) = 0.

Examples
3.15 A family of concave utility functions. For 0 < o < 1 let

¢ —1
Ua($) = o )

with domu, = R4. We also define uo(z) = logz (with domug = R44).

(a) Show that for z > 0, uo(x) = lima—o0 ua(z).
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(b) Show that u. are concave, monotone increasing, and all satisfy uq (1) = 0.

These functions are often used in economics to model the benefit or utility of some quantity
of goods or money. Concavity of u, means that the marginal utility (i.e., the increase
in utility obtained for a fixed increase in the goods) decreases as the amount of goods
increases. In other words, concavity models the effect of satiation.

3.16 For each of the following functions determine whether it is convex, concave, quasiconvex,
or quasiconcave.

(a) f(z) =e®—1onR.
(b) f(z1,m2) = z122 on RY .

(w1, 22) = 1/(z122) on RZ .

(z1,22) = x1/x2 on R?H_.

(w1,72) = o3 /22 on R x R4
(f) f(w1,22) = 2§ x5~ *, where 0 < a < 1, on R%,.

3.17 Suppose p < 1, p # 0. Show that the function

n 1/p
@)= (Z w)

with dom f = R}, is concave. This includes as special cases f(z) = (3 1:1/2)2 and

i=17i
the harmonic mean f(z) = (3., 1/z:)"". Hint. Adapt the proofs for the log-sum-exp
function and the geometric mean in §3.1.5.

3.18 Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the follow-
ing.

(a) f(X)=tr (X_l) is convex on dom f = S% , .
(b) f(X) = (det X)¥™ is concave on dom f = S} .
3.19 Nonnegative weighted sums and integrals.

(a) Show that f(z) = >_.

;=1 uTf) is a convex function of z, where a1 > az > -+ >
ay > 0, and z[; denotes the ith largest component of z. (You can use the fact that

f(z) = Zle x[;) is convex on R".)
(b) Let T(z,w) denote the trigonometric polynomial

T(z,w) =21 + x2c08w + 3082w + - - - + Ty cos(n — 1)w.

Show that the function
27
flz) = 7/ log T'(z,w) dw
0

is convex on {z € R" | T'(z,w) >0, 0 <w < 27}.
3.20 Composition with an affine function. Show that the following functions f : R™ — R are

convex.
(a) f(z)=||Az — |, where A € R™*™ be R™, and | - || is a norm on R™.
(b) f(z) = —(det(Ap + z1 A1 + -+ a:nAn))l/m, on{z| Ao +z1A1+ -+, A, = 0},
where A; € S™.

(¢) f(X)=tr(Ao+z1A1 + -+ 2,4,) " on{z| Ag+z141 4 -+2,A4, > 0}, where
A; € 8™. (Use the fact that tr(X ') is convex on ST ; see exercise 3.18.)
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3.21 Pointwise mazimum and supremum. Show that the following functions f : R" — R are
convex.

(a) f(z) = maxi—1, 1 |[|[AD 2z —bD|, where A®D € R™*" ) € R™ and || - | is a norm
on R™.

(b) f(z) =>7_, |z[m on R", where |z| denotes the vector with |z|; = |zi| (i.e., |z] is
the absolute value of x, componentwise), and || is the ith largest component of
|z|. In other words, |z|qj, |%|j2), - .., |2|mn) are the absolute values of the components
of z, sorted in nonincreasing order.

3.22 Composition rules. Show that the following functions are convex.

(a) f(z) = —log(—log(> ", ea?“rbi)) ondom f={z| > ", el i < 1}. You can

use the fact that log(D>_" | e¥?) is convex.

(b) f(z,u,v) = —vuv — Tz on dom f = {(z,u,v) | v > "z, u, v > 0}. Use the
fact that 27 x/u is convex in (z,u) for u > 0, and that —,/Z122 is convex on R% .

(¢) f(z,u,v) = —log(uv — z7x) on dom f = {(z,u,v) | uv > ¥z, u, v > 0}.

(d) f(x,t) = —(t* —||z||8)"/? where p > 1 and dom f = {(z,t) | t > ||z||,}. You can use
the fact that ||z||5/u?"" is convex in (z,u) for u > 0 (see exercise 3.23), and that
—z'/Py' =1/ is convex on R (see exercise 3.16).

(e) f(z,t) = —log(t? — ||x||b) where p > 1 and dom f = {(z,¢) | t > ||z||p}. You can
use the fact that ||z[|5/u”~" is convex in (z,u) for u > 0 (see exercise 3.23).

3.23 Perspective of a function.

(a) Show that for p > 1,

B Y e ol ) 1
f(.%',t) - tp_l - tp_l
is convex on {(z,t) | t > 0}.
(b) Show that
_ Az +b]3

is convex on {x | ¢"z +d > 0}, where A € R™*" bc R™, cc R" and d € R.

3.24 Some functions on the probability simplex. Let x be a real-valued random variable which
takes values in {ai,...,an} where a1 < a2 < .-+ < an, with prob(z = a;) = p;,
i =1,...,n. For each of the following functions of p (on the probability simplex {p €
T 17p = 1}), determine if the function is convex, concave, quasiconvex, or quasicon-
cave.

)
) prob(z > «).
) prob(a <z < 3).
(d) 37, pilogpi, the negative entropy of the distribution.
) varz = E(z — Ex)%
) quartile(z) = inf{8 | prob(z < ) > 0.25}.

)

The cardinality of the smallest set A C {a1,...,a,} with probability > 90%. (By
cardinality we mean the number of elements in .A.)

(h) The minimum width interval that contains 90% of the probability, i.e.,
inf {f —a| prob(a <z <j)>009}.
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3.25 Maximum probability distance between distributions. Let p, ¢ € R represent two proba-
bility distributions on {1,...,n} (sop, ¢ = 0, 17p = 1T¢ = 1). We define the mazimum
probability distance dmp(p,q) between p and ¢ as the maximum difference in probability
assigned by p and ¢, over all events:

dmp (p, ) = max{| prob(p, C) — prob(q,C)| | C C{1,...,n}}.
Here prob(p, C) is the probability of C, under the distribution p, i.e., prob(p,C) =
iec Pi-
Find a simple expression for dmp, involving [|p —ql[s = > | |pi — ¢, and show that dump,
is a convex function on R" x R™. (Its domain is {(p,q) | p, ¢ = 0, 17p =1T¢ = 1}, but
it has a natural extension to all of R™ x R".)

3.26 More functions of eigenvalues. Let A1 (X) > Aa(X) > - -+ > X\, (X) denote the eigenvalues
of a matrix X € S™. We have already seen several functions of the eigenvalues that are
convex or concave functions of X.

e The maximum eigenvalue A1 (X)) is convex (example 3.10). The minimum eigenvalue
An(X) is concave.

e The sum of the eigenvalues (or trace), tr X = A\ (X) + -+ + An(X), is linear.

e The sum of the inverses of the eigenvalues (or trace of the inverse), tr(X ') =
Yo 1/Xi(X), is convex on 8%, (exercise 3.18).

e The geometric mean of the eigenvalues, (det X)Y/" = (IT-, Ai(X)Y™, and the
logarithm of the product of the eigenvalues, logdet X = Z:‘:l log A\;(X), are concave
on X € S, (exercise 3.18 and page 74).
In this problem we explore some more functions of eigenvalues, by exploiting variational
characterizations.
(a) Sum of k largest eigenvalues. Show that Zle Ai(X) is convex on S". Hint. [HJ85,
page 191] Use the variational characterization

k
D M(X) = sup{tr(VIXV) [V e RV VIV =13
i=1

(b) Geometric mean of k smallest eigenvalues. Show that ( :L:nfkﬂ i (X)* is con-

cave on S% . Hint. [MO79, page 513] For X > 0, we have

" 1/k
( H MX)) = %inf{tr(VTXV) |V eR™™ det VTV =1},
i=n—k+1

(¢) Log of product of k smallest eigenvalues. Show that len_k_,_l

on S%,. Hint. [MO79, page 513] For X > 0,

ﬁ Ai(X) = inf { [T xv).

i=n—k+1 i=1

log \i(X) is concave

VeR™ vy = 1} .

3.27 Diagonal elements of Cholesky factor. Each X € S’ has a unique Cholesky factorization

X = LLT, where L is lower triangular, with L;; > 0. Show that L;; is a concave function
of X (with domain S} ).

Hint. L;; can be expressed as Li; = (w — ZTYflz)l/Q, where

is the leading i X ¢ submatrix of X.
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Operations that preserve convexity

Ezpressing a convex function as the pointwise supremum of a family of affine functions.
In this problem we extend the result proved on page 83 to the case where dom f # R".
Let f: R™ — R be a convex function. Define f :R"™ — R as the pointwise supremum of
all affine functions that are global underestimators of f:

f(z) = sup{g(x) | g affine, g(2) < f(2) for all z}.
(a) Show that f(z) = f(z) for z € int dom f.

(b) Show that f = fif f is closed (i.e., epi f is a closed set; see §A.3.3).
Representation of piecewise-linear convex functions. A convex function f : R" — R, with
dom f = R", is called piecewise-linear if there exists a partition of R™ as

R" =X; UXQU"'UXL,
where int X; # 0 and int X; Nint X; = () for ¢ # j, and a family of affine functions
afz +b1, ..., aYz + by such that f(z) = al z + b; for = € X.
Show that such a function has the form f(z) = max{a{x +b1,...,alz +br}.
Convex hull or envelope of a function. The conver hull or convexr envelope of a function
f:R™ — R is defined as
g(x) = inf{t | (z,t) € convepi f}.

Geometrically, the epigraph of g is the convex hull of the epigraph of f.

Show that g is the largest convex underestimator of f. In other words, show that if h is
convex and satisfies h(z) < f(z) for all z, then h(x) < g(z) for all z.

[RocT0, page 35] Largest homogeneous underestimator. Let f be a convex function. Define
the function g as
inf £(2%)

a>0 «
(a) Show that g is homogeneous (g(tz) = tg(z) for all t > 0).

(b) Show that g is the largest homogeneous underestimator of f: If h is homogeneous
and h(z) < f(z) for all z, then we have h(z) < g(x) for all x.

(c) Show that g is convex.

g(z) =

Products and ratios of convex functions. In general the product or ratio of two convex
functions is not convex. However, there are some results that apply to functions on R.
Prove the following.

(a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions
on an interval, then fg is convex.

(b) If f, g are concave, positive, with one nondecreasing and the other nonincreasing,
then fg is concave.

(c) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and
positive, then f/g is convex.

Direct proof of perspective theorem. Give a direct proof that the perspective function g,
as defined in §3.2.6, of a convex function f is convex: Show that dom g is a convex set,
and that for (z,t), (y,s) € domg, and 0 < 0 < 1, we have

g(0x 4+ (1 —=0)y,0t + (1 —0)s) < Og(z,t) + (1 —0)g(y, s).

3.34 The Minkowski function. The Minkowski function of a convex set C' is defined as

Mc(z) =inf{t >0 |t 'z e C}.
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) Draw a picture giving a geometric interpretation of how to find Mc¢ ().
) Show that Mc¢ is homogeneous, i.e., Mc(ax) = aMc(z) for a > 0.
(c) What is dom M¢?
) Show that Mc is a convex function.
)

Suppose C' is also closed, bounded, symmetric (if z € C then —z € C), and has
nonempty interior. Show that M¢ is a norm. What is the corresponding unit ball?

3.35 Support function calculus. Recall that the support function of a set C C R" is defined as
Sc(y) = sup{yTz | € C'}. On page 81 we showed that Sc is a convex function.

(a) Show that Sp = Sconv B.

(b) Show that Satp = Sa + Si.

(¢) Show that Saup = max{Sa, Ss}.
)

(d) Let B be closed and convex. Show that A C B if and only if Sa(y) < Sp(y) for all
Y.

Conjugate functions
3.36 Derive the conjugates of the following functions.
(a) Maz function. f(x) = max;=1,.. nz; on R".
(b) Sum of largest elements. f(x) =" xf; on R™.

(¢) Piecewise-linear function on R. f(z) = max;—1,. m(a;x + b;) on R. You can
assume that the a; are sorted in increasing order, i.e., a1 < --- < am, and that none
of the functions a;x + b; is redundant, i.e., for each k there is at least one x with
f($) = arx + bg.

(d) Power function. f(x) = xF on R44, where p > 1. Repeat for p < 0.
(e) Negative geometric mean. f(z) = —([Jx:)"/™ on R .

(f) Negative generalized logarithm for second-order cone. f(x,t) = —log(t* —z”x) on

{(z,t) e R" x R | ||z]|2 < t}.
3.37 Show that the conjugate of f(X) = tr(X ') with dom f = ST is given by

(YY) =—=2tr(-Y)"?,  dom f* = —S%.

Hint. The gradient of f is Vf(X) = —X 2.

3.38 Young’s inequality. Let f: R — R be an increasing function, with f(0) = 0, and let g be
its inverse. Define F' and G as

Fla) = / “fla)da,  Gly) = / " g(e) da.

Show that F' and G are conjugates. Give a simple graphical interpretation of Young’s
inequality,
zy < F(z) + G(y)-

3.39 Properties of conjugate functions.
(a) Conjugate of convex plus affine function. Define g(x) = f(z) + ¢"z + d, where f is
convex. Express ¢* in terms of f* (and ¢, d).

(b) Conjugate of perspective. Express the conjugate of the perspective of a convex
function f in terms of f*.
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(c) Conjugate and minimization. Let f(z,z) be convex in (z,z) and define g(z) =
inf, f(x,z). Express the conjugate ¢* in terms of f*.
As an application, express the conjugate of g(z) = inf.{h(z) | Az+b =z}, where h
is convex, in terms of h*, A, and b.

(d) Conjugate of conjugate. Show that the conjugate of the conjugate of a closed convex
function is itself: f = f** if f is closed and convex. (A function is closed if its
epigraph is closed; see §A.3.3.) Hint. Show that f** is the pointwise supremum of
all affine global underestimators of f. Then apply the result of exercise 3.28.

3.40 Gradient and Hessian of conjugate function. Suppose f : R"™ — R is convex and twice
continuously differentiable. Suppose 7 and Z are related by 4 = V f(Z), and that V2 f(Z) >~
0.

(a) Show that Vf*(y) = z.
(b) Show that V2f*(g) = Vf(z)™*.

3.41 Conjugate of negative normalized entropy. Show that the conjugate of the negative nor-

malized entropy
n

flz) = E w;log(w:/1" ),
i=1
with dom f = R, is given by

ror-{ % B

N +o0o  otherwise.

Quasiconvex functions

3.42 Approximation width. Let fo,..., fn : R — R be given continuous functions. We consider
the problem of approximating fy as a linear combination of fi,..., f,. For z € R", we
say that f = z1f1 + -+ + z» fn approximates fy with tolerance ¢ > 0 over the interval
[0,T]if | f(t) — fo(t)] < efor 0 <t <T. Now we choose a fixed tolerance € > 0 and define
the approzimation width as the largest T such that f approximates fo over the interval
[0,T7:

W(z) =sup{T | |z1f1(t) + -+ xnfu(t) — fo(t)] < efor 0 <t <T}.

Show that W is quasiconcave.

3.43 First-order condition for quasiconvexity. Prove the first-order condition for quasiconvexity
given in §3.4.3: A differentiable function f : R™ — R, with dom f convex, is quasiconvex
if and only if for all z,y € dom f,

fy) < fla) = V@) (y—=) <o0.

Hint. It suffices to prove the result for a function on R; the general result follows by
restriction to an arbitrary line.

3.44 Second-order conditions for quasiconverity. In this problem we derive alternate repre-
sentations of the second-order conditions for quasiconvexity given in §3.4.3. Prove the
following.

(a) A point z € dom f satisfies (3.21) if there exists a o such that
Vif(z)+ oV (z)Vf(z)" =o0. (3.26)
It satisfies (3.22) for all y # 0 if and only if there exists a o such
Vif(z) 4+ oV (z)Vf(z)" = o0. (3.27)

Hint. We can assume without loss of generality that V2 f(x) is diagonal.
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(b) A point 2 € dom f satisfies (3.21) if and only if either Vf(z) = 0 and V*f(x) = 0,
or Vf(z) # 0 and the matrix

_ | V(@) V()

has exactly one negative eigenvalue. It satisfies (3.22) for all y # 0 if and only if
H(x) has exactly one nonpositive eigenvalue.

Hint. You can use the result of part (a). The following result, which follows from
the eigenvalue interlacing theorem in linear algebra, may also be useful: If B € S"

and a € R", then
B a
([ 2 2]) 2

3.45 Use the first and second-order conditions for quasiconvexity given in §3.4.3 to verify
quasiconvexity of the function f(z) = —x122, with dom f = R2.

3.46 Quasilinear functions with domain R™. A function on R that is quasilinear (i.e., qua-
siconvex and quasiconcave) is monotone, i.e., either nondecreasing or nonincreasing. In
this problem we consider a generalization of this result to functions on R".

Suppose the function f : R™ — R is quasilinear and continuous with dom f = R"™. Show
that it can be expressed as f(z) = g(a”z), where g : R — R is monotone and a € R™.
In other words, a quasilinear function with domain R"™ must be a monotone function of
a linear function. (The converse is also true.)

Log-concave and log-convex functions

3.47 Suppose f: R™ — R is differentiable, dom f is convex, and f(z) > 0 for all z € dom f.
Show that f is log-concave if and only if for all z,y € dom f,

fw) o (Vf(w)T(y—w))

fla) =P ()

3.48 Show that if f : R" — R is log-concave and a > 0, then the function g = f —a is
log-concave, where dom g = {x € dom f | f(x) > a}.
3.49 Show that the following functions are log-concave.
(a) Logistic function: f(z) =e”/(1+ e*) with dom f = R.

(b) Harmonic mean:

1 n
(¢) Product over sum:
H?, Li n
f(z) = Z?:l pool dom f=RY,.
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Coefficients of a polynomial as a function of the roots. Show that the coefficients of a
polynomial with real negative roots are log-concave functions of the roots. In other words,
the functions a; : R™ — R, defined by the identity

s" +a1()\)sn_1 +otan—1(N)s+tan(A) = (s = A1)(s— A2) -+ (s — M),

are log-concave on —R} .
Hint. The function

Sk (IE) = Z Lig Lig * " Ty,

1<iy <in< - <ig<n
with dom S, € R and 1 < k < n, is called the kth elementary symmetric function on
R". It can be shown that S,i/k is concave (see [MLA57]).

[BLOO, page 41] Let p be a polynomial on R, with all its roots real. Show that it is
log-concave on any interval on which it is positive.

[MO79, §3.E.2] Log-convezity of moment functions. Suppose f : R — R is nonnegative
with R4+ C dom f. For z > 0 define

B(z) = / " flu) du.

Show that ¢ is a log-convex function. (If z is a positive integer, and f is a probability
density function, then ¢(z) is the xth moment of the distribution.)

Use this to show that the Gamma function,

I(x) :/ u e du,
0

is log-convex for = > 1.

Suppose x and y are independent random vectors in R"™, with log-concave probability
density functions f and g, respectively. Show that the probability density function of the
sum z = x + y is log-concave.

Log-concavity of Gaussian cumulative distribution function. The cumulative distribution
function of a Gaussian random variable,

R D
f("r)f m[me dt7

is log-concave. This follows from the general result that the convolution of two log-concave
functions is log-concave. In this problem we guide you through a simple self-contained
proof that f is log-concave. Recall that f is log-concave if and only if f”(z)f(z) < f'(z)?
for all z.

(a) Verify that f”(x)f(z) < f'(z)? for x > 0. That leaves us the hard part, which is to
show the inequality for = < 0.

(b) Verify that for any ¢ and  we have /2 > —2?/2 + at.

(¢) Using part (b) show that e7t/2 < ¢*/2=7t Conclude that, for z < 0,

/ e 2 gt < 6I2/2/ e "t dt.

(d) Use part (c) to verify that f”(x)f(x) < f'(x)* for z < 0.
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3.55 Log-concavity of the cumulative distribution function of a log-concave probability density.
In this problem we extend the result of exercise 3.54. Let g(t) = exp(—h(t)) be a differ-
entiable log-concave probability density function, and let

flz) = /_; g(t)dt = /_; e~ gy

be its cumulative distribution. We will show that f is log-concave, i.e., it satisfies
f'(@)f(2) < (f'(2))? for all @
(a) Express the derivatives of f in terms of the function h. Verify that f”(z)f(z) <
(f'(2))* if I'(z) > 0.
(b) Assume that h'(z) < 0. Use the inequality
h(t) > h(x) + I’ (2)(t — x)
(which follows from convexity of h), to show that
@ ~h(z)
" g < £ .
e —h(x)

Use this inequality to verify that f”(x)f(z) < (f'(z))? if ' (z) < 0.

3.56 More log-concave densities. Show that the following densities are log-concave.

(a) [MOT9, page 493] The gamma density, defined by

f(:c) _ (&3 $A7167az,

with dom f = R4. The parameters A and « satisfy A > 1, a > 0.
(b) [MOT9, page 306] The Dirichlet density

n Ant1—1
_ ra’y S ;

with dom f = {z € R7, | 172 < 1}. The parameter X satisfies A = 1.

Convexity with respect to a generalized inequality

3.57 Show that the function f(X) = X' is matrix convex on S’ .
3.58 Schur complement. Suppose X € S™ partitioned as
A B
X= { BT C } '
where A € S*. The Schur complement of X (with respect to A) is S = C — BTA™'B

(see §A.5.5). Show that the Schur complement, viewed as a function from S™ into 8" ~*,
is matrix concave on S7 .

3.59 Second-order conditions for K-convezity. Let K C R™ be a proper convex cone, with
associated generalized inequality <x. Show that a twice differentiable function f : R™ —
R™, with convex domain, is K-convex if and only if for all z € dom f and all y € R",

—~ Pf(x)
8301-81]' Yi

i,j=1

i.e., the second derivative is a K-nonnegative bilinear form. (Here 8*f/0z;0x; € R™,
with components 02 fy /0x;0x;, for k= 1,...,m; see §A.4.1.)
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3.60 Sublevel sets and epigraph of K-convez functions. Let K C R™ be a proper convex cone
with associated generalized inequality <k, and let f : R" — R™. For a € R™, the
a-sublevel set of f (with respect to <) is defined as

Co ={z eR" | f(z) 2K a}.
The epigraph of f, with respect to <k, is defined as the set
epiy f = {(z.t) e R""™ | f(z) <k t}.
Show the following:

(a) If f is K-convex, then its sublevel sets C\, are convex for all a.

(b) fis K-convex if and only if epiy f is a convex set.
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Chapter 4

Convex optimization problems

Optimization problems

Basic terminology

We use the notation

minimize  fo(x)
subject to  fi(z) <0, i=1,....m (4.1)
hi(x)zo, i:L...,p

to describe the problem of finding an 2 that minimizes fo(2) among all = that satisfy
the conditions f;(x) <0,i=1,...,m, and h;(x) =0,i=1,...,p. We call z € R"
the optimization variable and the function fo : R" — R the objective function or
cost function. The inequalities f;(x) < 0 are called inequality constraints, and the
corresponding functions f; : R" — R are called the inequality constraint functions.
The equations h;(x) = 0 are called the equality constraints, and the functions
h; : R™ — R are the equality constraint functions. If there are no constraints (i.e.,
m = p = 0) we say the problem (4.1) is unconstrained.

The set of points for which the objective and all constraint functions are defined,

D= ﬁ dom f; N ﬁ dom h;,
i=0 i=1

is called the domain of the optimization problem (4.1). A point x € D is feasible
if it satisfies the constraints f;(x) < 0,4 =1,...,m, and h;(x) =0,i=1,...,p.
The problem (4.1) is said to be feasible if there exists at least one feasible point,
and infeasible otherwise. The set of all feasible points is called the feasible set or
the constraint set.

The optimal value p* of the problem (4.1) is defined as

p* =inf {fo(x) | fi(x) <0, i=1,...,m, hy(z) =0, i=1,...,p}.

We allow p* to take on the extended values +oco. If the problem is infeasible, we
have p* = oo (following the standard convention that the infimum of the empty set
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is 00). If there are feasible points zj with fo(xg) — —o0 as k — oo, then p* = —o0,
and we say the problem (4.1) is unbounded below.

Optimal and locally optimal points

We say a* is an optimal point, or solves the problem (4.1), if z* is feasible and
fo(z*) = p*. The set of all optimal points is the optimal set, denoted

Xopt ={z| fi(x) <0, i=1,...,m, hi(x) =0, i=1,...,p, fo(z)=p"}.

If there exists an optimal point for the problem (4.1), we say the optimal value
is attained or achieved, and the problem is solvable. If X, is empty, we say
the optimal value is not attained or not achieved. (This always occurs when the
problem is unbounded below.) A feasible point = with fo(xz) < p* 4+ € (where
€ > 0) is called e-suboptimal, and the set of all e-suboptimal points is called the
e-suboptimal set for the problem (4.1).

We say a feasible point x is locally optimal if there is an R > 0 such that

folx) =inf{fo(2) | fi(z) <0, i=1,...,m,
h2(2> =0,:=1,...,p, ||Z_ Z’HQ < R}7

or, in other words, = solves the optimization problem

minimize  fy(2)

subject to  fi(2) <0, i=1,...,m
hi(z)=0, i=1,...,p
|z =zl <R

with variable z. Roughly speaking, this means x minimizes fy over nearby points
in the feasible set. The term ‘globally optimal’ is sometimes used for ‘optimal’
to distinguish between ‘locally optimal’ and ‘optimal’. Throughout this book,
however, optimal will mean globally optimal.

If x is feasible and f;(z) = 0, we say the ith inequality constraint f;(z) < 0 is
active at x. If f;(z) < 0, we say the constraint f;(x) < 0 is inactive. (The equality
constraints are active at all feasible points.) We say that a constraint is redundant
if deleting it does not change the feasible set.

Example 4.1 We illustrate these definitions with a few simple unconstrained opti-
mization problems with variable z € R, and dom fy = R4 .

e fo(z) =1/z: p* =0, but the optimal value is not achieved.

e fo(x) = —logx: p* = —o0, so this problem is unbounded below.

e fo(x) =xlogx: p* = —1/e, achieved at the (unique) optimal point * = 1/e.

Feasibility problems

If the objective function is identically zero, the optimal value is either zero (if the
feasible set is nonempty) or oo (if the feasible set is empty). We call this the
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feasibility problem, and will sometimes write it as

find T
subject to  fi(z) <0, i=1,...,m
hi(z)=0, i=1,...,p.

The feasibility problem is thus to determine whether the constraints are consistent,
and if so, find a point that satisfies them.

Expressing problems in standard form

We refer to (4.1) as an optimization problem in standard form. In the standard
form problem we adopt the convention that the righthand side of the inequality
and equality constraints are zero. This can always be arranged by subtracting any
nonzero righthand side: we represent the equality constraint g;(x) = g;(x), for
example, as h;(x) = 0, where h;(z) = g;(z) — g;(x). In a similar way we express
inequalities of the form f;(z) > 0 as —f;(z) <0.

Example 4.2 Box constraints. Consider the optimization problem

minimize  fo(x)
subject to l; <x; <w;y, i=1,...,n,

where € R" is the variable. The constraints are called variable bounds (since they
give lower and upper bounds for each ;) or boz constraints (since the feasible set is
a box).

We can express this problem in standard form as
minimize  fo(z)
subject to l; —x; <0, i=1,...,n
i —u; <0, i=1,...,n.
There are 2n inequality constraint functions:

fi(a:):lif:vi, ’iZl,,..,TL,

and
fi(x) =®impn —Ui—n, i=n+1,...,2n.

Maximization problems

We concentrate on the minimization problem by convention. We can solve the
mazimization problem

maximize  fo(z)
subject to  fi(x) <0, i=1,...,m (4.2)
hi(x)zo, i=1,...,p
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by minimizing the function — fy subject to the constraints. By this correspondence
we can define all the terms above for the maximization problem (4.2). For example
the optimal value of (4.2) is defined as

p* =sup{fo(x) | filw) <0, i=1,...,m, hi(x) =0, i=1,...,p},

and a feasible point z is e-suboptimal if fo(z) > p* — e. When the maximization
problem is considered, the objective is sometimes called the utility or satisfaction
level instead of the cost.

Equivalent problems

In this book we will use the notion of equivalence of optimization problems in an
informal way. We call two problems equivalent if from a solution of one, a solution
of the other is readily found, and vice versa. (It is possible, but complicated, to
give a formal definition of equivalence.)

As a simple example, consider the problem

minimize f(x) = g fo(x)
subject to  fi(z) =, fi(x) <0, i=1,...,m (4.3)
ﬁl(m):@hl(m)z(), iZl,...,p,

where ; > 0,7=0,...,m,and 8; #0,i=1,...,p. This problem is obtained from
the standard form problem (4.1) by scaling the objective and inequality constraint
functions by positive constants, and scaling the equality constraint functions by
nonzero constants. As a result, the feasible sets of the problem (4.3) and the original
problem (4.1) are identical. A point x is optimal for the original problem (4.1) if
and only if it is optimal for the scaled problem (4.3), so we say the two problems are
equivalent. The two problems (4.1) and (4.3) are not, however, the same (unless
«; and 3; are all equal to one), since the objective and constraint functions differ.

We now describe some general transformations that yield equivalent problems.

Change of variables

Suppose ¢ : R" — R™ is one-to-one, with image covering the problem domain D,
i.e., p(dom ¢) DO D. We define functions f; and h; as

Now consider the problem

minimize  fo (2)
subject to  f;(2) <0, i=1,....,m (4.4)
hi(z):O, iZl,...,p,

with variable z. We say that the standard form problem (4.1) and the problem (4.4)
are related by the change of variable or substitution of variable x = ¢(z).

The two problems are clearly equivalent: if = solves the problem (4.1), then
2z = ¢~ Y(x) solves the problem (4.4); if z solves the problem (4.4), then z = ¢(z)
solves the problem (4.1).



4.1 Optimization problems 131

Transformation of objective and constraint functions

Suppose that ¥y : R — R is monotone increasing, ¢1,...,%, : R — R satisfy
¥i(u) < 0if and only if w <0, and Y41, ..., Ymtp : R — R satisty ¢;(u) = 0 if
and only if u = 0. We define functions f; and h; as the compositions

fix) = ufi@), i=0,com, hi(@) = Ynpa(hi(@), i=1,...,p,
Evidently the associated problem
minimize  fo(x)

subject to fl(a:) <
hi(z) =

0, 21=1,....,m
0, 2=1,...,p

and the standard form problem (4.1) are equivalent; indeed, the feasible sets are
identical, and the optimal points are identical. (The example (4.3) above, in which
the objective and constraint functions are scaled by appropriate constants, is the
special case when all ¢); are linear.)

Example 4.3 Least-norm and least-norm-squared problems. As a simple example
consider the unconstrained Euclidean norm minimization problem

minimize ||Az — b||2, (4.5)

with variable z € R™. Since the norm is always nonnegative, we can just as well solve
the problem

minimize ||Az — b||3 = (Az — b)T (Az —b), (4.6)
in which we minimize the square of the Euclidean norm. The problems (4.5) and (4.6)
are clearly equivalent; the optimal points are the same. The two problems are not
the same, however. For example, the objective in (4.5) is not differentiable at any
x with Az — b = 0, whereas the objective in (4.6) is differentiable for all = (in fact,
quadratic).

Slack variables

One simple transformation is based on the observation that f;(z) < 0 if and only if
there is an s; > 0 that satisfies f;(z) +s; = 0. Using this transformation we obtain
the problem
minimize  fo(x)
subject to s, >0, i=1,...,m
fl(x)—I—sl:O, 1=1,...,m
hi(x) =0, i=1,...,p,

(4.7)

where the variables are x € R" and s € R"™. This problem has n + m variables,
m inequality constraints (the nonnegativity constraints on s;), and m + p equality
constraints. The new variable s; is called the slack variable associated with the
original inequality constraint f;(x) < 0. Introducing slack variables replaces each
inequality constraint with an equality constraint, and a nonnegativity constraint.

The problem (4.7) is equivalent to the original standard form problem (4.1).
Indeed, if (z,s) is feasible for the problem (4.7), then x is feasible for the original
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problem, since s; = — f;(x) > 0. Conversely, if x is feasible for the original problem,
then (z,s) is feasible for the problem (4.7), where we take s; = — f;(x). Similarly,
x is optimal for the original problem (4.1) if and only if (x,s) is optimal for the
problem (4.7), where s; = — f;(x).

Eliminating equality constraints

If we can explicitly parametrize all solutions of the equality constraints
hi(x)=0, i=1,...,p, (4.8)

using some parameter z € R”, then we can eliminate the equality constraints
from the problem, as follows. Suppose the function ¢ : R¥ — R is such that
x satisfies (4.8) if and only if there is some z € R such that = ¢(z). The
optimization problem

minimize jjo(z) = fo(o(2))
subject to  fi(2) = fi(¢(2)) <0, i=1,....m

is then equivalent to the original problem (4.1). This transformed problem has
variable z € Rk, m inequality constraints, and no equality constraints. If z is
optimal for the transformed problem, then = = ¢(z) is optimal for the original
problem. Conversely, if = is optimal for the original problem, then (since z is
feasible) there is at least one z such that @ = ¢(z). Any such z is optimal for the
transformed problem.

Eliminating linear equality constraints

The process of eliminating variables can be described more explicitly, and easily
carried out numerically, when the equality constraints are all linear, i.e., have the
form Az = b. If Az = b is inconsistent, i.e., b € R(A), then the original problem is
infeasible. Assuming this is not the case, let x¢ denote any solution of the equality
constraints. Let F € R™ " be any matrix with R(F) = N(A), so the general
solution of the linear equations Az = b is given by F'z + x¢, where z € R”. (We
can choose F' to be full rank, in which case we have k = n — rank A.)
Substituting * = Fz 4 x¢ into the original problem yields the problem

minimize  fo(Fz + x0)
subject to  fi(Fz+ ) <0, i=1,...,m,

with variable z, which is equivalent to the original problem, has no equality con-
straints, and rank A fewer variables.

Introducing equality constraints

We can also introduce equality constraints and new variables into a problem. In-
stead of describing the general case, which is complicated and not very illuminating,
we give a typical example that will be useful later. Consider the problem

minimize  fo(Aoz + bo)
subject to  fi(Ajx +b;) <0, i=1,....m
hl($)207 izla"'ap7
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where z € R", A; € R¥*" and f; : R¥ — R. In this problem the objective
and constraint functions are given as compositions of the functions f; with affine
transformations defined by A;z + b;.

We introduce new variables y; € R¥", as well as new equality constraints y; =
Az + b, for i = 0,...,m, and form the equivalent problem

minimize  fo(yo)

subject to  fi(y;) <0, i=1,...,m
vy =Ax+b;, i=0,...,m
hi(x)zo, iZl,...,p.

This problem has kg + - - - 4+ k,,, new variables,
Yo ERkO, ceey Um Eka,
and kg + - -+ + k,, new equality constraints,
Yo = Aox + by, ..., Ym = ApT + by

The objective and inequality constraints in this problem are independent, i.e., in-
volve different optimization variables.

Optimizing over some variables

We always have .
inf f(z,y) = inf f(z)
T,y T

where f (z) = inf, f(z,y). In other words, we can always minimize a function by
first minimizing over some of the variables, and then minimizing over the remaining
ones. This simple and general principle can be used to transform problems into
equivalent forms. The general case is cumbersome to describe and not illuminating,
so we describe instead an example.

Suppose the variable x € R" is partitioned as = (z1,22), with ;1 € R™,
x5 € R™, and n; + ny = n. We consider the problem

minimize  fo(z1,22)
subject to  fi(xz1) <0, i=1,...,m (4.9)
fi(xQ)SO, i=1,...,m2,

in which the constraints are independent, in the sense that each constraint function
depends on x7 or xo. We first minimize over x5. Define the function fy of x1 by

fo(l‘l) = il’lf{fo(l‘l,z) | ﬁ(z) < 0, 1= 1, ce ,mg}.
The problem (4.9) is then equivalent to

minimize  fo(z1)

subject to  fi(z1) <0, i=1,...,my. (4.10)
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Example 4.4 Minimizing a quadratic function with constraints on some variables.
Consider a problem with strictly convex quadratic objective, with some of the vari-
ables unconstrained:

minimize xlTanl + ZmlTPlgwg + IQTszatz
subject to  fi(z1) <0, i=1,...,m,

where P11 and Ps2 are symmetric. Here we can analytically minimize over x2:

inf (:L‘fplll'l + 212?]312122 + $5P22$2) = CC{ (Pll — P12P231P1€) T
T2

(see §A.5.5). Therefore the original problem is equivalent to

minimize xlT (PH — P12P231P17;) T
subject to  fi(z1) <0, i=1,...,m.

Epigraph problem form
The epigraph form of the standard problem (4.1) is the problem

minimize ¢

subject to  fo(z) —t <0
filx) <0, i=1,...,m (4.11)
hi(.’[?):O, iZl,...7p,

with variables z € R"™ and t € R. We can easily see that it is equivalent to the
original problem: (z,t) is optimal for (4.11) if and only if x is optimal for (4.1)
and t = fo(z). Note that the objective function of the epigraph form problem is a
linear function of the variables x, t.

The epigraph form problem (4.11) can be interpreted geometrically as an op-
timization problem in the ‘graph space’ (x,t): we minimize ¢ over the epigraph of
fo, subject to the constraints on z. This is illustrated in figure 4.1.

Implicit and explicit constraints

By a simple trick already mentioned in §3.1.2, we can include any of the constraints
implicitly in the objective function, by redefining its domain. As an extreme ex-
ample, the standard form problem can be expressed as the unconstrained problem

minimize F(x), (4.12)

where we define the function F' as fy, but with domain restricted to the feasible
set:

domF ={z edomfy | fi(x) <0, i=1,...,m, hi(x) =0, i=1,...,p},

and F(z) = fo(x) for z € dom F'. (Equivalently, we can define F(x) to have value
oo for z not feasible.) The problems (4.1) and (4.12) are clearly equivalent: they
have the same feasible set, optimal points, and optimal value.

Of course this transformation is nothing more than a notational trick. Making
the constraints implicit has not made the problem any easier to analyze or solve,
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epi fo

(2%, 1%)

Figure 4.1 Geometric interpretation of epigraph form problem, for a prob-
lem with no constraints. The problem is to find the point in the epigraph
(shown shaded) that minimizes ¢, i.e., the ‘lowest’ point in the epigraph.
The optimal point is (z*,t").

even though the problem (4.12) is, at least nominally, unconstrained. In some ways
the transformation makes the problem more difficult. Suppose, for example, that
the objective fy in the original problem is differentiable, so in particular its domain
is open. The restricted objective function F' is probably not differentiable, since
its domain is likely not to be open.

Conversely, we will encounter problems with implicit constraints, which we can
then make explicit. As a simple example, consider the unconstrained problem

minimize f(x) (4.13)

where the function f is given by

f(x):{ T Az =b

00 otherwise.

Thus, the objective function is equal to the quadratic form z”« on the affine set

defined by Az = b, and oo off the affine set. Since we can clearly restrict our
attention to points that satisfy Az = b, we say that the problem (4.13) has an
implicit equality constraint Ax = b hidden in the objective. We can make the
implicit equality constraint explicit, by forming the equivalent problem

minimize zTx

subject to Az =b. (4.14)

While the problems (4.13) and (4.14) are clearly equivalent, they are not the same.
The problem (4.13) is unconstrained, but its objective function is not differentiable.
The problem (4.14), however, has an equality constraint, but its objective and
constraint functions are differentiable.
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4.1.4

4.2

4.2.1

Parameter and oracle problem descriptions

For a problem in the standard form (4.1), there is still the question of how the
objective and constraint functions are specified. In many cases these functions
have some analytical or closed form, i.e., are given by a formula or expression that
involves the variable z as well as some parameters. Suppose, for example, the
objective is quadratic, so it has the form fo(x) = (1/2)2T Pz + ¢Tx +r. To specify
the objective function we give the coefficients (also called problem parameters or
problem data) P € S", ¢ € R", and r € R. We call this a parameter problem
description, since the specific problem to be solved (i.e., the problem instance) is
specified by giving the values of the parameters that appear in the expressions for
the objective and constraint functions.

In other cases the objective and constraint functions are described by oracle
models (which are also called black box or subroutine models). In an oracle model,
we do not know f explicitly, but can evaluate f(x) (and usually also some deriva-
tives) at any x € dom f. This is referred to as querying the oracle, and is usually
associated with some cost, such as time. We are also given some prior information
about the function, such as convexity and a bound on its values. As a concrete
example of an oracle model, consider an unconstrained problem, in which we are
to minimize the function f. The function value f(z) and its gradient V f(x) are
evaluated in a subroutine. We can call the subroutine at any * € dom f, but do
not have access to its source code. Calling the subroutine with argument x yields
(when the subroutine returns) f(z) and Vf(z). Note that in the oracle model,
we never really know the function; we only know the function value (and some
derivatives) at the points where we have queried the oracle. (We also know some
given prior information about the function, such as differentiability and convexity.)

In practice the distinction between a parameter and oracle problem description
is not so sharp. If we are given a parameter problem description, we can construct
an oracle for it, which simply evaluates the required functions and derivatives when
queried. Most of the algorithms we study in part I1I work with an oracle model, but
can be made more efficient when they are restricted to solve a specific parametrized
family of problems.

Convex optimization

Convex optimization problems in standard form

A convex optimization problem is one of the form

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m (4.15)
alz=b;, i=1,...,p,
where fo, ..., fm are convex functions. Comparing (4.15) with the general standard
form problem (4.1), the convex problem has three additional requirements:
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e the objective function must be convex,

e the inequality constraint functions must be convex,

T

e the equality constraint functions h;(z) = a; @ — b; must be affine.

We immediately note an important property: The feasible set of a convex optimiza-
tion problem is convex, since it is the intersection of the domain of the problem

D= ﬁ dom f;,
i=0

which is a convex set, with m (convex) sublevel sets {z | f;(x) < 0} and p hyper-
planes {z | alx = b;}. (We can assume without loss of generality that a; # 0: if
a; = 0 and b; = 0 for some i, then the ¢th equality constraint can be deleted; if
a; = 0 and b; # 0, the ith equality constraint is inconsistent, and the problem is in-
feasible.) Thus, in a convex optimization problem, we minimize a convex objective
function over a convex set.

If fy is quasiconvex instead of convex, we say the problem (4.15) is a (standard
form) quasiconvexr optimization problem. Since the sublevel sets of a convex or
quasiconvex function are convex, we conclude that for a convex or quasiconvex
optimization problem the e-suboptimal sets are convex. In particular, the optimal
set is convex. If the objective is strictly convex, then the optimal set contains at
most one point.

Concave maximization problems

With a slight abuse of notation, we will also refer to

maximize  fo(z)
subject to  fi(z) <0, i=1,...,m (4.16)
afz=b;, i=1,...,p,

as a convex optimization problem if the objective function fj is concave, and the
inequality constraint functions fi,..., f,, are convex. This concave maximization
problem is readily solved by minimizing the convex objective function —fy. All
of the results, conclusions, and algorithms that we describe for the minimization
problem are easily transposed to the maximization case. In a similar way the
maximization problem (4.16) is called quasiconvex if fy is quasiconcave.

Abstract form convex optimization problem

It is important to note a subtlety in our definition of convex optimization problem.
Consider the example with = € R?,

minimize  fo(z) = =7 + 23
subject to  fi(z) =z1/(1+23) <0 (4.17)
hy (JJ) = (.231 =+ .132)2 =0,

which is in the standard form (4.1). This problem is not a convex optimization
problem in standard form since the equality constraint function h; is not affine, and
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the inequality constraint function f; is not convex. Nevertheless the feasible set,
which is {z | 1 <0, x1 + 22 = 0}, is convex. So although in this problem we are
minimizing a convex function fy over a convex set, it is not a convex optimization
problem by our definition.

Of course, the problem is readily reformulated as

minimize  fo(z) = 27 + 23
subject to  fi(z) =21 <0 (4.18)
hi(z) = x1 + x2 =0,

which is in standard convex optimization form, since fy and fl are convex, and ha
is affine.

Some authors use the term abstract convex optimization problem to describe the
(abstract) problem of minimizing a convex function over a convex set. Using this
terminology, the problem (4.17) is an abstract convex optimization problem. We
will not use this terminology in this book. For us, a convex optimization problem is
not just one of minimizing a convex function over a convex set; it is also required
that the feasible set be described specifically by a set of inequalities involving
convex functions, and a set of linear equality constraints. The problem (4.17) is
not a convex optimization problem, but the problem (4.18) is a convex optimization
problem. (The two problems are, however, equivalent.)

Our adoption of the stricter definition of convex optimization problem does not
matter much in practice. To solve the abstract problem of minimizing a convex
function over a convex set, we need to find a description of the set in terms of
convex inequalities and linear equality constraints. As the example above suggests,
this is usually straightforward.

Local and global optima

A fundamental property of convex optimization problems is that any locally optimal
point is also (globally) optimal. To see this, suppose that « is locally optimal for
a convex optimization problem, i.e., x is feasible and

fo(x) =1inf{fo(z) | z feasible, ||z — z|2 < R}, (4.19)

for some R > 0. Now suppose that x is not globally optimal, i.e., there is a feasible
y such that fo(y) < fo(z). Evidently ||y — z[|2 > R, since otherwise fo(x) < fo(y).
Consider the point z given by
R
z=(1—-0)x+ 0y, 0= —.
o 2yl

Then we have ||z — z|l2 = R/2 < R, and by convexity of the feasible set, z is
feasible. By convexity of fo we have

Jo(z) < (1 =0)fo(x) + 0fo(y) < fo(),

which contradicts (4.19). Hence there exists no feasible y with fo(y) < fo(x), i.e.,
x is globally optimal.
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Figure 4.2 Geometric interpretation of the optimality condition (4.21). The
feasible set X is shown shaded. Some level curves of fy are shown as dashed
lines. The point x is optimal: —V fo(z) defines a supporting hyperplane
(shown as a solid line) to X at z.

It is not true that locally optimal points of quasiconvex optimization problems
are globally optimal; see §4.2.5.

An optimality criterion for differentiable f,

Suppose that the objective fy in a convex optimization problem is differentiable,
so that for all z,y € dom fj),

foly) = fo(@) + Vfol2)" (y — ) (4.20)
(see §3.1.3). Let X denote the feasible set, i.e.,
X={z] fi(x)<0,i=1,...,m, hi(z)=0,i=1,...,p}.
Then z is optimal if and only if z € X and
Vio(x) ' (y —x) >0 for all y € X. (4.21)

This optimality criterion can be understood geometrically: If V fo(x) # 0, it means
that —V fo(z) defines a supporting hyperplane to the feasible set at = (see fig-
ure 4.2).

Proof of optimality condition

First suppose x € X and satisfies (4.21). Then if y € X we have, by (4.20),
fo(y) > fo(x). This shows z is an optimal point for (4.1).
Conversely, suppose x is optimal, but the condition (4.21) does not hold, i.e.,
for some y € X we have
Vfo(x)' (y —x) < 0.



140

4 Convex optimization problems

Counsider the point z(t) = ty+ (1 —t)x, where t € [0, 1] is a parameter. Since z(t) is
on the line segment between x and y, and the feasible set is convex, z(t) is feasible.
We claim that for small positive ¢ we have fo(z(t)) < fo(x), which will prove that
x is not optimal. To show this, note that

d

ZHGE®)|  =Vio(@) (y-2) <0,

t=0
so for small positive ¢, we have fy(2(t)) < fo(z).

We will pursue the topic of optimality conditions in much more depth in chap-
ter 5, but here we examine a few simple examples.

Unconstrained problems

For an unconstrained problem (i.e., m = p = 0), the condition (4.21) reduces to
the well known necessary and sufficient condition

Vfo(z) =0 (4.22)

for  to be optimal. While we have already seen this optimality condition, it is
useful to see how it follows from (4.21). Suppose z is optimal, which means here
that © € dom fy, and for all feasible y we have Vfo(x)? (y — x) > 0. Since fo is
differentiable, its domain is (by definition) open, so all y sufficiently close to x are
feasible. Let us take y = x —tV fo(x), where ¢t € R is a parameter. For ¢ small and
positive, y is feasible, and so

Viol2)"(y - 2) = ~t|Vfo(2)]3 > 0,

from which we conclude V fo(x) = 0.

There are several possible situations, depending on the number of solutions
of (4.22). If there are no solutions of (4.22), then there are no optimal points; the
optimal value of the problem is not attained. Here we can distinguish between
two cases: the problem is unbounded below, or the optimal value is finite, but not
attained. On the other hand we can have multiple solutions of the equation (4.22),
in which case each such solution is a minimizer of fj.

Example 4.5 Unconstrained quadratic optimization. Consider the problem of mini-
mizing the quadratic function

folz) = (1/2)ZETP:E + qTx + 7,

where P € S’} (which makes fo convex). The necessary and sufficient condition for
 to be a minimizer of fy is

Vfo(z) = Pxr+q=0.

Several cases can occur, depending on whether this (linear) equation has no solutions,
one solution, or many solutions.
e If ¢ ¢ R(P), then there is no solution. In this case fy is unbounded below.

e If P > 0 (which is the condition for fy to be strictly convex), then there is a
unique minimizer, 2* = —P~'q.



4.2 Convex optimization

141

e If P is singular, but ¢ € R(P), then the set of optimal points is the (affine) set
Xopt = —PTq 4+ N(P), where P denotes the pseudo-inverse of P (see §A.5.4).

Example 4.6 Analytic centering. Consider the (unconstrained) problem of minimiz-
ing the (convex) function fo: R" — R, defined as

folz) = — Zlog(bi —alz), dom fo = {z | Az < b},
i=1

where af, ..., aL are the rows of A. The function fo is differentiable, so the necessary
and sufficient conditions for x to be optimal are

< 1
Az b, Vo) =) oot =0. (4.23)
=1

(The condition Az < b is just z € dom fo.) If Az < b is infeasible, then the domain
of fo is empty. Assuming Az < b is feasible, there are still several possible cases (see
exercise 4.2):

e There are no solutions of (4.23), and hence no optimal points for the problem.
This occurs if and only if fp is unbounded below.

e There are many solutions of (4.23). In this case it can be shown that the
solutions form an affine set.

e There is a unique solution of (4.23), i.e., a unique minimizer of fo. This occurs
if and only if the open polyhedron {z | Az < b} is nonempty and bounded.

Problems with equality constraints only

Consider the case where there are equality constraints but no inequality constraints,
i.e.,

minimize  fo(x)

subject to Az =b.

Here the feasible set is affine. We assume that it is nonempty; otherwise the
problem is infeasible. The optimality condition for a feasible x is that

Vo) (y—2) 20

must hold for all y satisfying Ay = b. Since «x is feasible, every feasible y has the
form y = x + v for some v € N(A). The optimality condition can therefore be
expressed as:

Vfo(z) v >0 for all v € N'(A).

If a linear function is nonnegative on a subspace, then it must be zero on the
subspace, so it follows that V fo(z)Tv = 0 for all v € N'(A4). In other words,

Vfo(z) L N(A).
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Using the fact that N(A)* = R(AT), this optimality condition can be expressed
as Vfo(z) € R(AT), i.e., there exists a v € RP such that

Vio(z)+ ATv =0.

Together with the requirement Az = b (i.e., that x is feasible), this is the classical
Lagrange multiplier optimality condition, which we will study in greater detail in
chapter 5.

Minimization over the nonnegative orthant
As another example we consider the problem

minimize  fo(z)
subject to x> 0,

where the only inequality constraints are nonnegativity constraints on the variables.
The optimality condition (4.21) is then

x =0, Vfo(x)T (y —x) >0 for all y = 0.

The term V fo(z)Ty, which is a linear function of y, is unbounded below on y = 0,
unless we have V fy(z) = 0. The condition then reduces to —V fo(x)Tx > 0. But
x = 0and Vfy(x) = 0, so we must have V fo(z)Tx =0, i.ec.,

n

> (Vfo(x))iz:i =0.

i=1

Now each of the terms in this sum is the product of two nonnegative numbers, so
we conclude that each term must be zero, i.e., (Vfy(x)),z; =0fori=1,... n.
The optimality condition can therefore be expressed as

x =0, V fo(z) = 0, i (Vfo(x)), =0, i=1,...,n.

The last condition is called complementarity, since it means that the sparsity pat-
terns (i.e., the set of indices corresponding to nonzero components) of the vectors x
and V fo(z) are complementary (i.e., have empty intersection). We will encounter
complementarity conditions again in chapter 5.

Equivalent convex problems

It is useful to see which of the transformations described in §4.1.3 preserve convex-
ity.
Eliminating equality constraints

For a convex problem the equality constraints must be linear, i.e., of the form
Az = b. In this case they can be eliminated by finding a particular solution xq of
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Az = b, and a matrix F' whose range is the nullspace of A, which results in the
problem

minimize  fo(Fz + o)

subject to  fi(Fz+xz9) <0, i=1,...,m,

with variable z. Since the composition of a convex function with an affine func-
tion is convex, eliminating equality constraints preserves convexity of a problem.
Moreover, the process of eliminating equality constraints (and reconstructing the
solution of the original problem from the solution of the transformed problem)
involves standard linear algebra operations.

At least in principle, this means we can restrict our attention to convex opti-
mization problems which have no equality constraints. In many cases, however, it
is better to retain the equality constraints, since eliminating them can make the
problem harder to understand and analyze, or ruin the efficiency of an algorithm
that solves it. This is true, for example, when the variable x has very large dimen-
sion, and eliminating the equality constraints would destroy sparsity or some other
useful structure of the problem.

Introducing equality constraints

We can introduce new variables and equality constraints into a convex optimization
problem, provided the equality constraints are linear, and the resulting problem
will also be convex. For example, if an objective or constraint function has the form
fi(Aix+b;), where A; € R**" we can introduce a new variable y; € R* | replace
fi(A;x 4+ b;) with f;(y;), and add the linear equality constraint y; = A;x + b;.

Slack variables

By introducing slack variables we have the new constraints f;(x) 4+ s; = 0. Since
equality constraint functions must be affine in a convex problem, we must have f;
affine. In other words: introducing slack variables for linear inequalities preserves
convexity of a problem.

Epigraph problem form

The epigraph form of the convex optimization problem (4.15) is

minimize ¢

subject to  fo(x) —t <0
f?(I)SO7 iil,...,m
alz=b;, i=1,...,p.

The objective is linear (hence convex) and the new constraint function fo(x) —¢ is
also convex in (x,t), so the epigraph form problem is convex as well.

It is sometimes said that a linear objective is universal for convex optimization,
since any convex optimization problem is readily transformed to one with linear
objective. The epigraph form of a convex problem has several practical uses. By
assuming the objective of a convex optimization problem is linear, we can simplify
theoretical analysis. It can also simplify algorithm development, since an algo-
rithm that solves convex optimization problems with linear objective can, using
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the transformation above, solve any convex optimization problem (provided it can
handle the constraint fo(z) — ¢ < 0).

Minimizing over some variables

Minimizing a convex function over some variables preserves convexity. Therefore,
if fo in (4.9) is jointly convex in zy and xo, and f;, ¢ = 1,...,mq, and f;, i =
1,...,mq, are convex, then the equivalent problem (4.10) is convex.

Quasiconvex optimization

Recall that a quasiconvex optimization problem has the standard form

minimize  fo(x)

subject to  fi(z) <0, i=1,...,m (4.24)
Ax = b,
where the inequality constraint functions fi,..., f,, are convex, and the objective

fo is quasiconvex (instead of convex, as in a convex optimization problem). (Qua-
siconvex constraint functions can be replaced with equivalent convex constraint
functions, i.e., constraint functions that are convex and have the same 0-sublevel
set, as in §3.4.5.)

In this section we point out some basic differences between convex and quasicon-
vex optimization problems, and also show how solving a quasiconvex optimization
problem can be reduced to solving a sequence of convex optimization problems.

Locally optimal solutions and optimality conditions

The most important difference between convex and quasiconvex optimization is
that a quasiconvex optimization problem can have locally optimal solutions that
are not (globally) optimal. This phenomenon can be seen even in the simple case
of unconstrained minimization of a quasiconvex function on R, such as the one
shown in figure 4.3.

Nevertheless, a variation of the optimality condition (4.21) given in §4.2.3 does
hold for quasiconvex optimization problems with differentiable objective function.
Let X denote the feasible set for the quasiconvex optimization problem (4.24). It
follows from the first-order condition for quasiconvexity (3.20) that x is optimal if

z e X, Vio(x)T(y—x)>0forally e X\ {z}. (4.25)

There are two important differences between this criterion and the analogous
one (4.21) for convex optimization:

e The condition (4.25) is only sufficient for optimality; simple examples show
that it need not hold for an optimal point. In contrast, the condition (4.21)
is necessary and sufficient for x to solve the convex problem.

e The condition (4.25) requires the gradient of fy to be nonzero, whereas the
condition (4.21) does not. Indeed, when V fo(x) = 0 in the convex case, the
condition (4.21) is satisfied, and x is optimal.
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Figure 4.3 A quasiconvex function f on R, with a locally optimal point x
that is not globally optimal. This example shows that the simple optimality
condition f’(z) = 0, valid for convex functions, does not hold for quasiconvex
functions.

Quasiconvex optimization via convex feasibility problems

One general approach to quasiconvex optimization relies on the representation of
the sublevel sets of a quasiconvex function via a family of convex inequalities, as
described in §3.4.5. Let ¢; : R™ — R, t € R, be a family of convex functions that
satisfy

folw) <t <= 6u(z) <0,

and also, for each z, ¢;(x) is a nonincreasing function of ¢, i.e., ¢s(x) < ¢ (x)
whenever s > t.

Let p* denote the optimal value of the quasiconvex optimization problem (4.24).
If the feasibility problem

find

x
subject to  ¢¢(z) <0 (4.26)

is feasible, then we have p* < ¢. Conversely, if the problem (4.26) is infeasible, then
we can conclude p* > t. The problem (4.26) is a convex feasibility problem, since
the inequality constraint functions are all convex, and the equality constraints
are linear. Thus, we can check whether the optimal value p* of a quasiconvex
optimization problem is less than or more than a given value ¢ by solving the
convex feasibility problem (4.26). If the convex feasibility problem is feasible then
we have p* < ¢, and any feasible point x is feasible for the quasiconvex problem
and satisfies fo(x) < t. If the convex feasibility problem is infeasible, then we know
that p* > t.

This observation can be used as the basis of a simple algorithm for solving the
quasiconvex optimization problem (4.24) using bisection, solving a convex feasi-
bility problem at each step. We assume that the problem is feasible, and start
with an interval [I,u] known to contain the optimal value p*. We then solve the
convex feasibility problem at its midpoint ¢ = (I + u)/2, to determine whether the
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optimal value is in the lower or upper half of the interval, and update the interval
accordingly. This produces a new interval, which also contains the optimal value,
but has half the width of the initial interval. This is repeated until the width of
the interval is small enough:

Algorithm 4.1 Bisection method for quasiconvex optimization.

given [ < p*, u > p*, tolerance € > 0.
repeat
1. t:=(+u)/2.
2. Solve the convex feasibility problem (4.26).
3. if (4.20) is feasible, u:=1t; elsel:=t.
until v — [ <e.

The interval [I,u] is guaranteed to contain p*, i.e., we have | < p* < w at
each step. In each iteration the interval is divided in two, i.e., bisected, so the
length of the interval after k iterations is 27%(u — ), where u — [ is the length of
the initial interval. It follows that exactly [log,((u —1)/€)] iterations are required
before the algorithm terminates. Each step involves solving the convex feasibility
problem (4.26).

Linear optimization problems

When the objective and constraint functions are all affine, the problem is called a
linear program (LP). A general linear program has the form

minimize ¢’z +d
subject to Gz =< h (4.27)
Ax = b,

where G € R™*™ and A € RP*". Linear programs are, of course, convex opti-
mization problems.

It is common to omit the constant d in the objective function, since it does not
affect the optimal (or feasible) set. Since we can maximize an affine objective ¢’z +
d, by minimizing —cTz — d (which is still convex), we also refer to a maximization
problem with affine objective and constraint functions as an LP.

The geometric interpretation of an LP is illustrated in figure 4.4. The feasible
set of the LP (4.27) is a polyhedron P; the problem is to minimize the affine
function ¢’z + d (or, equivalently, the linear function ¢’'z) over P.

Standard and inequality form linear programs

Two special cases of the LP (4.27) are so widely encountered that they have been
given separate names. In a standard form LP the only inequalities are componen-
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Figure 4.4 Geometric interpretation of an LP. The feasible set P, which
is a polyhedron, is shaded. The objective ¢’ is linear, so its level curves
are hyperplanes orthogonal to ¢ (shown as dashed lines). The point x* is
optimal; it is the point in P as far as possible in the direction —c.

twise nonnegativity constraints x > 0:

minimize Tz
subject to Az =10 (4.28)
x = 0.

If the LP has no equality constraints, it is called an inequality form LP, usually
written as
minimize ¢’z

subject to Az <b. (429)

Converting LPs to standard form

Tt is sometimes useful to transform a general LP (4.27) to one in standard form (4.28)
(for example in order to use an algorithm for standard form LPs). The first step
is to introduce slack variables s; for the inequalities, which results in

minimize ¢fx +d
subject to Gxr+s=nh
Ar =D
s~ 0.

The second step is to express the variable = as the difference of two nonnegative
variables z* and 7, i.e., v = 27 — 27, 2%, 27 = 0. This yields the problem

minimize ¢Tat — Tz +d
subject to Gat —Gx~ +s=h
Azt —Az= =b
x>0, 2= =0, s>=0,
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which is an LP in standard form, with variables T, 7, and s. (For equivalence
of this problem and the original one (4.27), see exercise 4.10.)

These techniques for manipulating problems (along with many others we will
see in the examples and exercises) can be used to formulate many problems as linear
programs. With some abuse of terminology, it is common to refer to a problem
that can be formulated as an LP as an LP, even if it does not have the form (4.27).

Examples

LPs arise in a vast number of fields and applications; here we give a few typical
examples.

Diet problem

A healthy diet contains m different nutrients in quantities at least equal to by, ...,
b We can compose such a diet by choosing nonnegative quantities x1, ..., x, of
n different foods. One unit quantity of food j contains an amount a;; of nutrient
i, and has a cost of ¢;. We want to determine the cheapest diet that satisfies the
nutritional requirements. This problem can be formulated as the LP

minimize Tz
subject to Az = b

x = 0.

Several variations on this problem can also be formulated as LPs. For example,
we can insist on an exact amount of a nutrient in the diet (which gives a linear
equality constraint), or we can impose an upper bound on the amount of a nutrient,
in addition to the lower bound as above.

Chebyshev center of a polyhedron

We consider the problem of finding the largest Euclidean ball that lies in a poly-
hedron described by linear inequalities,

P={zecR"|al2<b;, i=1,...,m}.

(The center of the optimal ball is called the Chebyshev center of the polyhedron;
it is the point deepest inside the polyhedron, i.e., farthest from the boundary;
see §8.5.1.) We represent the ball as

B={zc+ullulls <r}.

The variables in the problem are the center z. € R™ and the radius r; we wish to
maximize r subject to the constraint B C P.
We start by considering the simpler constraint that B lies in one halfspace
aiT:v < b;, i.e.,
lulls <7 = al(z. 4+ u) < b;. (4.30)

Since
sup{af u | [Julla <r} = rllai2
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we can write (4.30) as
alze +rlags < bi, (4.31)
which is a linear inequality in z. and r. In other words, the constraint that the
ball lies in the halfspace determined by the inequality alx < b; can be written as
a linear inequality.
Therefore B C P if and only if (4.31) holds for all i = 1,...,m. Hence the
Chebyshev center can be determined by solving the LP

maximize 7
subject to alx. +rlailla <bi, i=1,...,m,

with variables r and z.. (For more on the Chebyshev center, see §8.5.1.)

Dynamic activity planning

We consider the problem of choosing, or planning, the activity levels of n activities,
or sectors of an economy, over N time periods. We let z;(t) > 0, ¢ =1,...,N,
denote the activity level of sector j, in period t. The activities both consume and
produce products or goods in proportion to their activity levels. The amount of
good 7 produced per unit of activity j is given by a;;. Similarly, the amount of good ¢
consumed per unit of activity j is b;;. The total amount of goods produced in period
t is given by Axz(t) € R™, and the amount of goods consumed is Bz(t) € R™.
(Although we refer to these products as ‘goods’; they can also include unwanted
products such as pollutants.)

The goods consumed in a period cannot exceed those produced in the previous
period: we must have Bx(t + 1) < Ax(t) for t =1,...,N. A vector go € R™ of
initial goods is given, which constrains the first period activity levels: Bxz(1) < go.
The (vectors of) excess goods not consumed by the activities are given by

s(0) = go— Bax(1)
s(t) = Ax(t)—Bxz(t+1), t=1,...,N—-1
s(N) = Ax(N).

The objective is to maximize a discounted total value of excess goods:
Ts(0) +veT's(1) + - + Vel s(N),

where ¢ € R gives the values of the goods, and v > 0 is a discount factor. (The
value ¢; is negative if the ith product is unwanted, e.g., a pollutant; |¢;| is then the
cost of disposal per unit.)

Putting it all together we arrive at the LP

maximize ¢!'s(0) + WcTs(l) + -+ yNeTs(N)

subject to z(t) =0, t=1,...,N
s(t) =0, t=0,. N
5(0) =go—B$( )
s(t) = Ax(t) — Bzx(t+1), t=1,...,N—1
(N)=A33( );

with variables z(1),...,2(N), s(0),...,s(N). This problem is a standard form LP;
the variables s(¢) are the slack variables associated with the constraints Bx(t+1) <
Ax(t).
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Chebyshev inequalities

We consider a probability distribution for a discrete random variable x on a set
{u1,...,un} € R with n elements. We describe the distribution of by a vector
p € R", where

p; = prob(z = u;),

so p satisfies p = 0 and 17p = 1. Conversely, if p satisfies p = 0 and 17p = 1, then
it defines a probability distribution for z. We assume that u; are known and fixed,
but the distribution p is not known.

If f is any function of x, then

Ef=> pif(uw)
i=1

is a linear function of p. If S is any subset of R, then

prob(z € §) = Z Di

u, €S

is a linear function of p.

Although we do not know p, we are given prior knowledge of the following form:
We know upper and lower bounds on expected values of some functions of x, and
probabilities of some subsets of R. This prior knowledge can be expressed as linear
inequality constraints on p,

T .
aigaipgﬁia i=1,...,m.

The problem is to give lower and upper bounds on E fo(z) = al'p, where fq is some
function of x.
To find a lower bound we solve the LP
minimize alp
subject to p>=0, 1Tp=1
a; <alp<pBi, i=1,...,m,

with variable p. The optimal value of this LP gives the lowest possible value of
E fo(X) for any distribution that is consistent with the prior information. More-
over, the bound is sharp: the optimal solution gives a distribution that is consistent
with the prior information and achieves the lower bound. In a similar way, we can
find the best upper bound by maximizing al p subject to the same constraints. (We
will consider Chebyshev inequalities in more detail in §7.4.1.)

Piecewise-linear minimization

Consider the (unconstrained) problem of minimizing the piecewise-linear, convex
function
f(x) = max (alz+b).
i=1,...,m

This problem can be transformed to an equivalent LP by first forming the epigraph
problem,

minimize ¢

subject to maxi:L,__,m(alTx +b;) <t,
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and then expressing the inequality as a set of m separate inequalities:
minimize ¢
subject to alx+b; <t, i=1,...,m.

This is an LP (in inequality form), with variables = and ¢.

Linear-fractional programming

The problem of minimizing a ratio of affine functions over a polyhedron is called a
linear-fractional program:

minimize  fo(z)

subject to Ga < h (4.32)
Az =10
where the objective function is given by
T
cr+d T
fo(l‘):m, domf0:{$|€ J?+f>0}

The objective function is quasiconvex (in fact, quasilinear) so linear-fractional pro-
grams are quasiconvex optimization problems.

Transforming to a linear program

If the feasible set
{z |Gz <h, Az =0, Tz + f >0}

is nonempty, the linear-fractional program (4.32) can be transformed to an equiv-
alent linear program
minimize ¢’y + dz
subject to Gy — hz <0
Ay —bz=0 (4.33)
eTy+ fz=1
z>0
with variables y, z.
To show the equivalence, we first note that if = is feasible in (4.32) then the
pair
T _ 1
eTo+ f Z_eTa:+f
is feasible in (4.33), with the same objective value Ty +dz = fo(x). It follows that
the optimal value of (4.32) is greater than or equal to the optimal value of (4.33).
Conversely, if (y, z) is feasible in (4.33), with z # 0, then x = y/z is feasible
in (4.32), with the same objective value fo(x) = Ty + dz. If (y,z) is feasible
in (4.33) with z = 0, and z is feasible for (4.32), then & = z( + ty is feasible
in (4.32) for all ¢ > 0. Moreover, lim; o fo(wo + ty) = ¢’y + dz, so we can find
feasible points in (4.32) with objective values arbitrarily close to the objective value
of (y,z). We conclude that the optimal value of (4.32) is less than or equal to the
optimal value of (4.33).

y:
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Generalized linear-fractional programming

A generalization of the linear-fractional program (4.32) is the generalized linear-
fractional program in which

e ={z|efz+f; =1,...,r}.
iiﬁlﬁfre;m+fi7 omfo={zx|elx+f;>0,i=1,...,1}

Jolz) =
The objective function is the pointwise maximum of r quasiconvex functions, and
therefore quasiconvex, so this problem is quasiconvex. When r = 1 it reduces to
the standard linear-fractional program.

Example 4.7 Von Neumann growth problem. We consider an economy with n
sectors, and activity levels x; > 0 in the current period, and activity levels :rj' > 0in
the next period. (In this problem we only consider one period.) There are m goods
which are consumed, and also produced, by the activity: An activity level x consumes
goods Bz € R™, and produces goods Az. The goods consumed in the next period
cannot exceed the goods produced in the current period, i.e., Bx™ < Az. The growth
rate in sector ¢, over the period, is given by xj/xl

Von Neumann’s growth problem is to find an activity level vector x that maximizes
the minimum growth rate across all sectors of the economy. This problem can be
expressed as a generalized linear-fractional problem

maximize minj—1, . n xj'/xz
subject to T =0
Bzt < Az

with domain {(z,z") | # = 0}. Note that this problem is homogeneous in z and z*,
so we can replace the implicit constraint x > 0 by the explicit constraint x > 1.

Quadratic optimization problems

The convex optimization problem (4.15) is called a quadratic program (QP) if the
objective function is (convex) quadratic, and the constraint functions are affine. A
quadratic program can be expressed in the form

minimize  (1/2)z” Pz +q¢Tz +r
subject to Gz =X h (4.34)
Az = b,

where P € 8”1, G € R™*", and A € RP*". In a quadratic program, we minimize
a convex quadratic function over a polyhedron, as illustrated in figure 4.5.

If the objective in (4.15) as well as the inequality constraint functions are (con-
vex) quadratic, as in

minimize  (1/2)z” Pox + ¢z + 7o

subject to  (1/2)aTPix +qlz+7r; <0, i=1,...,m (4.35)
Ax =b,
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Figure 4.5 Geometric illustration of QP. The feasible set P, which is a poly-
hedron, is shown shaded. The contour lines of the objective function, which
is convex quadratic, are shown as dashed curves. The point x* is optimal.

where P; € S"', i = 0,1...,m, the problem is called a quadratically constrained
quadratic program (QCQP). In a QCQP, we minimize a convex quadratic function
over a feasible region that is the intersection of ellipsoids (when P; = 0).

Quadratic programs include linear programs as a special case, by taking P = 0
in (4.34). Quadratically constrained quadratic programs include quadratic pro-
grams (and therefore also linear programs) as a special case, by taking P, = 0
in (4.35), fori=1,...,m.

Examples

Least-squares and regression

The problem of minimizing the convex quadratic function
|Az — b||3 = 2T AT Az — 20" Az + ")

is an (unconstrained) QP. It arises in many fields and has many names, e.g., re-
gression analysis or least-squares approximation. This problem is simple enough to
have the well known analytical solution 2 = ATb, where AT is the pseudo-inverse
of A (see §A.5.4).

When linear inequality constraints are added, the problem is called constrained
regression or constrained least-squares, and there is no longer a simple analytical
solution. As an example we can consider regression with lower and upper bounds
on the variables, i.e.,

minimize  ||Ax — b||3
subject to ; <z, <w;, 1=1,...,n,
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which is a QP. (We will study least-squares and regression problems in far more
depth in chapters 6 and 7.)

Distance between polyhedra

The (Euclidean) distance between the polyhedra P; = {« | Ajx < b1} and Py =
{z | Aoz X ba} in R" is defined as

diSt(Pl,PQ) = 1nf{||x1 — ZEQ”Q | r1 € P1, 29 € Pg}

If the polyhedra intersect, the distance is zero.
To find the distance between P; and P, we can solve the QP

minimize  ||x; — z2||3
subject to  Ayxy; =< by, Aoxs < by,

with variables z1, xo € R"™. This problem is infeasible if and only if one of the
polyhedra is empty. The optimal value is zero if and only if the polyhedra intersect,
in which case the optimal z; and zs are equal (and is a point in the intersection
P1NPz). Otherwise the optimal 21 and x5 are the points in P; and Ps, respectively,
that are closest to each other. (We will study geometric problems involving distance
in more detail in chapter 8.)

Bounding variance

We consider again the Chebyshev inequalities example (page 150), where the vari-
able is an unknown probability distribution given by p € R", about which we have
some prior information. The variance of a random variable f(x) is given by

n n 2
Eff—(Ef)’ =) fpi— (Z fipZ) :
i=1 1=1

(where f; = f(u;)), which is a concave quadratic function of p.
It follows that we can maximize the variance of f(x), subject to the given prior
information, by solving the QP

L 2
maximize Y21, fZpi — (30, fipi)
subject to p>=0, 1Tp=1

i <alp<pBy, i=1,...,m.

The optimal value gives the maximum possible variance of f(x), over all distribu-
tions that are consistent with the prior information; the optimal p gives a distri-
bution that achieves this maximum variance.

Linear program with random cost

We consider an LP,
minimize Tz
subject to Gz =< h

Ax =b,
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with variable x € R"™. We suppose that the cost function (vector) ¢ € R" is
random, with mean value ¢ and covariance E(c — ¢)(c — ¢)7 = . (We assume
for simplicity that the other problem parameters are deterministic.) For a given
x € R", the cost ¢’z is a (scalar) random variable with mean E ¢’z = '« and
variance

var(c'z) = E(Tz — Eclz)? = 275z,

In general there is a trade-off between small expected cost and small cost vari-
ance. One way to take variance into account is to minimize a linear combination
of the expected value and the variance of the cost, i.e.,

Ec'z +yvar(c'z),

which is called the risk-sensitive cost. The parameter v > 0 is called the risk-
aversion parameter, since it sets the relative values of cost variance and expected
value. (For v > 0, we are willing to trade off an increase in expected cost for a
sufficiently large decrease in cost variance).

To minimize the risk-sensitive cost we solve the QP

minimize ¢z + vz Yz
subject to Gz < h
Ax =b.

Markowitz portfolio optimization

We consider a classical portfolio problem with n assets or stocks held over a period
of time. We let z; denote the amount of asset 7 held throughout the period, with
x; in dollars, at the price at the beginning of the period. A normal long position
in asset ¢ corresponds to z; > 0; a short position in asset ¢ (i.e., the obligation to
buy the asset at the end of the period) corresponds to x; < 0. We let p; denote
the relative price change of asset i over the period, i.e., its change in price over
the period divided by its price at the beginning of the period. The overall return
on the portfolio is r = p?x (given in dollars). The optimization variable is the
portfolio vector x € R".

A wide variety of constraints on the portfolio can be considered. The simplest
set of constraints is that #; > 0 (i.e., no short positions) and 17z = B (i.e., the
total budget to be invested is B, which is often taken to be one).

We take a stochastic model for price changes: p € R" is a random vector, with
known mean p and covariance Y. Therefore with portfolio z € R", the return r
is a (scalar) random variable with mean p’ z and variance 7 ¥z. The choice of
portfolio z involves a trade-off between the mean of the return, and its variance.

The classical portfolio optimization problem, introduced by Markowitz, is the
QP

minimize 27Xz
subject to ﬁTsc > Tmin
1Tz =1, z>0,

where x, the portfolio, is the variable. Here we find the portfolio that minimizes
the return variance (which is associated with the risk of the portfolio) subject to
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achieving a minimum acceptable mean return r;,, and satisfying the portfolio
budget and no-shorting constraints.

Many extensions are possible. One standard extension, for example, is to allow
short positions, i.e., z; < 0. To do this we introduce variables Ziong and Zghort,
with

T T
Tlong = 07 Lshort = 07 I = Tlong — Tshort 1 Tshort < 771 Llong-

The last constraint limits the total short position at the beginning of the period to
some fraction 7 of the total long position at the beginning of the period.

As another extension we can include linear transaction costs in the portfolio
optimization problem. Starting from a given initial portfolio xi,;x we buy and sell
assets to achieve the portfolio x, which we then hold over the period as described
above. We are charged a transaction fee for buying and selling assets, which is
proportional to the amount bought or sold. To handle this, we introduce variables
Ubuy and uUgen, which determine the amount of each asset we buy and sell before
the holding period. We have the constraints

T = Tinit + Upuy — Usells Ubuy = 07 Usell >~ 0.

We replace the simple budget constraint 17z = 1 with the condition that the initial
buying and selling, including transaction fees, involves zero net cash:

(1 - fsell)]-Tusell = (1 + fbuy)lTubuy

Here the lefthand side is the total proceeds from selling assets, less the selling
transaction fee, and the righthand side is the total cost, including transaction fee,
of buying assets. The constants fyuy > 0 and feen > 0 are the transaction fee rates
for buying and selling (assumed the same across assets, for simplicity).

The problem of minimizing return variance, subject to a minimum mean return,
and the budget and trading constraints, is a QP with variables =, ubuy, Uscll-

Second-order cone programming

A problem that is closely related to quadratic programming is the second-order
cone program (SOCP):
minimize Tz
subject to [|[A;x +billa < cfz+d;, i=1,...,m (4.36)
Fz =g,

where x € R" is the optimization variable, 4; € R™*", and F € R?*". We call a
constraint of the form
|Az + bl < 'z +d,

where A € R**" a second-order cone constraint, since it is the same as requiring
the affine function (Az + b, ¢Tx + d) to lie in the second-order cone in R**1.

When ¢; = 0,4 =1,...,m, the SOCP (4.36) is equivalent to a QCQP (which
is obtained by squaring each of the constraints). Similarly, if A; =0,¢=1,...,m,
then the SOCP (4.36) reduces to a (general) LP. Second-order cone programs are,
however, more general than QCQPs (and of course, LPs).
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Robust linear programming
We consider a linear program in inequality form,
minimize ¢’z
subject to alx <b;, i=1,...,m,

in which there is some uncertainty or variation in the parameters ¢, a;, b;. To
simplify the exposition we assume that ¢ and b; are fixed, and that a; are known
to lie in given ellipsoids:

a; € & ={a; + Pu | [lull2 < 1},

where P; € R™*". (If P; is singular we obtain ‘flat’ ellipsoids, of dimension rank P;;
P, = 0 means that a; is known perfectly.)
We will require that the constraints be satisfied for all possible values of the

parameters a;, which leads us to the robust linear program
. . . T
minimize c¢'x

subject to alx <b;foralla; €&, i=1,...,m. (4.37)

The robust linear constraint, aiTx < b; for all a; € &;, can be expressed as
sup{al = | a; € &} < by,
the lefthand side of which can be expressed as
sup{al x| a; €&} = alx+sup{u’ Pl o | [juls <1}
= @ a+ [Pl
Thus, the robust linear constraint can be expressed as
@z +||Pl |z < b,

which is evidently a second-order cone constraint. Hence the robust LP (4.37) can
be expressed as the SOCP

minimize Tz

subject to @’ x + ||[Prz|2 <b;, i=1,...,m.

Note that the additional norm terms act as regularization terms; they prevent x
from being large in directions with considerable uncertainty in the parameters a;.

Linear programming with random constraints

The robust LP described above can also be considered in a statistical framework.
Here we suppose that the parameters a; are independent Gaussian random vectors,
with mean @; and covariance Y;. We require that each constraint a} x < b; should
hold with a probability (or confidence) exceeding 7, where n > 0.5, i.e.,

prob(alz < b;) > 1. (4.38)
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We will show that this probability constraint can be expressed as a second-order
cone constraint.
Letting u = a x, with 02 denoting its variance, this constraint can be written

as o
prob(u_ug i_u)zn.
o

g

Since (u — u)/o is a zero mean unit variance Gaussian variable, the probability
above is simply ®((b; —w)/0), where

1 z 2
@(Z) = \/72?/ eit /2 dt

is the cumulative distribution function of a zero mean unit variance Gaussian ran-
dom variable. Thus the probability constraint (4.38) can be expressed as

b —
> (),

g

or, equivalently,
a+ 1 (n)o < b;.

From T = @l z and o = (27 %;2)'/? we obtain
ala+ 2 ()I|S; a2 < b

By our assumption that n > 1/2, we have ® () > 0, so this constraint is a
second-order cone constraint.
In summary, the problem

minimize Tz

subject to prob(alxz <b;)>n, i=1,...,m
can be expressed as the SOCP
minimize ¢’z
subject to @; x + (I)_l(n)||23/2x||2 <b;, i=1,...,m.

(We will consider robust convex optimization problems in more depth in chapter 6.
See also exercises 4.13, 4.28, and 4.59.)

Example 4.8 Portfolio optimization with loss risk constraints. We consider again the
classical Markowitz portfolio problem described above (page 155). We assume here
that the price change vector p € R" is a Gaussian random variable, with mean p
and covariance . Therefore the return r is a Gaussian random variable with mean

7 = pLx and variance o2 = T Xz,

Consider a loss risk constraint of the form
prob(r < «a) < 3, (4.39)

where « is a given unwanted return level (e.g., a large loss) and 3 is a given maximum
probability.
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As in the stochastic interpretation of the robust LP given above, we can express this
constraint using the cumulative distribution function ® of a unit Gaussian random
variable. The inequality (4.39) is equivalent to

e+ ' (8) 2 2]z > a.

Provided 8 < 1/2 (i.e., ®*(B) < 0), this loss risk constraint is a second-order cone
constraint. (If 8 > 1/2, the loss risk constraint becomes nonconvex in x.)

The problem of maximizing the expected return subject to a bound on the loss
risk (with 8 < 1/2), can therefore be cast as an SOCP with one second-order cone
constraint:
maximize pla
subject to  pra 4+ @ 1(B) |2 2%z]2 > a
x>0, 1Tz=1.

There are many extensions of this problem. For example, we can impose several loss
risk constraints, i.e.,
prob(r < ;) < B, i=1,...,k,

(where 3; < 1/2), which expresses the risks (3;) we are willing to accept for various
levels of loss ().

Minimal surface

Consider a differentiable function f : R* — R with dom f = C. The surface area
of its graph is given by

A= /C JI IV @) de = /C 1V £(@), Dll2 da,

which is a convex functional of f. The minimal surface problem is to find the
function f that minimizes A subject to some constraints, for example, some given
values of f on the boundary of C.

We will approximate this problem by discretizing the function f. Let C
[0,1] x [0,1], and let f;; denote the value of f at the point (i/K, j/K), for i, j =
0,...,K. An approximate expression for the gradient of f at the point z =
(i/K,j/K) can be found using forward differences:

Vi)~ K { Jirrj — Jig } :
figei = fij
Substituting this into the expression for the area of the graph, and approximating
the integral as a sum, we obtain an approximation for the area of the graph:

1 Kl K(fi+15 — fi)
A= Agise = el Z K(fijs1— fij)
i,j=0 1
2
The discretized area approximation Agis is a convex function of f;;.
We can consider a wide variety of constraints on f;;, such as equality or in-
equality constraints on any of its entries (for example, on the boundary values), or
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on its moments. As an example, we consider the problem of finding the minimal
area surface with fixed boundary values on the left and right edges of the square:

minimize  Agjsc
subject to  fo; =1;, j=0,...,K (4.40)
ij:Tj, jZO,...,K

where fi;, i,j = 0,..., K, are the variables, and [;, r; are the given boundary
values on the left and right sides of the square.

We can transform the problem (4.40) into an SOCP by introducing new vari-
ables t;;, 4, 7=0,..., K —1:

minimize  (1/K2) 35t
K(fiv1,5 — fij)
subject to K(fij+1— fig) <tij, i, j=0,....,K—1
1 2
foi=1lj, j=0,....K
ij:Tj, j:O,...,K.

Geometric programming

In this section we describe a family of optimization problems that are not convex
in their natural form. These problems can, however, be transformed to convex op-
timization problems, by a change of variables and a transformation of the objective
and constraint functions.

Monomials and posynomials
A function f: R"™ — R with dom f = R’} |, defined as
f(x) = caftag? - xom, (4.41)

where ¢ > 0 and a; € R, is called a monomial function, or simply, a monomial.
The exponents a; of a monomial can be any real numbers, including fractional or
negative, but the coefficient ¢ can only be positive. (The term ‘monomial’ conflicts
with the standard definition from algebra, in which the exponents must be non-
negative integers, but this should not cause any confusion.) A sum of monomials,
i.e., a function of the form

K
x) = crxitt sk L gk 4.42
1 2 n
k=1

where ¢ > 0, is called a posynomial function (with K terms), or simply, a posyn-
omial.
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Posynomials are closed under addition, multiplication, and nonnegative scal-
ing. Monomials are closed under multiplication and division. If a posynomial is
multiplied by a monomial, the result is a posynomial; similarly, a posynomial can
be divided by a monomial, with the result a posynomial.

4.5.2 Geometric programming

An optimization problem of the form

minimize  fo(z)

subject to  fi(z) <1, i=1,...,m (4.43)
hi(x)=1, i=1,...,p
where fo, ..., fm, are posynomials and hq, ..., h, are monomials, is called a geomet-

ric program (GP). The domain of this problem is D = R/, ; the constraint 2 > 0
is implicit.

Extensions of geometric programming

Several extensions are readily handled. If f is a posynomial and A is a monomial,
then the constraint f(z) < h(x) can be handled by expressing it as f(z)/h(z) <1
(since f/h is posynomial). This includes as a special case a constraint of the
form f(z) < a, where f is posynomial and a > 0. In a similar way if hy; and ho
are both nonzero monomial functions, then we can handle the equality constraint
hi(z) = ha(x) by expressing it as hy(x)/ha(z) = 1 (since hy/hg is monomial). We
can maximize a nonzero monomial objective function, by minimizing its inverse
(which is also a monomial).

For example, consider the problem

maximize x/y
subject to 2 <x <3
2?2 +3y/z < NG

xfy = 2%,

with variables z, y, z € R (and the implicit constraint z, y, z > 0). Using
the simple transformations described above, we obtain the equivalent standard
form GP
minimize 71y
subject to 2z 1 <1, (1/3)z <1
a2y~12 4 3y1/2,-1 < 1
xy 2 =1.

We will refer to a problem like this one, that is easily transformed to an equiva-
lent GP in the standard form (4.43), also as a GP. (In the same way that we refer
to a problem easily transformed to an LP as an LP.)
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Geometric program in convex form

Geometric programs are not (in general) convex optimization problems, but they
can be transformed to convex problems by a change of variables and a transforma-
tion of the objective and constraint functions.

We will use the variables defined as y; = log x;, so ; = e¥. If f is the monomial
function of z given in (4.41), i.e.,

An
n

f(z) = caftag® -x
then

flx) = fle”,....e")
= c(eyl)al . (eyn)an
eaTerb’

where b = logec. The change of variables y; = logx; turns a monomial function
into the exponential of an affine function.
Similarly, if f is the posynomial given by (4.42), i.e.,

K
fla) =) cpaitrag . awint,
k=1
then
K
ORI
k=1
where ar, = (a1k, .. .,ank) and by = log ci. After the change o