
Convex Optimization — Boyd & Vandenberghe

1. Introduction

• mathematical optimization

• least-squares and linear programming

• convex optimization

• example

• course goals and topics

• nonlinear optimization

• brief history of convex optimization

1–1

Mathematical optimization

(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• x = (x1, . . . , xn): optimization variables

• f0 : R
n → R: objective function

• fi : R
n → R, i = 1, . . . ,m: constraint functions

optimal solution x⋆ has smallest value of f0 among all vectors that
satisfy the constraints

Introduction 1–2

Examples

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, max./min. investment per asset, minimum return

• objective: overall risk or return variance

device sizing in electronic circuits

• variables: device widths and lengths

• constraints: manufacturing limits, timing requirements, maximum area

• objective: power consumption

data fitting

• variables: model parameters

• constraints: prior information, parameter limits

• objective: measure of misfit or prediction error

Introduction 1–3

Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

• least-squares problems

• linear programming problems

• convex optimization problems

Introduction 1–4

Least-squares

minimize ‖Ax− b‖22

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)

Introduction 1–5

Linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)

Introduction 1–6

Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases

Introduction 1–7

solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization

Introduction 1–8

Example

m lamps illuminating n (small, flat) patches

lamp power pj

illumination Ik

rkj
θkj

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =

m∑

j=1

akjpj, akj = r−2
kj max{cos θkj, 0}

problem: achieve desired illumination Ides with bounded lamp powers

minimize maxk=1,...,n | log Ik − log Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

Introduction 1–9

how to solve?

1. use uniform power: pj = p, vary p

2. use least-squares:

minimize
∑n

k=1(Ik − Ides)
2

round pj if pj > pmax or pj < 0

3. use weighted least-squares:

minimize
∑n

k=1(Ik − Ides)
2 +

∑m
j=1wj(pj − pmax/2)

2

iteratively adjust weights wj until 0 ≤ pj ≤ pmax

4. use linear programming:

minimize maxk=1,...,n |Ik − Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

which can be solved via linear programming

of course these are approximate (suboptimal) ‘solutions’

Introduction 1–10

5. use convex optimization: problem is equivalent to

minimize f0(p) = maxk=1,...,n h(Ik/Ides)
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

with h(u) = max{u, 1/u}

0 1 2 3 4
0

1

2

3

4

5

u

h
(u
)

f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort

Introduction 1–11

additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps

2. no more than half of the lamps are on (pj > 0)

• answer: with (1), still easy to solve; with (2), extremely difficult

• moral: (untrained) intuition doesn’t always work; without the proper
background very easy problems can appear quite similar to very difficult
problems

Introduction 1–12

Course goals and topics

goals

1. recognize/formulate problems (such as the illumination problem) as
convex optimization problems

2. develop code for problems of moderate size (1000 lamps, 5000 patches)

3. characterize optimal solution (optimal power distribution), give limits of
performance, etc.

topics

1. convex sets, functions, optimization problems

2. examples and applications

3. algorithms

Introduction 1–13

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

• find a point that minimizes f0 among feasible points near it

• fast, can handle large problems

• require initial guess

• provide no information about distance to (global) optimum

global optimization methods

• find the (global) solution

• worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Introduction 1–14

Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

• 1947: simplex algorithm for linear programming (Dantzig)

• 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)

• 1970s: ellipsoid method and other subgradient methods

• 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

• late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications

• before 1990: mostly in operations research; few in engineering

• since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . .); new problem classes
(semidefinite and second-order cone programming, robust optimization)

Introduction 1–15

Convex Optimization — Boyd & Vandenberghe

2. Convex sets

• affine and convex sets

• some important examples

• operations that preserve convexity

• generalized inequalities

• separating and supporting hyperplanes

• dual cones and generalized inequalities

2–1

Affine set

line through x1, x2: all points

x = θx1 + (1− θ)x2 (θ ∈ R)

x1

x2

θ = 1.2
θ = 1

θ = 0.6

θ = 0
θ = −0.2

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Ax = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)

Convex sets 2–2

Convex set

line segment between x1 and x2: all points

x = θx1 + (1− θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

examples (one convex, two nonconvex sets)

Convex sets 2–3

Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = θ1x1 + θ2x2 + · · ·+ θkxk

with θ1 + · · ·+ θk = 1, θi ≥ 0

convex hull convS: set of all convex combinations of points in S

Convex sets 2–4

Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = θ1x1 + θ2x2

with θ1 ≥ 0, θ2 ≥ 0

0

x1

x2

convex cone: set that contains all conic combinations of points in the set

Convex sets 2–5

Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a 6= 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex

Convex sets 2–6

Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x− xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

ellipsoid: set of the form

{x | (x− xc)
TP−1(x− xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

xc

other representation: {xc +Au | ‖u‖2 ≤ 1} with A square and nonsingular

Convex sets 2–7

Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}
Euclidean norm cone is called second-
order cone

x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

norm balls and cones are convex

Convex sets 2–8

Polyhedra

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A ∈ Rm×n, C ∈ Rp×n, � is componentwise inequality)

a1 a2

a3

a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes

Convex sets 2–9

Positive semidefinite cone

notation:

• Sn is set of symmetric n× n matrices

• Sn
+ = {X ∈ Sn | X � 0}: positive semidefinite n× n matrices

X ∈ Sn
+ ⇐⇒ zTXz ≥ 0 for all z

Sn
+ is a convex cone

• Sn
++ = {X ∈ Sn | X ≻ 0}: positive definite n× n matrices

example:

[
x y
y z

]
∈ S2

+

xy

z

0

0.5

1

−1

0

1
0

0.5

1

Convex sets 2–10

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

2. show that C is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . .) by operations that preserve convexity

• intersection
• affine functions
• perspective function
• linear-fractional functions

Convex sets 2–11

Intersection

the intersection of (any number of) convex sets is convex

example:
S = {x ∈ Rm | |p(t)| ≤ 1 for |t| ≤ π/3}

where p(t) = x1 cos t+ x2 cos 2t+ · · ·+ xm cosmt

for m = 2:

0 π/3 2π/3 π

−1

0

1

t

p
(t
)

x1

x
2 S

−2 −1 0 1 2
−2

−1

0

1

2

Convex sets 2–12

Affine function

suppose f : Rn → Rm is affine (f(x) = Ax+ b with A ∈ Rm×n, b ∈ Rm)

• the image of a convex set under f is convex

S ⊆ Rn convex =⇒ f(S) = {f(x) | x ∈ S} convex

• the inverse image f−1(C) of a convex set under f is convex

C ⊆ Rm convex =⇒ f−1(C) = {x ∈ Rn | f(x) ∈ C} convex

examples

• scaling, translation, projection

• solution set of linear matrix inequality {x | x1A1 + · · ·+ xmAm � B}
(with Ai, B ∈ Sp)

• hyperbolic cone {x | xTPx ≤ (cTx)2, cTx ≥ 0} (with P ∈ Sn
+)

Convex sets 2–13

Perspective and linear-fractional function

perspective function P : Rn+1 → Rn:

P (x, t) = x/t, domP = {(x, t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : Rn → Rm:

f(x) =
Ax+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

images and inverse images of convex sets under linear-fractional functions
are convex

Convex sets 2–14

example of a linear-fractional function

f(x) =
1

x1 + x2 + 1
x

x1

x
2 C

−1 0 1
−1

0

1

x1

x
2

f(C)

−1 0 1
−1

0

1

Convex sets 2–15

Generalized inequalities

a convex cone K ⊆ Rn is a proper cone if

• K is closed (contains its boundary)

• K is solid (has nonempty interior)

• K is pointed (contains no line)

examples

• nonnegative orthant K = Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}

• positive semidefinite cone K = Sn
+

• nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t+ x3t
2 + · · ·+ xnt

n−1 ≥ 0 for t ∈ [0, 1]}

Convex sets 2–16

generalized inequality defined by a proper cone K:

x �K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ intK

examples

• componentwise inequality (K = Rn
+)

x �Rn
+
y ⇐⇒ xi ≤ yi, i = 1, . . . , n

• matrix inequality (K = Sn
+)

X �Sn
+
Y ⇐⇒ Y −X positive semidefinite

these two types are so common that we drop the subscript in �K

properties: many properties of �K are similar to ≤ on R, e.g.,

x �K y, u �K v =⇒ x+ u �K y + v

Convex sets 2–17

Minimum and minimal elements

�K is not in general a linear ordering : we can have x 6�K y and y 6�K x

x ∈ S is the minimum element of S with respect to �K if

y ∈ S =⇒ x �K y

x ∈ S is a minimal element of S with respect to �K if

y ∈ S, y �K x =⇒ y = x

example (K = R2
+)

x1 is the minimum element of S1

x2 is a minimal element of S2 x1

x2S1

S2

Convex sets 2–18

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist a 6= 0, b s.t.

aTx ≤ b for x ∈ C, aTx ≥ b for x ∈ D

D

C

a

aTx ≥ b aTx ≤ b

the hyperplane {x | aTx = b} separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a
singleton)

Convex sets 2–19

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x0:

{x | aTx = aTx0}

where a 6= 0 and aTx ≤ aTx0 for all x ∈ C

C

a

x0

supporting hyperplane theorem: if C is convex, then there exists a
supporting hyperplane at every boundary point of C

Convex sets 2–20

Dual cones and generalized inequalities

dual cone of a cone K:

K∗ = {y | yTx ≥ 0 for all x ∈ K}

examples

• K = Rn
+: K

∗ = Rn
+

• K = Sn
+: K

∗ = Sn
+

• K = {(x, t) | ‖x‖2 ≤ t}: K∗ = {(x, t) | ‖x‖2 ≤ t}
• K = {(x, t) | ‖x‖1 ≤ t}: K∗ = {(x, t) | ‖x‖∞ ≤ t}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

y �K∗ 0 ⇐⇒ yTx ≥ 0 for all x �K 0

Convex sets 2–21

Minimum and minimal elements via dual inequalities

minimum element w.r.t. �K

x is minimum element of S iff for all
λ ≻K∗ 0, x is the unique minimizer
of λTz over S

x

S

minimal element w.r.t. �K

• if x minimizes λTz over S for some λ ≻K∗ 0, then x is minimal

Sx1

x2

λ1

λ2

• if x is a minimal element of a convex set S, then there exists a nonzero
λ �K∗ 0 such that x minimizes λTz over S

Convex sets 2–22

optimal production frontier

• different production methods use different amounts of resources x ∈ Rn

• production set P : resource vectors x for all possible production methods

• efficient (Pareto optimal) methods correspond to resource vectors x
that are minimal w.r.t. Rn

+

example (n = 2)

x1, x2, x3 are efficient; x4, x5 are not

x4x2

x1

x5

x3
λ

P

labor

fuel

Convex sets 2–23

Convex Optimization — Boyd & Vandenberghe

3. Convex functions

• basic properties and examples

• operations that preserve convexity

• the conjugate function

• quasiconvex functions

• log-concave and log-convex functions

• convexity with respect to generalized inequalities

3–1

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1

Convex functions 3–2

Examples on R

convex:

• affine: ax+ b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax+ b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++

Convex functions 3–3

Examples on Rn and Rm×n

affine functions are convex and concave; all norms are convex

examples on Rn

• affine function f(x) = aTx+ b

• norms: ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

examples on Rm×n (m× n matrices)

• affine function

f(X) = tr(ATX) + b =

m∑

i=1

n∑

j=1

AijXij + b

• spectral (maximum singular value) norm

f(X) = ‖X‖2 = σmax(X) = (λmax(X
TX))1/2

Convex functions 3–4

Restriction of a convex function to a line

f : Rn → R is convex if and only if the function g : R → R,

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f}

is convex (in t) for any x ∈ dom f , v ∈ Rn

can check convexity of f by checking convexity of functions of one variable

example. f : Sn → R with f(X) = log detX, dom f = Sn
++

g(t) = log det(X + tV) = log detX + log det(I + tX−1/2V X−1/2)

= log detX +

n∑

i=1

log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2

g is concave in t (for any choice of X ≻ 0, V); hence f is concave

Convex functions 3–5

Extended-value extension

extended-value extension f̃ of f is

f̃(x) = f(x), x ∈ dom f, f̃(x) = ∞, x 6∈ dom f

often simplifies notation; for example, the condition

0 ≤ θ ≤ 1 =⇒ f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

(as an inequality in R ∪ {∞}), means the same as the two conditions

• dom f is convex

• for x, y ∈ dom f ,

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

Convex functions 3–6

First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =
(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator

Convex functions 3–7

Second-order conditions

f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

∇2f(x) � 0 for all x ∈ dom f

• if ∇2f(x) ≻ 0 for all x ∈ dom f , then f is strictly convex

Convex functions 3–8

Examples

quadratic function: f(x) = (1/2)xTPx+ qTx+ r (with P ∈ Sn)

∇f(x) = Px+ q, ∇2f(x) = P

convex if P � 0

least-squares objective: f(x) = ‖Ax− b‖22

∇f(x) = 2AT (Ax− b), ∇2f(x) = 2ATA

convex (for any A)

quadratic-over-linear: f(x, y) = x2/y

∇2f(x, y) =
2

y3

[
y
−x

] [
y
−x

]T
� 0

convex for y > 0 xy

f
(x

,
y
)

−2

0

2

0

1

2
0

1

2

Convex functions 3–9

log-sum-exp: f(x) = log
∑n

k=1 expxk is convex

∇2f(x) =
1

1Tz
diag(z)− 1

(1Tz)2
zzT (zk = expxk)

to show ∇2f(x) � 0, we must verify that vT∇2f(x)v ≥ 0 for all v:

vT∇2f(x)v =
(
∑

k zkv
2
k)(
∑

k zk)− (
∑

k vkzk)
2

(
∑

k zk)
2

≥ 0

since (
∑

k vkzk)
2 ≤ (

∑
k zkv

2
k)(
∑

k zk) (from Cauchy-Schwarz inequality)

geometric mean: f(x) = (
∏n

k=1 xk)
1/n on Rn

++ is concave

(similar proof as for log-sum-exp)

Convex functions 3–10

Epigraph and sublevel set

α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

epi f

f

f is convex if and only if epi f is a convex set

Convex functions 3–11

Jensen’s inequality

basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

extension: if f is convex, then

f(E z) ≤ E f(z)

for any random variable z

basic inequality is special case with discrete distribution

prob(z = x) = θ, prob(z = y) = 1− θ

Convex functions 3–12

Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show ∇2f(x) � 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

• nonnegative weighted sum
• composition with affine function
• pointwise maximum and supremum
• composition
• minimization
• perspective

Convex functions 3–13

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

examples

• log barrier for linear inequalities

f(x) = −
m∑

i=1

log(bi − aTi x), dom f = {x | aTi x < bi, i = 1, . . . ,m}

• (any) norm of affine function: f(x) = ‖Ax+ b‖

Convex functions 3–14

Pointwise maximum

if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

examples

• piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex

• sum of r largest components of x ∈ Rn:

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}

Convex functions 3–15

Pointwise supremum

if f(x, y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x, y)

is convex

examples

• support function of a set C: SC(x) = supy∈C y
Tx is convex

• distance to farthest point in a set C:

f(x) = sup
y∈C

‖x− y‖

• maximum eigenvalue of symmetric matrix: for X ∈ Sn,

λmax(X) = sup
‖y‖2=1

yTXy

Convex functions 3–16

Composition with scalar functions

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

• proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• note: monotonicity must hold for extended-value extension h̃

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive

Convex functions 3–17

Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x)

examples

• ∑m
i=1 log gi(x) is concave if gi are concave and positive

• log
∑m

i=1 exp gi(x) is convex if gi are convex

Convex functions 3–18

Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

examples

• f(x, y) = xTAx+ 2xTBy + yTCy with

[
A B
BT C

]
� 0, C ≻ 0

minimizing over y gives g(x) = infy f(x, y) = xT (A−BC−1BT)x

g is convex, hence Schur complement A−BC−1BT � 0

• distance to a set: dist(x, S) = infy∈S ‖x− y‖ is convex if S is convex

Convex functions 3–19

Perspective

the perspective of a function f : Rn → R is the function g : Rn ×R → R,

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0}

g is convex if f is convex

examples

• f(x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0

• negative logarithm f(x) = − log x is convex; hence relative entropy
g(x, t) = t log t− t log x is convex on R2

++

• if f is convex, then

g(x) = (cTx+ d)f
(
(Ax+ b)/(cTx+ d)

)

is convex on {x | cTx+ d > 0, (Ax+ b)/(cTx+ d) ∈ dom f}

Convex functions 3–20

The conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

• f∗ is convex (even if f is not)

• will be useful in chapter 5

Convex functions 3–21

examples

• negative logarithm f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{
−1− log(−y) y < 0
∞ otherwise

• strictly convex quadratic f(x) = (1/2)xTQx with Q ∈ Sn
++

f∗(y) = sup
x
(yTx− (1/2)xTQx)

=
1

2
yTQ−1y

Convex functions 3–22

Quasiconvex functions

f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α

α

β

a b c

• f is quasiconcave if −f is quasiconvex

• f is quasilinear if it is quasiconvex and quasiconcave

Convex functions 3–23

Examples

•
√

|x| is quasiconvex on R

• ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

• log x is quasilinear on R++

• f(x1, x2) = x1x2 is quasiconcave on R2
++

• linear-fractional function

f(x) =
aTx+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

is quasilinear

• distance ratio

f(x) =
‖x− a‖2
‖x− b‖2

, dom f = {x | ‖x− a‖2 ≤ ‖x− b‖2}

is quasiconvex

Convex functions 3–24

internal rate of return

• cash flow x = (x0, . . . , xn); xi is payment in period i (to us if xi > 0)

• we assume x0 < 0 and x0 + x1 + · · ·+ xn > 0

• present value of cash flow x, for interest rate r:

PV(x, r) =

n∑

i=0

(1 + r)−ixi

• internal rate of return is smallest interest rate for which PV(x, r) = 0:

IRR(x) = inf{r ≥ 0 | PV(x, r) = 0}

IRR is quasiconcave: superlevel set is intersection of open halfspaces

IRR(x) ≥ R ⇐⇒
n∑

i=0

(1 + r)−ixi > 0 for 0 ≤ r < R

Convex functions 3–25

Properties

modified Jensen inequality: for quasiconvex f

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ max{f(x), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0

x
∇f(x)

sums of quasiconvex functions are not necessarily quasiconvex

Convex functions 3–26

Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1

f is log-convex if log f is convex

• powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0

• many common probability densities are log-concave, e.g., normal:

f(x) =
1√

(2π)n detΣ
e−

1
2(x−x̄)TΣ−1(x−x̄)

• cumulative Gaussian distribution function Φ is log-concave

Φ(x) =
1√
2π

∫ x

−∞

e−u2/2 du

Convex functions 3–27

Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only if

f(x)∇2f(x) � ∇f(x)∇f(x)T

for all x ∈ dom f

• product of log-concave functions is log-concave

• sum of log-concave functions is not always log-concave

• integration: if f : Rn × Rm → R is log-concave, then

g(x) =

∫
f(x, y) dy

is log-concave (not easy to show)

Convex functions 3–28

consequences of integration property

• convolution f ∗ g of log-concave functions f , g is log-concave

(f ∗ g)(x) =
∫
f(x− y)g(y)dy

• if C ⊆ Rn convex and y is a random variable with log-concave pdf then

f(x) = prob(x+ y ∈ C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

f(x) =

∫
g(x+ y)p(y) dy, g(u) =

{
1 u ∈ C
0 u 6∈ C,

p is pdf of y

Convex functions 3–29

example: yield function

Y (x) = prob(x+ w ∈ S)

• x ∈ Rn: nominal parameter values for product

• w ∈ Rn: random variations of parameters in manufactured product

• S: set of acceptable values

if S is convex and w has a log-concave pdf, then

• Y is log-concave

• yield regions {x | Y (x) ≥ α} are convex

Convex functions 3–30

Convexity with respect to generalized inequalities

f : Rn → Rm is K-convex if dom f is convex and

f(θx+ (1− θ)y) �K θf(x) + (1− θ)f(y)

for x, y ∈ dom f , 0 ≤ θ ≤ 1

example f : Sm → Sm, f(X) = X2 is Sm
+ -convex

proof: for fixed z ∈ Rm, zTX2z = ‖Xz‖22 is convex in X, i.e.,

zT (θX + (1− θ)Y)2z ≤ θzTX2z + (1− θ)zTY 2z

for X,Y ∈ Sm, 0 ≤ θ ≤ 1

therefore (θX + (1− θ)Y)2 � θX2 + (1− θ)Y 2

Convex functions 3–31

Convex Optimization — Boyd & Vandenberghe

4. Convex optimization problems

• optimization problem in standard form

• convex optimization problems

• quasiconvex optimization

• linear optimization

• quadratic optimization

• geometric programming

• generalized inequality constraints

• semidefinite programming

• vector optimization

4–1

Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• x ∈ Rn is the optimization variable

• f0 : R
n → R is the objective or cost function

• fi : R
n → R, i = 1, . . . ,m, are the inequality constraint functions

• hi : R
n → R are the equality constraint functions

optimal value:

p⋆ = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

• p⋆ = ∞ if problem is infeasible (no x satisfies the constraints)

• p⋆ = −∞ if problem is unbounded below

Convex optimization problems 4–2

Optimal and locally optimal points

x is feasible if x ∈ dom f0 and it satisfies the constraints

a feasible x is optimal if f0(x) = p⋆; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R

examples (with n = 1, m = p = 0)

• f0(x) = 1/x, dom f0 = R++: p
⋆ = 0, no optimal point

• f0(x) = − log x, dom f0 = R++: p
⋆ = −∞

• f0(x) = x log x, dom f0 = R++: p
⋆ = −1/e, x = 1/e is optimal

• f0(x) = x3 − 3x, p⋆ = −∞, local optimum at x = 1

Convex optimization problems 4–3

Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =

m⋂

i=0

dom fi ∩
p⋂

i=1

domhi,

• we call D the domain of the problem

• the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:

minimize f0(x) = −∑k
i=1 log(bi − aTi x)

is an unconstrained problem with implicit constraints aTi x < bi

Convex optimization problems 4–4

Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• p⋆ = 0 if constraints are feasible; any feasible x is optimal

• p⋆ = ∞ if constraints are infeasible

Convex optimization problems 4–5

Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex

Convex optimization problems 4–6

example

minimize f0(x) = x21 + x22
subject to f1(x) = x1/(1 + x22) ≤ 0

h1(x) = (x1 + x2)
2 = 0

• f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition): f1 is not convex, h1
is not affine

• equivalent (but not identical) to the convex problem

minimize x21 + x22
subject to x1 ≤ 0

x1 + x2 = 0

Convex optimization problems 4–7

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with
f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R/(2‖y − x‖2)

• ‖y − x‖2 > R, so 0 < θ < 1/2
• z is a convex combination of two feasible points, hence also feasible
• ‖z − x‖2 = R/2 and

f0(z) ≤ θf0(y) + (1− θ)f0(x) < f0(x)

which contradicts our assumption that x is locally optimal

Convex optimization problems 4–8

Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x

Convex optimization problems 4–9

• unconstrained problem: x is optimal if and only if

x ∈ dom f0, ∇f0(x) = 0

• equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) +ATν = 0

• minimization over nonnegative orthant

minimize f0(x) subject to x � 0

x is optimal if and only if

x ∈ dom f0, x � 0,

{
∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0

Convex optimization problems 4–10

Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z

Convex optimization problems 4–11

• introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m

Convex optimization problems 4–12

• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

• minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)

Convex optimization problems 4–13

Quasiconvex optimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : R
n → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

(x, f0(x))

Convex optimization problems 4–14

convex representation of sublevel sets of f0

if f0 is quasiconvex, there exists a family of functions φt such that:

• φt(x) is convex in x for fixed t

• t-sublevel set of f0 is 0-sublevel set of φt, i.e.,

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0

example

f0(x) =
p(x)

q(x)

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0

can take φt(x) = p(x)− tq(x):

• for t ≥ 0, φt convex in x

• p(x)/q(x) ≤ t if and only if φt(x) ≤ 0

Convex optimization problems 4–15

quasiconvex optimization via convex feasibility problems

φt(x) ≤ 0, fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

• for fixed t, a convex feasibility problem in x

• if feasible, we can conclude that t ≥ p⋆; if infeasible, t ≤ p⋆

Bisection method for quasiconvex optimization

given l ≤ p⋆, u ≥ p⋆, tolerance ǫ > 0.

repeat

1. t := (l + u)/2.

2. Solve the convex feasibility problem (1).

3. if (1) is feasible, u := t; else l := t.

until u − l ≤ ǫ.

requires exactly ⌈log2((u− l)/ǫ)⌉ iterations (where u, l are initial values)

Convex optimization problems 4–16

Linear program (LP)

minimize cTx+ d
subject to Gx � h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c

Convex optimization problems 4–17

Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj, contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax � b, x � 0

piecewise-linear minimization

minimize maxi=1,...,m(aTi x+ bi)

equivalent to an LP

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m

Convex optimization problems 4–18

Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aTi x ≤ bi, i = 1, . . . ,m}

is center of largest inscribed ball

B = {xc + u | ‖u‖2 ≤ r}

xchebxcheb

• aTi x ≤ bi for all x ∈ B if and only if

sup{aTi (xc + u) | ‖u‖2 ≤ r} = aTi xc + r‖ai‖2 ≤ bi

• hence, xc, r can be determined by solving the LP

maximize r
subject to aTi xc + r‖ai‖2 ≤ bi, i = 1, . . . ,m

Convex optimization problems 4–19

Linear-fractional program

minimize f0(x)
subject to Gx � h

Ax = b

linear-fractional program

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) = {x | eTx+ f > 0}

• a quasiconvex optimization problem; can be solved by bisection

• also equivalent to the LP (variables y, z)

minimize cTy + dz
subject to Gy � hz

Ay = bz
eTy + fz = 1
z ≥ 0

Convex optimization problems 4–20

generalized linear-fractional program

f0(x) = max
i=1,...,r

cTi x+ di
eTi x+ fi

, dom f0(x) = {x | eTi x+fi > 0, i = 1, . . . , r}

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

maximize (over x, x+) mini=1,...,n x
+
i /xi

subject to x+ � 0, Bx+ � Ax

• x, x+ ∈ Rn: activity levels of n sectors, in current and next period

• (Ax)i, (Bx
+)i: produced, resp. consumed, amounts of good i

• x+i /xi: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Convex optimization problems 4–21

Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx � h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)

Convex optimization problems 4–22

Examples

least-squares
minimize ‖Ax− b‖22

• analytical solution x⋆ = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l � x � u

linear program with random cost

minimize c̄Tx+ γxTΣx = E cTx+ γ var(cTx)
subject to Gx � h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)

Convex optimization problems 4–23

Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x+ qT0 x+ r0
subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b

• Pi ∈ Sn
+; objective and constraints are convex quadratic

• if P1, . . . , Pm ∈ Sn
++, feasible region is intersection of m ellipsoids and

an affine set

Convex optimization problems 4–24

Second-order cone programming

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

• inequalities are called second-order cone (SOC) constraints:

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

• more general than QCQP and LP

Convex optimization problems 4–25

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

• stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

Convex optimization problems 4–26

deterministic approach via SOCP

• choose an ellipsoid as Ei:

Ei = {āi + Piu | ‖u‖2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

• robust LP

minimize cTx
subject to aTi x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āTi x+ ‖PT

i x‖2 ≤ bi, i = 1, . . . ,m

(follows from sup‖u‖2≤1(āi + Piu)
Tx = āTi x+ ‖PT

i x‖2)

Convex optimization problems 4–27

stochastic approach via SOCP

• assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

• aTi x is Gaussian r.v. with mean āTi x, variance x
TΣix; hence

prob(aTi x ≤ bi) = Φ

(
bi − āTi x

‖Σ1/2
i x‖2

)

where Φ(x) = (1/
√
2π)

∫ x

−∞
e−t2/2 dt is CDF of N (0, 1)

• robust LP

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āTi x+Φ−1(η)‖Σ1/2
i x‖2 ≤ bi, i = 1, . . . ,m

Convex optimization problems 4–28

Geometric programming

monomial function

f(x) = cxa11 x
a2
2 · · ·xann , dom f = Rn

++

with c > 0; exponent ai can be any real number

posynomial function: sum of monomials

f(x) =
K∑

k=1

ckx
a1k
1 x

a2k
2 · · ·xankn , dom f = Rn

++

geometric program (GP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

with fi posynomial, hi monomial

Convex optimization problems 4–29

Geometric program in convex form

change variables to yi = log xi, and take logarithm of cost, constraints

• monomial f(x) = cxa11 · · ·xann transforms to

log f(ey1, . . . , eyn) = aTy + b (b = log c)

• posynomial f(x) =
∑K

k=1 ckx
a1k
1 x

a2k
2 · · ·xankn transforms to

log f(ey1, . . . , eyn) = log

(
K∑

k=1

ea
T
k y+bk

)
(bk = log ck)

• geometric program transforms to convex problem

minimize log
(∑K

k=1 exp(a
T
0ky + b0k)

)

subject to log
(∑K

k=1 exp(a
T
iky + bik)

)
≤ 0, i = 1, . . . ,m

Gy + d = 0

Convex optimization problems 4–30

Design of cantilever beam

F

segment 4 segment 3 segment 2 segment 1

• N segments with unit lengths, rectangular cross-sections of size wi × hi

• given vertical force F applied at the right end

design problem

minimize total weight
subject to upper & lower bounds on wi, hi

upper bound & lower bounds on aspect ratios hi/wi

upper bound on stress in each segment
upper bound on vertical deflection at the end of the beam

variables: wi, hi for i = 1, . . . , N

Convex optimization problems 4–31

objective and constraint functions

• total weight w1h1 + · · ·+ wNhN is posynomial

• aspect ratio hi/wi and inverse aspect ratio wi/hi are monomials

• maximum stress in segment i is given by 6iF/(wih
2
i), a monomial

• the vertical deflection yi and slope vi of central axis at the right end of
segment i are defined recursively as

vi = 12(i− 1/2)
F

Ewih3i
+ vi+1

yi = 6(i− 1/3)
F

Ewih3i
+ vi+1 + yi+1

for i = N,N − 1, . . . , 1, with vN+1 = yN+1 = 0 (E is Young’s modulus)

vi and yi are posynomial functions of w, h

Convex optimization problems 4–32

formulation as a GP

minimize w1h1 + · · ·+ wNhN

subject to w−1
maxwi ≤ 1, wminw

−1
i ≤ 1, i = 1, . . . , N

h−1
maxhi ≤ 1, hminh

−1
i ≤ 1, i = 1, . . . , N

S−1
maxw

−1
i hi ≤ 1, Sminwih

−1
i ≤ 1, i = 1, . . . , N

6iFσ−1
maxw

−1
i h−2

i ≤ 1, i = 1, . . . , N

y−1
maxy1 ≤ 1

note

• we write wmin ≤ wi ≤ wmax and hmin ≤ hi ≤ hmax

wmin/wi ≤ 1, wi/wmax ≤ 1, hmin/hi ≤ 1, hi/hmax ≤ 1

• we write Smin ≤ hi/wi ≤ Smax as

Sminwi/hi ≤ 1, hi/(wiSmax) ≤ 1

Convex optimization problems 4–33

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue λpf(A)

• exists for (elementwise) positive A ∈ Rn×n

• a real, positive eigenvalue of A, equal to spectral radius maxi |λi(A)|
• determines asymptotic growth (decay) rate of Ak: Ak ∼ λkpf as k → ∞
• alternative characterization: λpf(A) = inf{λ | Av � λv for some v ≻ 0}

minimizing spectral radius of matrix of posynomials

• minimize λpf(A(x)), where the elements A(x)ij are posynomials of x

• equivalent geometric program:

minimize λ
subject to

∑n
j=1A(x)ijvj/(λvi) ≤ 1, i = 1, . . . , n

variables λ, v, x

Convex optimization problems 4–34

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
Ax = b

• f0 : R
n → R convex; fi : R

n → Rki Ki-convex w.r.t. proper cone Ki

• same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx+ g �K 0

Ax = b

extends linear programming (K = Rm
+) to nonpolyhedral cones

Convex optimization problems 4–35

Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

x1F̂1 + · · ·+ xnF̂n + Ĝ � 0, x1F̃1 + · · ·+ xnF̃n + G̃ � 0

is equivalent to single LMI

x1

[
F̂1 0

0 F̃1

]
+x2

[
F̂2 0

0 F̃2

]
+· · ·+xn

[
F̂n 0

0 F̃n

]
+

[
Ĝ 0

0 G̃

]
� 0

Convex optimization problems 4–36

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize cTx
subject to Ax � b

SDP: minimize cTx
subject to diag(Ax− b) � 0

(note different interpretation of generalized inequality �)

SOCP and equivalent SDP

SOCP: minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

SDP: minimize fTx

subject to

[
(cTi x+ di)I Aix+ bi
(Aix+ bi)

T cTi x+ di

]
� 0, i = 1, . . . ,m

Convex optimization problems 4–37

Eigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) � tI

• variables x ∈ Rn, t ∈ R

• follows from
λmax(A) ≤ t ⇐⇒ A � tI

Convex optimization problems 4–38

Matrix norm minimization

minimize ‖A(x)‖2 =
(
λmax(A(x)

TA(x))
)1/2

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Rp×q)

equivalent SDP

minimize t

subject to

[
tI A(x)

A(x)T tI

]
� 0

• variables x ∈ Rn, t ∈ R

• constraint follows from

‖A‖2 ≤ t ⇐⇒ ATA � t2I, t ≥ 0

⇐⇒
[
tI A
AT tI

]
� 0

Convex optimization problems 4–39

Vector optimization

general vector optimization problem

minimize (w.r.t. K) f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

vector objective f0 : R
n → Rq, minimized w.r.t. proper cone K ∈ Rq

convex vector optimization problem

minimize (w.r.t. K) f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 K-convex, f1, . . . , fm convex

Convex optimization problems 4–40

Optimal and Pareto optimal points

set of achievable objective values

O = {f0(x) | x feasible}

• feasible x is optimal if f0(x) is the minimum value of O
• feasible x is Pareto optimal if f0(x) is a minimal value of O

O

f0(x
⋆)

x⋆ is optimal

O

f0(x
po)

xpo is Pareto optimal

Convex optimization problems 4–41

Multicriterion optimization

vector optimization problem with K = Rq
+

f0(x) = (F1(x), . . . , Fq(x))

• q different objectives Fi; roughly speaking we want all Fi’s to be small

• feasible x⋆ is optimal if

y feasible =⇒ f0(x
⋆) � f0(y)

if there exists an optimal point, the objectives are noncompeting

• feasible xpo is Pareto optimal if

y feasible, f0(y) � f0(x
po) =⇒ f0(x

po) = f0(y)

if there are multiple Pareto optimal values, there is a trade-off between
the objectives

Convex optimization problems 4–42

Regularized least-squares

minimize (w.r.t. R2
+) (‖Ax− b‖22, ‖x‖22)

0 10 20 30 40 50
0

5

10

15

20

25

F1(x) = ‖Ax− b‖22

F
2
(x
)
=

‖x
‖2 2 O

example for A ∈ R100×10; heavy line is formed by Pareto optimal points

Convex optimization problems 4–43

Risk return trade-off in portfolio optimization

minimize (w.r.t. R2
+) (−p̄Tx, xTΣx)

subject to 1Tx = 1, x � 0

• x ∈ Rn is investment portfolio; xi is fraction invested in asset i

• p ∈ Rn is vector of relative asset price changes; modeled as a random
variable with mean p̄, covariance Σ

• p̄Tx = E r is expected return; xTΣx = var r is return variance

example

m
ea
n
re
tu
rn

standard deviation of return
0% 10% 20%

0%

5%

10%

15%

standard deviation of return

al
lo
ca
ti
on

x
x(1)

x(2)x(3)x(4)

0% 10% 20%

0

0.5

1

Convex optimization problems 4–44

Scalarization

to find Pareto optimal points: choose λ ≻K∗ 0 and solve scalar problem

minimize λTf0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

if x is optimal for scalar problem,
then it is Pareto-optimal for vector
optimization problem

O

f0(x1)

λ1

f0(x2)
λ2

f0(x3)

for convex vector optimization problems, can find (almost) all Pareto
optimal points by varying λ ≻K∗ 0

Convex optimization problems 4–45

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

λTf0(x) = λ1F1(x) + · · ·+ λqFq(x)

examples

• regularized least-squares problem of page 4–43

take λ = (1, γ) with γ > 0

minimize ‖Ax− b‖22 + γ‖x‖22

for fixed γ, a LS problem

0 5 10 15 20
0

5

10

15

20

‖Ax− b‖22

‖x
‖2 2

γ = 1

Convex optimization problems 4–46

• risk-return trade-off of page 4–44

minimize −p̄Tx+ γxTΣx
subject to 1Tx = 1, x � 0

for fixed γ > 0, a quadratic program

Convex optimization problems 4–47

Convex Optimization — Boyd & Vandenberghe

5. Duality

• Lagrange dual problem

• weak and strong duality

• geometric interpretation

• optimality conditions

• perturbation and sensitivity analysis

• examples

• generalized inequalities

5–1

Lagrangian

standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p⋆

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x, λ, ν) = f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

νihi(x)

• weighted sum of objective and constraint functions

• λi is Lagrange multiplier associated with fi(x) ≤ 0

• νi is Lagrange multiplier associated with hi(x) = 0

Duality 5–2

Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(
f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ � 0, then g(λ, ν) ≤ p⋆

proof: if x̃ is feasible and λ � 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ, ν)

Duality 5–3

Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

• Lagrangian is L(x, ν) = xTx+ νT (Ax− b)

• to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x+ATν = 0 =⇒ x = −(1/2)ATν

• plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −1

4
νTAATν − bTν

a concave function of ν

lower bound property: p⋆ ≥ −(1/4)νTAATν − bTν for all ν

Duality 5–4

Standard form LP

minimize cTx
subject to Ax = b, x � 0

dual function

• Lagrangian is

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx

= −bTν + (c+ATν − λ)Tx

• L is affine in x, hence

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−bTν ATν − λ+ c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | ATν − λ+ c = 0}, hence concave

lower bound property: p⋆ ≥ −bTν if ATν + c � 0

Duality 5–5

Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

dual function

g(ν) = inf
x
(‖x‖ − νTAx+ bTν) =

{
bTν ‖ATν‖∗ ≤ 1
−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 u
Tv is dual norm of ‖ · ‖

proof: follows from infx(‖x‖ − yTx) = 0 if ‖y‖∗ ≤ 1, −∞ otherwise

• if ‖y‖∗ ≤ 1, then ‖x‖ − yTx ≥ 0 for all x, with equality if x = 0

• if ‖y‖∗ > 1, choose x = tu where ‖u‖ ≤ 1, uTy = ‖y‖∗ > 1:

‖x‖ − yTx = t(‖u‖ − ‖y‖∗) → −∞ as t→ ∞

lower bound property: p⋆ ≥ bTν if ‖ATν‖∗ ≤ 1

Duality 5–6

Two-way partitioning

minimize xTWx
subject to x2i = 1, i = 1, . . . , n

• a nonconvex problem; feasible set contains 2n discrete points

• interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning
i, j to the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x
(xTWx+

∑

i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x− 1Tν

=

{
−1Tν W + diag(ν) � 0
−∞ otherwise

lower bound property: p⋆ ≥ −1Tν if W + diag(ν) � 0

example: ν = −λmin(W)1 gives bound p⋆ ≥ nλmin(W)

Duality 5–7

Lagrange dual and conjugate function

minimize f0(x)
subject to Ax � b, Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(
f0(x) + (ATλ+ CTν)Tx− bTλ− dTν

)

= −f∗0 (−ATλ− CTν)− bTλ− dTν

• recall definition of conjugate f∗(y) = supx∈dom f(y
Tx− f(x))

• simplifies derivation of dual if conjugate of f0 is known

example: entropy maximization

f0(x) =
n∑

i=1

xi log xi, f∗0 (y) =
n∑

i=1

eyi−1

Duality 5–8

The dual problem

Lagrange dual problem

maximize g(λ, ν)
subject to λ � 0

• finds best lower bound on p⋆, obtained from Lagrange dual function

• a convex optimization problem; optimal value denoted d⋆

• λ, ν are dual feasible if λ � 0, (λ, ν) ∈ dom g

• often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual (page 5–5)

minimize cTx
subject to Ax = b

x � 0

maximize −bTν
subject to ATν + c � 0

Duality 5–9

Weak and strong duality

weak duality: d⋆ ≤ p⋆

• always holds (for convex and nonconvex problems)

• can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: d⋆ = p⋆

• does not hold in general

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called
constraint qualifications

Duality 5–10

Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

• also guarantees that the dual optimum is attained (if p⋆ > −∞)

• can be sharpened: e.g., can replace intD with relintD (interior
relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

• there exist many other types of constraint qualifications

Duality 5–11

Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function

g(λ) = inf
x

(
(c+ATλ)Tx− bTλ

)
=

{
−bTλ ATλ+ c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ+ c = 0, λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ except when primal and dual are infeasible

Duality 5–12

Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax � b

dual function

g(λ) = inf
x

(
xTPx+ λT (Ax− b)

)
= −1

4
λTAP−1ATλ− bTλ

dual problem

maximize −(1/4)λTAP−1ATλ− bTλ
subject to λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ always

Duality 5–13

A nonconvex problem with strong duality

minimize xTAx+ 2bTx
subject to xTx ≤ 1

A 6� 0, hence nonconvex

dual function: g(λ) = infx(x
T (A+ λI)x+ 2bTx− λ)

• unbounded below if A+ λI 6� 0 or if A+ λI � 0 and b 6∈ R(A+ λI)

• minimized by x = −(A+ λI)†b otherwise: g(λ) = −bT (A+ λI)†b− λ

dual problem and equivalent SDP:

maximize −bT (A+ λI)†b− λ
subject to A+ λI � 0

b ∈ R(A+ λI)

maximize −t− λ

subject to

[
A+ λI b
bT t

]
� 0

strong duality although primal problem is not convex (not easy to show)

Duality 5–14

Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

G

p⋆

g(λ)
λu + t = g(λ)

t

u

G

p⋆

d⋆

t

u

• λu+ t = g(λ) is (non-vertical) supporting hyperplane to G
• hyperplane intersects t-axis at t = g(λ)

Duality 5–15

epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

A

p⋆

g(λ)

λu + t = g(λ)

t

u

strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, p⋆)

• for convex problem, A is convex, hence has supp. hyperplane at (0, p⋆)

• Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p⋆) must be non-vertical

Duality 5–16

Complementary slackness

assume strong duality holds, x⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x

(
f0(x) +

m∑

i=1

λ⋆i fi(x) +

p∑

i=1

ν⋆i hi(x)

)

≤ f0(x
⋆) +

m∑

i=1

λ⋆i fi(x
⋆) +

p∑

i=1

ν⋆i hi(x
⋆)

≤ f0(x
⋆)

hence, the two inequalities hold with equality

• x⋆ minimizes L(x, λ⋆, ν⋆)

• λ⋆i fi(x
⋆) = 0 for i = 1, . . . ,m (known as complementary slackness):

λ⋆i > 0 =⇒ fi(x
⋆) = 0, fi(x

⋆) < 0 =⇒ λ⋆i = 0

Duality 5–17

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

2. dual constraints: λ � 0

3. complementary slackness: λifi(x) = 0, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑

i=1

λi∇fi(x) +
p∑

i=1

νi∇hi(x) = 0

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they
must satisfy the KKT conditions

Duality 5–18

KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem

Duality 5–19

example: water-filling (assume αi > 0)

minimize −∑n
i=1 log(xi + αi)

subject to x � 0, 1Tx = 1

x is optimal iff x � 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ � 0, λixi = 0,
1

xi + αi
+ λi = ν

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

• determine ν from 1Tx =
∑n

i=1max{0, 1/ν − αi} = 1

interpretation

• n patches; level of patch i is at height αi

• flood area with unit amount of water

• resulting level is 1/ν⋆
i

1/ν⋆

xi

αi

Duality 5–20

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

maximize g(λ, ν)
subject to λ � 0

perturbed problem and its dual

min. f0(x)
s.t. fi(x) ≤ ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , p

max. g(λ, ν)− uTλ− vTν
s.t. λ � 0

• x is primal variable; u, v are parameters

• p⋆(u, v) is optimal value as a function of u, v

• we are interested in information about p⋆(u, v) that we can obtain from
the solution of the unperturbed problem and its dual

Duality 5–21

global sensitivity result

assume strong duality holds for unperturbed problem, and that λ⋆, ν⋆ are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

p⋆(u, v) ≥ g(λ⋆, ν⋆)− uTλ⋆ − vTν⋆

= p⋆(0, 0)− uTλ⋆ − vTν⋆

sensitivity interpretation

• if λ⋆i large: p⋆ increases greatly if we tighten constraint i (ui < 0)

• if λ⋆i small: p⋆ does not decrease much if we loosen constraint i (ui > 0)

• if ν⋆i large and positive: p⋆ increases greatly if we take vi < 0;
if ν⋆i large and negative: p⋆ increases greatly if we take vi > 0

• if ν⋆i small and positive: p⋆ does not decrease much if we take vi > 0;
if ν⋆i small and negative: p⋆ does not decrease much if we take vi < 0

Duality 5–22

local sensitivity: if (in addition) p⋆(u, v) is differentiable at (0, 0), then

λ⋆i = −∂p
⋆(0, 0)

∂ui
, ν⋆i = −∂p

⋆(0, 0)

∂vi

proof (for λ⋆i): from global sensitivity result,

∂p⋆(0, 0)

∂ui
= lim

tց0

p⋆(tei, 0)− p⋆(0, 0)

t
≥ −λ⋆i

∂p⋆(0, 0)

∂ui
= lim

tր0

p⋆(tei, 0)− p⋆(0, 0)

t
≤ −λ⋆i

hence, equality

p⋆(u) for a problem with one (inequality)
constraint: u

p⋆(u)

p⋆(0) − λ⋆u

u = 0

Duality 5–23

Duality and problem reformulations

• equivalent formulations of a problem can lead to very different duals

• reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice-versa

• transform objective or constraint functions

e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing

Duality 5–24

Introducing new variables and equality constraints

minimize f0(Ax+ b)

• dual function is constant: g = infxL(x) = infx f0(Ax+ b) = p⋆

• we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)
subject to Ax+ b− y = 0

maximize bTν − f∗0 (ν)
subject to ATν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y)− νTy + νTAx+ bTν)

=

{
−f∗0 (ν) + bTν ATν = 0
−∞ otherwise

Duality 5–25

norm approximation problem: minimize ‖Ax− b‖

minimize ‖y‖
subject to y = Ax− b

can look up conjugate of ‖ · ‖, or derive dual directly

g(ν) = inf
x,y

(‖y‖+ νTy − νTAx+ bTν)

=

{
bTν + infy(‖y‖+ νTy) ATν = 0
−∞ otherwise

=

{
bTν ATν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

(see page 5–4)

dual of norm approximation problem

maximize bTν
subject to ATν = 0, ‖ν‖∗ ≤ 1

Duality 5–26

Implicit constraints

LP with box constraints: primal and dual problem

minimize cTx
subject to Ax = b

−1 � x � 1

maximize −bTν − 1Tλ1 − 1Tλ2
subject to c+ATν + λ1 − λ2 = 0

λ1 � 0, λ2 � 0

reformulation with box constraints made implicit

minimize f0(x) =

{
cTx −1 � x � 1

∞ otherwise
subject to Ax = b

dual function

g(ν) = inf
−1�x�1

(cTx+ νT (Ax− b))

= −bTν − ‖ATν + c‖1

dual problem: maximize −bTν − ‖ATν + c‖1

Duality 5–27

Problems with generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

�Ki
is generalized inequality on Rki

definitions are parallel to scalar case:

• Lagrange multiplier for fi(x) �Ki
0 is vector λi ∈ Rki

• Lagrangian L : Rn × Rk1 × · · · × Rkm × Rp → R, is defined as

L(x, λ1, · · · , λm, ν) = f0(x) +

m∑

i=1

λTi fi(x) +

p∑

i=1

νihi(x)

• dual function g : Rk1 × · · · × Rkm × Rp → R, is defined as

g(λ1, . . . , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)

Duality 5–28

lower bound property: if λi �K∗
i
0, then g(λ1, . . . , λm, ν) ≤ p⋆

proof: if x̃ is feasible and λ �K∗
i
0, then

f0(x̃) ≥ f0(x̃) +

m∑

i=1

λTi fi(x̃) +

p∑

i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ1, . . . , λm, ν)

dual problem

maximize g(λ1, . . . , λm, ν)
subject to λi �K∗

i
0, i = 1, . . . ,m

• weak duality: p⋆ ≥ d⋆ always

• strong duality: p⋆ = d⋆ for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)

Duality 5–29

Semidefinite program

primal SDP (Fi, G ∈ Sk)

minimize cTx
subject to x1F1 + · · ·+ xnFn � G

• Lagrange multiplier is matrix Z ∈ Sk

• Lagrangian L(x, Z) = cTx+ tr (Z(x1F1 + · · ·+ xnFn −G))

• dual function

g(Z) = inf
x
L(x, Z) =

{
− tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n
−∞ otherwise

dual SDP

maximize − tr(GZ)
subject to Z � 0, tr(FiZ) + ci = 0, i = 1, . . . , n

p⋆ = d⋆ if primal SDP is strictly feasible (∃x with x1F1 + · · ·+ xnFn ≺ G)

Duality 5–30

Convex Optimization — Boyd & Vandenberghe

6. Approximation and fitting

• norm approximation

• least-norm problems

• regularized approximation

• robust approximation

6–1

Norm approximation

minimize ‖Ax− b‖

(A ∈ Rm×n with m ≥ n, ‖ · ‖ is a norm on Rm)

interpretations of solution x⋆ = argminx ‖Ax− b‖:

• geometric: Ax⋆ is point in R(A) closest to b

• estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x⋆

• optimal design: x are design variables (input), Ax is result (output)

x⋆ is design that best approximates desired result b

Approximation and fitting 6–2

examples

• least-squares approximation (‖ · ‖2): solution satisfies normal equations

ATAx = AT b

(x⋆ = (ATA)−1AT b if rankA = n)

• Chebyshev approximation (‖ · ‖∞): can be solved as an LP

minimize t
subject to −t1 � Ax− b � t1

• sum of absolute residuals approximation (‖ · ‖1): can be solved as an LP

minimize 1Ty
subject to −y � Ax− b � y

Approximation and fitting 6–3

Penalty function approximation

minimize φ(r1) + · · ·+ φ(rm)
subject to r = Ax− b

(A ∈ Rm×n, φ : R → R is a convex penalty function)

examples

• quadratic: φ(u) = u2

• deadzone-linear with width a:

φ(u) = max{0, |u| − a}

• log-barrier with limit a:

φ(u) =

{
−a2 log(1− (u/a)2) |u| < a
∞ otherwise

u

φ
(u

)

deadzone-linear

quadratic
log barrier

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

Approximation and fitting 6–4

example (m = 100, n = 30): histogram of residuals for penalties

φ(u) = |u|, φ(u) = u2, φ(u) = max{0, |u|−a}, φ(u) = − log(1−u2)
p
=

1
p
=

2
D
ea
d
zo
n
e

L
og

b
ar
ri
er

r
−2

−2

−2

−2

−1

−1

−1

−1

0

0

0

0

1

1

1

1

2

2

2

2
0

40

0

10

0

20

0

10

shape of penalty function has large effect on distribution of residuals

Approximation and fitting 6–5

Huber penalty function (with parameter M)

φhub(u) =

{
u2 |u| ≤M
M(2|u| −M) |u| > M

linear growth for large u makes approximation less sensitive to outliers

replacements

u

φ
h
u
b
(u

)

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

t
f
(t
)

−10 −5 0 5 10
−20

−10

0

10

20

• left: Huber penalty for M = 1

• right: affine function f(t) = α+ βt fitted to 42 points ti, yi (circles)
using quadratic (dashed) and Huber (solid) penalty

Approximation and fitting 6–6

Least-norm problems

minimize ‖x‖
subject to Ax = b

(A ∈ Rm×n with m ≤ n, ‖ · ‖ is a norm on Rn)

interpretations of solution x⋆ = argminAx=b ‖x‖:

• geometric: x⋆ is point in affine set {x | Ax = b} with minimum
distance to 0

• estimation: b = Ax are (perfect) measurements of x; x⋆ is smallest
(’most plausible’) estimate consistent with measurements

• design: x are design variables (inputs); b are required results (outputs)

x⋆ is smallest (’most efficient’) design that satisfies requirements

Approximation and fitting 6–7

examples

• least-squares solution of linear equations (‖ · ‖2):
can be solved via optimality conditions

2x+ATν = 0, Ax = b

• minimum sum of absolute values (‖ · ‖1): can be solved as an LP

minimize 1Ty
subject to −y � x � y, Ax = b

tends to produce sparse solution x⋆

extension: least-penalty problem

minimize φ(x1) + · · ·+ φ(xn)
subject to Ax = b

φ : R → R is convex penalty function

Approximation and fitting 6–8

Regularized approximation

minimize (w.r.t. R2
+) (‖Ax− b‖, ‖x‖)

A ∈ Rm×n, norms on Rm and Rn can be different

interpretation: find good approximation Ax ≈ b with small x

• estimation: linear measurement model y = Ax+ v, with prior
knowledge that ‖x‖ is small

• optimal design: small x is cheaper or more efficient, or the linear
model y = Ax is only valid for small x

• robust approximation: good approximation Ax ≈ b with small x is
less sensitive to errors in A than good approximation with large x

Approximation and fitting 6–9

Scalarized problem

minimize ‖Ax− b‖+ γ‖x‖

• solution for γ > 0 traces out optimal trade-off curve

• other common method: minimize ‖Ax− b‖2 + δ‖x‖2 with δ > 0

Tikhonov regularization

minimize ‖Ax− b‖22 + δ‖x‖22

can be solved as a least-squares problem

minimize

∥∥∥∥
[

A√
δI

]
x−

[
b
0

]∥∥∥∥
2

2

solution x⋆ = (ATA+ δI)−1AT b

Approximation and fitting 6–10

Optimal input design

linear dynamical system with impulse response h:

y(t) =

t∑

τ=0

h(τ)u(t− τ), t = 0, 1, . . . , N

input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output ydes: Jtrack =
∑N

t=0(y(t)− ydes(t))
2

2. input magnitude: Jmag =
∑N

t=0 u(t)
2

3. input variation: Jder =
∑N−1

t=0 (u(t+ 1)− u(t))2

track desired output using a small and slowly varying input signal

regularized least-squares formulation

minimize Jtrack + δJder + ηJmag

for fixed δ, η, a least-squares problem in u(0), . . . , u(N)

Approximation and fitting 6–11

example: 3 solutions on optimal trade-off surface

(top) δ = 0, small η; (middle) δ = 0, larger η; (bottom) large δ

t

u
(t
)

0 50 100 150 200
−10

−5

0

5

t

y
(t
)

0 50 100 150 200
−1

−0.5

0

0.5

1

t

u
(t
)

0 50 100 150 200
−4

−2

0

2

4

t
y
(t
)

0 50 100 150 200
−1

−0.5

0

0.5

1

t

u
(t
)

0 50 100 150 200
−4

−2

0

2

4

t

y
(t
)

0 50 100 150 200
−1

−0.5

0

0.5

1

Approximation and fitting 6–12

Signal reconstruction

minimize (w.r.t. R2
+) (‖x̂− xcor‖2, φ(x̂))

• x ∈ Rn is unknown signal

• xcor = x+ v is (known) corrupted version of x, with additive noise v

• variable x̂ (reconstructed signal) is estimate of x

• φ : Rn → R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

φquad(x̂) =
n−1∑

i=1

(x̂i+1 − x̂i)
2, φtv(x̂) =

n−1∑

i=1

|x̂i+1 − x̂i|

Approximation and fitting 6–13

quadratic smoothing example

i

x
x
c
o
r

0

0

1000

1000

2000

2000

3000

3000

4000

4000

−0.5

−0.5

0

0

0.5

0.5

i

x̂
x̂

x̂

0

0

0

1000

1000

1000

2000

2000

2000

3000

3000

3000

4000

4000

4000

−0.5

−0.5

−0.5

0

0

0

0.5

0.5

0.5

original signal x and noisy
signal xcor

three solutions on trade-off curve
‖x̂− xcor‖2 versus φquad(x̂)

Approximation and fitting 6–14

total variation reconstruction example

i

x
x
c
o
r

0

0

500

500

1000

1000

1500

1500

2000

2000

−2

−2

−1

−1

0

0

1

1

2

2

i
x̂
i

x̂
i

x̂
i

0

0

0

500

500

500

1000

1000

1000

1500

1500

1500

2000

2000

2000

−2

−2

−2

0

0

0

2

2

2

original signal x and noisy
signal xcor

three solutions on trade-off curve
‖x̂− xcor‖2 versus φquad(x̂)

quadratic smoothing smooths out noise and sharp transitions in signal

Approximation and fitting 6–15

i

x
x
c
o
r

0

0

500

500

1000

1000

1500

1500

2000

2000

−2

−2

−1

−1

0

0

1

1

2

2

i

x̂
x̂

x̂

0

0

0

500

500

500

1000

1000

1000

1500

1500

1500

2000

2000

2000

−2

−2

−2

0

0

0

2

2

2

original signal x and noisy
signal xcor

three solutions on trade-off curve
‖x̂− xcor‖2 versus φtv(x̂)

total variation smoothing preserves sharp transitions in signal

Approximation and fitting 6–16

Robust approximation

minimize ‖Ax− b‖ with uncertain A

two approaches:

• stochastic: assume A is random, minimize E ‖Ax− b‖
• worst-case: set A of possible values of A, minimize supA∈A ‖Ax− b‖
tractable only in special cases (certain norms ‖ · ‖, distributions, sets A)

example: A(u) = A0 + uA1

• xnom minimizes ‖A0x− b‖22
• xstoch minimizes E ‖A(u)x− b‖22
with u uniform on [−1, 1]

• xwc minimizes sup−1≤u≤1 ‖A(u)x− b‖22
figure shows r(u) = ‖A(u)x− b‖2

u

r
(u

)

xnom

xstoch

xwc

−2 −1 0 1 2
0

2

4

6

8

10

12

Approximation and fitting 6–17

stochastic robust LS with A = Ā+U , U random, EU = 0, EUTU = P

minimize E ‖(Ā+ U)x− b‖22

• explicit expression for objective:

E ‖Ax− b‖22 = E ‖Āx− b+ Ux‖22
= ‖Āx− b‖22 +ExTUTUx

= ‖Āx− b‖22 + xTPx

• hence, robust LS problem is equivalent to LS problem

minimize ‖Āx− b‖22 + ‖P 1/2x‖22

• for P = δI, get Tikhonov regularized problem

minimize ‖Āx− b‖22 + δ‖x‖22

Approximation and fitting 6–18

worst-case robust LS with A = {Ā+ u1A1 + · · ·+ upAp | ‖u‖2 ≤ 1}

minimize supA∈A ‖Ax− b‖22 = sup‖u‖2≤1 ‖P (x)u+ q(x)‖22

where P (x) =
[
A1x A2x · · · Apx

]
, q(x) = Āx− b

• from page 5–14, strong duality holds between the following problems

maximize ‖Pu+ q‖22
subject to ‖u‖22 ≤ 1

minimize t+ λ

subject to




I P q
PT λI 0
qT 0 t


 � 0

• hence, robust LS problem is equivalent to SDP

minimize t+ λ

subject to




I P (x) q(x)
P (x)T λI 0
q(x)T 0 t


 � 0

Approximation and fitting 6–19

example: histogram of residuals

r(u) = ‖(A0 + u1A1 + u2A2)x− b‖2

with u uniformly distributed on unit disk, for three values of x

r(u)

xls

xtik

xrls

fr
eq
u
en
cy

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

• xls minimizes ‖A0x− b‖2
• xtik minimizes ‖A0x− b‖22 + δ‖x‖22 (Tikhonov solution)

• xrls minimizes supA∈A ‖Ax− b‖22 + ‖x‖22

Approximation and fitting 6–20

Convex Optimization — Boyd & Vandenberghe

7. Statistical estimation

• maximum likelihood estimation

• optimal detector design

• experiment design

7–1

Parametric distribution estimation

• distribution estimation problem: estimate probability density p(y) of a
random variable from observed values

• parametric distribution estimation: choose from a family of densities
px(y), indexed by a parameter x

maximum likelihood estimation

maximize (over x) log px(y)

• y is observed value

• l(x) = log px(y) is called log-likelihood function

• can add constraints x ∈ C explicitly, or define px(y) = 0 for x 6∈ C

• a convex optimization problem if log px(y) is concave in x for fixed y

Statistical estimation 7–2

Linear measurements with IID noise

linear measurement model

yi = aTi x+ vi, i = 1, . . . ,m

• x ∈ Rn is vector of unknown parameters

• vi is IID measurement noise, with density p(z)

• yi is measurement: y ∈ Rm has density px(y) =
∏m

i=1 p(yi − aTi x)

maximum likelihood estimate: any solution x of

maximize l(x) =
∑m

i=1 log p(yi − aTi x)

(y is observed value)

Statistical estimation 7–3

examples

• Gaussian noise N (0, σ2): p(z) = (2πσ2)−1/2e−z2/(2σ2),

l(x) = −m
2
log(2πσ2)− 1

2σ2

m∑

i=1

(aTi x− yi)
2

ML estimate is LS solution

• Laplacian noise: p(z) = (1/(2a))e−|z|/a,

l(x) = −m log(2a)− 1

a

m∑

i=1

|aTi x− yi|

ML estimate is ℓ1-norm solution

• uniform noise on [−a, a]:

l(x) =

{
−m log(2a) |aTi x− yi| ≤ a, i = 1, . . . ,m
−∞ otherwise

ML estimate is any x with |aTi x− yi| ≤ a

Statistical estimation 7–4

Logistic regression

random variable y ∈ {0, 1} with distribution

p = prob(y = 1) =
exp(aTu+ b)

1 + exp(aTu+ b)

• a, b are parameters; u ∈ Rn are (observable) explanatory variables

• estimation problem: estimate a, b from m observations (ui, yi)

log-likelihood function (for y1 = · · · = yk = 1, yk+1 = · · · = ym = 0):

l(a, b) = log




k∏

i=1

exp(aTui + b)

1 + exp(aTui + b)

m∏

i=k+1

1

1 + exp(aTui + b)




=

k∑

i=1

(aTui + b)−
m∑

i=1

log(1 + exp(aTui + b))

concave in a, b

Statistical estimation 7–5

example (n = 1, m = 50 measurements)

u

p
r
o
b
(y

=
1
)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

• circles show 50 points (ui, yi)

• solid curve is ML estimate of p = exp(au+ b)/(1 + exp(au+ b))

Statistical estimation 7–6

(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable X ∈ {1, . . . , n}, choose between:

• hypothesis 1: X was generated by distribution p = (p1, . . . , pn)

• hypothesis 2: X was generated by distribution q = (q1, . . . , qn)

randomized detector

• a nonnegative matrix T ∈ R2×n, with 1TT = 1T

• if we observe X = k, we choose hypothesis 1 with probability t1k,
hypothesis 2 with probability t2k

• if all elements of T are 0 or 1, it is called a deterministic detector

Statistical estimation 7–7

detection probability matrix:

D =
[
Tp Tq

]
=

[
1− Pfp Pfn

Pfp 1− Pfn

]

• Pfp is probability of selecting hypothesis 2 if X is generated by
distribution 1 (false positive)

• Pfn is probability of selecting hypothesis 1 if X is generated by
distribution 2 (false negative)

multicriterion formulation of detector design

minimize (w.r.t. R2
+) (Pfp, Pfn) = ((Tp)2, (Tq)1)

subject to t1k + t2k = 1, k = 1, . . . , n
tik ≥ 0, i = 1, 2, k = 1, . . . , n

variable T ∈ R2×n

Statistical estimation 7–8

scalarization (with weight λ > 0)

minimize (Tp)2 + λ(Tq)1
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

an LP with a simple analytical solution

(t1k, t2k) =

{
(1, 0) pk ≥ λqk
(0, 1) pk < λqk

• a deterministic detector, given by a likelihood ratio test

• if pk = λqk for some k, any value 0 ≤ t1k ≤ 1, t1k = 1− t2k is optimal
(i.e., Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize max{Pfp, Pfn} = max{(Tp)2, (Tq)1}
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

an LP; solution is usually not deterministic

Statistical estimation 7–9

example

P =




0.70 0.10
0.20 0.10
0.05 0.70
0.05 0.10




Pfp

P
fn

1

2

3
4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector

Statistical estimation 7–10

Experiment design

m linear measurements yi = aTi x+ wi, i = 1, . . . ,m of unknown x ∈ Rn

• measurement errors wi are IID N (0, 1)

• ML (least-squares) estimate is

x̂ =

(
m∑

i=1

aia
T
i

)−1 m∑

i=1

yiai

• error e = x̂− x has zero mean and covariance

E = E eeT =

(
m∑

i=1

aia
T
i

)−1

confidence ellipsoids are given by {x | (x− x̂)TE−1(x− x̂) ≤ β}

experiment design: choose ai ∈ {v1, . . . , vp} (a set of possible test
vectors) to make E ‘small’

Statistical estimation 7–11

vector optimization formulation

minimize (w.r.t. Sn
+) E =

(∑p
k=1mkvkv

T
k

)−1

subject to mk ≥ 0, m1 + · · ·+mp = m
mk ∈ Z

• variables are mk (# vectors ai equal to vk)

• difficult in general, due to integer constraint

relaxed experiment design

assume m≫ p, use λk = mk/m as (continuous) real variable

minimize (w.r.t. Sn
+) E = (1/m)

(∑p
k=1 λkvkv

T
k

)−1

subject to λ � 0, 1Tλ = 1

• common scalarizations: minimize log detE, trE, λmax(E), . . .

• can add other convex constraints, e.g., bound experiment cost cTλ ≤ B

Statistical estimation 7–12

D-optimal design

minimize log det
(∑p

k=1 λkvkv
T
k

)−1

subject to λ � 0, 1Tλ = 1

interpretation: minimizes volume of confidence ellipsoids

dual problem

maximize log detW + n log n
subject to vTkWvk ≤ 1, k = 1, . . . , p

interpretation: {x | xTWx ≤ 1} is minimum volume ellipsoid centered at
origin, that includes all test vectors vk

complementary slackness: for λ, W primal and dual optimal

λk(1− vTkWvk) = 0, k = 1, . . . , p

optimal experiment uses vectors vk on boundary of ellipsoid defined by W

Statistical estimation 7–13

example (p = 20)

λ1 = 0.5

λ2 = 0.5

design uses two vectors, on boundary of ellipse defined by optimal W

Statistical estimation 7–14

derivation of dual of page 7–13

first reformulate primal problem with new variable X:

minimize log detX−1

subject to X =
∑p

k=1 λkvkv
T
k , λ � 0, 1Tλ = 1

L(X,λ, Z, z, ν) = log detX−1+tr

(
Z

(
X −

p∑

k=1

λkvkv
T
k

))
−zTλ+ν(1Tλ−1)

• minimize over X by setting gradient to zero: −X−1 + Z = 0

• minimum over λk is −∞ unless −vTk Zvk − zk + ν = 0

dual problem

maximize n+ log detZ − ν
subject to vTk Zvk ≤ ν, k = 1, . . . , p

change variable W = Z/ν, and optimize over ν to get dual of page 7–13

Statistical estimation 7–15

Convex Optimization — Boyd & Vandenberghe

8. Geometric problems

• extremal volume ellipsoids

• centering

• classification

• placement and facility location

8–1

Minimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid E s.t. C ⊆ E
• parametrize E as E = {v | ‖Av + b‖2 ≤ 1}; w.l.o.g. assume A ∈ Sn

++

• vol E is proportional to detA−1; to compute minimum volume ellipsoid,

minimize (over A, b) log detA−1

subject to supv∈C ‖Av + b‖2 ≤ 1

convex, but evaluating the constraint can be hard (for general C)

finite set C = {x1, . . . , xm}:

minimize (over A, b) log detA−1

subject to ‖Axi + b‖2 ≤ 1, i = 1, . . . ,m

also gives Löwner-John ellipsoid for polyhedron conv{x1, . . . , xm}

Geometric problems 8–2

Maximum volume inscribed ellipsoid

maximum volume ellipsoid E inside a convex set C ⊆ Rn

• parametrize E as E = {Bu+ d | ‖u‖2 ≤ 1}; w.l.o.g. assume B ∈ Sn
++

• vol E is proportional to detB; can compute E by solving

maximize log detB
subject to sup‖u‖2≤1 IC(Bu+ d) ≤ 0

(where IC(x) = 0 for x ∈ C and IC(x) = ∞ for x 6∈ C)

convex, but evaluating the constraint can be hard (for general C)

polyhedron {x | aTi x ≤ bi, i = 1, . . . ,m}:

maximize log detB
subject to ‖Bai‖2 + aTi d ≤ bi, i = 1, . . . ,m

(constraint follows from sup‖u‖2≤1 a
T
i (Bu+ d) = ‖Bai‖2 + aTi d)

Geometric problems 8–3

Efficiency of ellipsoidal approximations

C ⊆ Rn convex, bounded, with nonempty interior

• Löwner-John ellipsoid, shrunk by a factor n, lies inside C

• maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in R2)

factor n can be improved to
√
n if C is symmetric

Geometric problems 8–4

Centering

some possible definitions of ‘center’ of a convex set C:

• center of largest inscribed ball (’Chebyshev center’)

for polyhedron, can be computed via linear programming (page 4–19)

• center of maximum volume inscribed ellipsoid (page 8–3)

xchebxcheb xmve

MVE center is invariant under affine coordinate transformations

Geometric problems 8–5

Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations

fi(x) ≤ 0, i = 1, . . . ,m, Fx = g

is defined as the optimal point of

minimize −∑m
i=1 log(−fi(x))

subject to Fx = g

• more easily computed than MVE or Chebyshev center (see later)

• not just a property of the feasible set: two sets of inequalities can
describe the same set, but have different analytic centers

Geometric problems 8–6

analytic center of linear inequalities aTi x ≤ bi, i = 1, . . . ,m

xac is minimizer of

φ(x) = −
m∑

i=1

log(bi − aTi x)
xac

inner and outer ellipsoids from analytic center:

Einner ⊆ {x | aTi x ≤ bi, i = 1, . . . ,m} ⊆ Eouter

where

Einner = {x | (x− xac)
T∇2φ(xac)(x− xac) ≤ 1}

Eouter = {x | (x− xac)
T∇2φ(xac)(x− xac) ≤ m(m− 1)}

Geometric problems 8–7

Linear discrimination

separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane:

aTxi + b > 0, i = 1, . . . , N, aTyi + b < 0, i = 1, . . . ,M

homogeneous in a, b, hence equivalent to

aTxi + b ≥ 1, i = 1, . . . , N, aTyi + b ≤ −1, i = 1, . . . ,M

a set of linear inequalities in a, b

Geometric problems 8–8

Robust linear discrimination

(Euclidean) distance between hyperplanes

H1 = {z | aTz + b = 1}
H2 = {z | aTz + b = −1}

is dist(H1,H2) = 2/‖a‖2

to separate two sets of points by maximum margin,

minimize (1/2)‖a‖2
subject to aTxi + b ≥ 1, i = 1, . . . , N

aTyi + b ≤ −1, i = 1, . . . ,M
(1)

(after squaring objective) a QP in a, b

Geometric problems 8–9

Lagrange dual of maximum margin separation problem (1)

maximize 1Tλ+ 1Tµ

subject to 2
∥∥∥
∑N

i=1 λixi −
∑M

i=1 µiyi

∥∥∥
2
≤ 1

1Tλ = 1Tµ, λ � 0, µ � 0

(2)

from duality, optimal value is inverse of maximum margin of separation

interpretation

• change variables to θi = λi/1
Tλ, γi = µi/1

Tµ, t = 1/(1Tλ+ 1Tµ)

• invert objective to minimize 1/(1Tλ+ 1Tµ) = t

minimize t

subject to
∥∥∥
∑N

i=1 θixi −
∑M

i=1 γiyi

∥∥∥
2
≤ t

θ � 0, 1Tθ = 1, γ � 0, 1Tγ = 1

optimal value is distance between convex hulls

Geometric problems 8–10

Approximate linear separation of non-separable sets

minimize 1Tu+ 1Tv
subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

• an LP in a, b, u, v

• at optimum, ui = max{0, 1− aTxi − b}, vi = max{0, 1 + aTyi + b}
• can be interpreted as a heuristic for minimizing #misclassified points

Geometric problems 8–11

Support vector classifier

minimize ‖a‖2 + γ(1Tu+ 1Tv)
subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

produces point on trade-off curve between inverse of margin 2/‖a‖2 and
classification error, measured by total slack 1Tu+ 1Tv

same example as previous page,
with γ = 0.1:

Geometric problems 8–12

Nonlinear discrimination

separate two sets of points by a nonlinear function:

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . ,M

• choose a linearly parametrized family of functions

f(z) = θTF (z)

F = (F1, . . . , Fk) : R
n → Rk are basis functions

• solve a set of linear inequalities in θ:

θTF (xi) ≥ 1, i = 1, . . . , N, θTF (yi) ≤ −1, i = 1, . . . ,M

Geometric problems 8–13

quadratic discrimination: f(z) = zTPz + qTz + r

xTi Pxi + qTxi + r ≥ 1, yTi Pyi + qTyi + r ≤ −1

can add additional constraints (e.g., P � −I to separate by an ellipsoid)

polynomial discrimination: F (z) are all monomials up to a given degree

separation by ellipsoid separation by 4th degree polynomial

Geometric problems 8–14

Placement and facility location

• N points with coordinates xi ∈ R2 (or R3)

• some positions xi are given; the other xi’s are variables

• for each pair of points, a cost function fij(xi, xj)

placement problem

minimize
∑

i 6=j fij(xi, xj)

variables are positions of free points

interpretations

• points represent plants or warehouses; fij is transportation cost between
facilities i and j

• points represent cells on an IC; fij represents wirelength

Geometric problems 8–15

example: minimize
∑

(i,j)∈A h(‖xi − xj‖2), with 6 free points, 27 links

optimal placement for h(z) = z, h(z) = z2, h(z) = z4

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

histograms of connection lengths ‖xi − xj‖2

0 0.5 1 1.5 20

1

2

3

4

0 0.5 1 1.50

1

2

3

4

0 0.5 1 1.50

1

2

3

4

5

6

Geometric problems 8–16

Convex Optimization — Boyd & Vandenberghe

9. Numerical linear algebra background

• matrix structure and algorithm complexity

• solving linear equations with factored matrices

• LU, Cholesky, LDLT factorization

• block elimination and the matrix inversion lemma

• solving underdetermined equations

9–1

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with A ∈ Rn×n

• for general methods, grows as n3

• less if A is structured (banded, sparse, Toeplitz, . . .)

flop counts

• flop (floating-point operation): one addition, subtraction,
multiplication, or division of two floating-point numbers

• to estimate complexity of an algorithm: express number of flops as a
(polynomial) function of the problem dimensions, and simplify by
keeping only the leading terms

• not an accurate predictor of computation time on modern computers

• useful as a rough estimate of complexity

Numerical linear algebra background 9–2

vector-vector operations (x, y ∈ Rn)

• inner product xTy: 2n− 1 flops (or 2n if n is large)

• sum x+ y, scalar multiplication αx: n flops

matrix-vector product y = Ax with A ∈ Rm×n

• m(2n− 1) flops (or 2mn if n large)

• 2N if A is sparse with N nonzero elements

• 2p(n+m) if A is given as A = UV T , U ∈ Rm×p, V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n, B ∈ Rn×p

• mp(2n− 1) flops (or 2mnp if n large)

• less if A and/or B are sparse

• (1/2)m(m+ 1)(2n− 1) ≈ m2n if m = p and C symmetric

Numerical linear algebra background 9–3

Linear equations that are easy to solve

diagonal matrices (aij = 0 if i 6= j): n flops

x = A−1b = (b1/a11, . . . , bn/ann)

lower triangular (aij = 0 if j > i): n2 flops

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

called forward substitution

upper triangular (aij = 0 if j < i): n2 flops via backward substitution

Numerical linear algebra background 9–4

orthogonal matrices: A−1 = AT

• 2n2 flops to compute x = AT b for general A

• less with structure, e.g., if A = I − 2uuT with ‖u‖2 = 1, we can
compute x = AT b = b− 2(uT b)u in 4n flops

permutation matrices:

aij =

{
1 j = πi
0 otherwise

where π = (π1, π2, . . . , πn) is a permutation of (1, 2, . . . , n)

• interpretation: Ax = (xπ1, . . . , xπn)

• satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops

example:

A =




0 1 0
0 0 1
1 0 0


 , A−1 = AT =




0 0 1
1 0 0
0 1 0




Numerical linear algebra background 9–5

The factor-solve method for solving Ax = b

• factor A as a product of simple matrices (usually 2 or 3):

A = A1A2 · · ·Ak

(Ai diagonal, upper or lower triangular, etc)

• compute x = A−1b = A−1
k · · ·A−1

2 A−1
1 b by solving k ‘easy’ equations

A1x1 = b, A2x2 = x1, . . . , Akx = xk−1

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

Ax1 = b1, Ax2 = b2, . . . , Axm = bm

cost: one factorization plus m solves

Numerical linear algebra background 9–6

LU factorization

every nonsingular matrix A can be factored as

A = PLU

with P a permutation matrix, L lower triangular, U upper triangular

cost: (2/3)n3 flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.

1. LU factorization. Factor A as A = PLU ((2/3)n3 flops).

2. Permutation. Solve Pz1 = b (0 flops).

3. Forward substitution. Solve Lz2 = z1 (n2 flops).

4. Backward substitution. Solve Ux = z2 (n2 flops).

cost: (2/3)n3 + 2n2 ≈ (2/3)n3 for large n

Numerical linear algebra background 9–7

sparse LU factorization

A = P1LUP2

• adding permutation matrix P2 offers possibility of sparser L, U (hence,
cheaper factor and solve steps)

• P1 and P2 chosen (heuristically) to yield sparse L, U

• choice of P1 and P2 depends on sparsity pattern and values of A

• cost is usually much less than (2/3)n3; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

Numerical linear algebra background 9–8

Cholesky factorization

every positive definite A can be factored as

A = LLT

with L lower triangular

cost: (1/3)n3 flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with A ∈ Sn
++.

1. Cholesky factorization. Factor A as A = LLT ((1/3)n3 flops).

2. Forward substitution. Solve Lz1 = b (n2 flops).

3. Backward substitution. Solve LTx = z1 (n2 flops).

cost: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n

Numerical linear algebra background 9–9

sparse Cholesky factorization

A = PLLTPT

• adding permutation matrix P offers possibility of sparser L

• P chosen (heuristically) to yield sparse L

• choice of P only depends on sparsity pattern of A (unlike sparse LU)

• cost is usually much less than (1/3)n3; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

Numerical linear algebra background 9–10

LDLT factorization

every nonsingular symmetric matrix A can be factored as

A = PLDLTPT

with P a permutation matrix, L lower triangular, D block diagonal with
1× 1 or 2× 2 diagonal blocks

cost: (1/3)n3

• cost of solving symmetric sets of linear equations by LDLT factorization:
(1/3)n3 + 2n2 ≈ (1/3)n3 for large n

• for sparse A, can choose P to yield sparse L; cost ≪ (1/3)n3

Numerical linear algebra background 9–11

Equations with structured sub-blocks

[
A11 A12

A21 A22

] [
x1
x2

]
=

[
b1
b2

]
(1)

• variables x1 ∈ Rn1, x2 ∈ Rn2; blocks Aij ∈ Rni×nj

• if A11 is nonsingular, can eliminate x1: x1 = A−1
11 (b1 −A12x2);

to compute x2, solve

(A22 −A21A
−1
11 A12)x2 = b2 −A21A

−1
11 b1

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with A11 nonsingular.

1. Form A−1
11 A12 and A−1

11 b1.

2. Form S = A22 − A21A
−1
11 A12 and b̃ = b2 − A21A

−1
11 b1.

3. Determine x2 by solving Sx2 = b̃.

4. Determine x1 by solving A11x1 = b1 − A12x2.

Numerical linear algebra background 9–12

dominant terms in flop count

• step 1: f + n2s (f is cost of factoring A11; s is cost of solve step)

• step 2: 2n2
2n1 (cost dominated by product of A21 and A−1

11 A12)

• step 3: (2/3)n3
2

total: f + n2s+ 2n2
2n1 + (2/3)n3

2

examples

• general A11 (f = (2/3)n3
1, s = 2n2

1): no gain over standard method

#flops = (2/3)n3
1 + 2n2

1n2 + 2n2
2n1 + (2/3)n3

2 = (2/3)(n1 + n2)
3

• block elimination is useful for structured A11 (f ≪ n3
1)

for example, diagonal (f = 0, s = n1): #flops ≈ 2n2
2n1 + (2/3)n3

2

Numerical linear algebra background 9–13

Structured matrix plus low rank term

(A+BC)x = b

• A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n

• assume A has structure (Ax = b easy to solve)

first write as [
A B
C −I

] [
x
y

]
=

[
b
0

]

now apply block elimination: solve

(I + CA−1B)y = CA−1b,

then solve Ax = b−By

this proves the matrix inversion lemma: if A and A+BC nonsingular,

(A+BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

Numerical linear algebra background 9–14

example: A diagonal, B,C dense

• method 1: form D = A+BC, then solve Dx = b

cost: (2/3)n3 + 2pn2

• method 2 (via matrix inversion lemma): solve

(I + CA−1B)y = CA−1b, (2)

then compute x = A−1b−A−1By

total cost is dominated by (2): 2p2n+ (2/3)p3 (i.e., linear in n)

Numerical linear algebra background 9–15

Underdetermined linear equations

if A ∈ Rp×n with p < n, rankA = p,

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}

• x̂ is (any) particular solution

• columns of F ∈ Rn×(n−p) span nullspace of A

• there exist several numerical methods for computing F
(QR factorization, rectangular LU factorization, . . .)

Numerical linear algebra background 9–16

Convex Optimization — Boyd & Vandenberghe

10. Unconstrained minimization

• terminology and assumptions

• gradient descent method

• steepest descent method

• Newton’s method

• self-concordant functions

• implementation

10–1

Unconstrained minimization

minimize f(x)

• f convex, twice continuously differentiable (hence dom f open)

• we assume optimal value p⋆ = infx f(x) is attained (and finite)

unconstrained minimization methods

• produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k)) → p⋆

• can be interpreted as iterative methods for solving optimality condition

∇f(x⋆) = 0

Unconstrained minimization 10–2

Initial point and sublevel set

algorithms in this chapter require a starting point x(0) such that

• x(0) ∈ dom f

• sublevel set S = {x | f(x) ≤ f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

• equivalent to condition that epi f is closed

• true if dom f = Rn

• true if f(x) → ∞ as x→ bddom f

examples of differentiable functions with closed sublevel sets:

f(x) = log(

m∑

i=1

exp(aTi x+ bi)), f(x) = −
m∑

i=1

log(bi − aTi x)

Unconstrained minimization 10–3

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

• for x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖22

hence, S is bounded

• p⋆ > −∞, and for x ∈ S,

f(x)− p⋆ ≤ 1

2m
‖∇f(x)‖22

useful as stopping criterion (if you know m)

Unconstrained minimization 10–4

Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

• other notations: x+ = x+ t∆x, x := x+ t∆x

• ∆x is the step, or search direction; t is the step size, or step length

• from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0
(i.e., ∆x is a descent direction)

General descent method.

given a starting point x ∈ dom f .

repeat

1. Determine a descent direction ∆x.

2. Line search. Choose a step size t > 0.

3. Update. x := x + t∆x.

until stopping criterion is satisfied.

Unconstrained minimization 10–5

Line search types

exact line search: t = argmint>0 f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

• starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

• graphical interpretation: backtrack until t ≤ t0

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x

Unconstrained minimization 10–6

Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .

repeat

1. ∆x := −∇f(x).

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := x + t∆x.

until stopping criterion is satisfied.

• stopping criterion usually of the form ‖∇f(x)‖2 ≤ ǫ

• convergence result: for strongly convex f ,

f(x(k))− p⋆ ≤ ck(f(x(0))− p⋆)

c ∈ (0, 1) depends on m, x(0), line search type

• very simple, but often very slow; rarely used in practice

Unconstrained minimization 10–7

quadratic problem in R2

f(x) = (1/2)(x21 + γx22) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

• very slow if γ ≫ 1 or γ ≪ 1

• example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4

Unconstrained minimization 10–8

nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search

Unconstrained minimization 10–9

a problem in R100

f(x) = cTx−
500∑

i=1

log(bi − aTi x)

k

f
(x

(k
))

−
p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot

Unconstrained minimization 10–10

Steepest descent method

normalized steepest descent direction (at x, for norm ‖ · ‖):

∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

interpretation: for small v, f(x+ v) ≈ f(x) +∇f(x)Tv;
direction ∆xnsd is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

∆xsd = ‖∇f(x)‖∗∆xnsd

satisfies ∇f(x)T∆xsd = −‖∇f(x)‖2∗
steepest descent method

• general descent method with ∆x = ∆xsd

• convergence properties similar to gradient descent

Unconstrained minimization 10–11

examples

• Euclidean norm: ∆xsd = −∇f(x)
• quadratic norm ‖x‖P = (xTPx)1/2 (P ∈ Sn

++): ∆xsd = −P−1∇f(x)
• ℓ1-norm: ∆xsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = ‖∇f(x)‖∞

unit balls and normalized steepest descent directions for a quadratic norm
and the ℓ1-norm:

−∇f(x)

∆xnsd

−∇f(x)

∆xnsd

Unconstrained minimization 10–12

choice of norm for steepest descent

x(0)

x(1)
x(2)

x(0)

x(1)

x(2)

• steepest descent with backtracking line search for two quadratic norms

• ellipses show {x | ‖x− x(k)‖P = 1}
• equivalent interpretation of steepest descent with quadratic norm ‖ · ‖P :
gradient descent after change of variables x̄ = P 1/2x

shows choice of P has strong effect on speed of convergence

Unconstrained minimization 10–13

Newton step

∆xnt = −∇2f(x)−1∇f(x)

interpretations

• x+∆xnt minimizes second order approximation

f̂(x+ v) = f(x) +∇f(x)Tv + 1

2
vT∇2f(x)v

• x+∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

f

f̂

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

f̂ ′

(x, f ′(x))

(x + ∆xnt, f
′(x + ∆xnt))

Unconstrained minimization 10–14

• ∆xnt is steepest descent direction at x in local Hessian norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1}
arrow shows −∇f(x)

Unconstrained minimization 10–15

Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

a measure of the proximity of x to x⋆

properties

• gives an estimate of f(x)− p⋆, using quadratic approximation f̂ :

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

• equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xTnt∇2f(x)∆xnt

)1/2

• directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

• affine invariant (unlike ‖∇f(x)‖2)

Unconstrained minimization 10–16

Newton’s method

given a starting point x ∈ dom f , tolerance ǫ > 0.

repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ǫ.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x + t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)

Unconstrained minimization 10–17

Classical convergence analysis

assumptions

• f strongly convex on S with constant m

• ∇2f is Lipschitz continuous on S, with constant L > 0:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants η ∈ (0,m2/L), γ > 0 such that

• if ‖∇f(x)‖2 ≥ η, then f(x(k+1))− f(x(k)) ≤ −γ
• if ‖∇f(x)‖2 < η, then

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2

Unconstrained minimization 10–18

damped Newton phase (‖∇f(x)‖2 ≥ η)

• most iterations require backtracking steps

• function value decreases by at least γ

• if p⋆ > −∞, this phase ends after at most (f(x(0))− p⋆)/γ iterations

quadratically convergent phase (‖∇f(x)‖2 < η)

• all iterations use step size t = 1

• ‖∇f(x)‖2 converges to zero quadratically: if ‖∇f(x(k))‖2 < η, then

L

2m2
‖∇f(xl)‖2 ≤

(
L

2m2
‖∇f(xk)‖2

)2l−k

≤
(
1

2

)2l−k

, l ≥ k

Unconstrained minimization 10–19

conclusion: number of iterations until f(x)− p⋆ ≤ ǫ is bounded above by

f(x(0))− p⋆

γ
+ log2 log2(ǫ0/ǫ)

• γ, ǫ0 are constants that depend on m, L, x(0)

• second term is small (of the order of 6) and almost constant for
practical purposes

• in practice, constants m, L (hence γ, ǫ0) are usually unknown

• provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)

Unconstrained minimization 10–20

Examples

example in R2 (page 10–9)

x(0)

x(1)

k

f
(x

(k
))

−
p
⋆

0 1 2 3 4 510−15

10−10

10−5

100

105

• backtracking parameters α = 0.1, β = 0.7

• converges in only 5 steps

• quadratic local convergence

Unconstrained minimization 10–21

example in R100 (page 10–10)

k

f
(x

(k
))

−
p
⋆

exact line search

backtracking

0 2 4 6 8 10
10−15

10−10

10−5

100

105

k

st
ep

si
ze

t(
k
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

• backtracking parameters α = 0.01, β = 0.5

• backtracking line search almost as fast as exact l.s. (and much simpler)

• clearly shows two phases in algorithm

Unconstrained minimization 10–22

example in R10000 (with sparse ai)

f(x) = −
10000∑

i=1

log(1− x2i)−
100000∑

i=1

log(bi − aTi x)

k

f
(x

(k
))

−
p
⋆

0 5 10 15 20

10−5

100

105

• backtracking parameters α = 0.01, β = 0.5.

• performance similar as for small examples

Unconstrained minimization 10–23

Self-concordance

shortcomings of classical convergence analysis

• depends on unknown constants (m, L, . . .)

• bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

• does not depend on any unknown constants

• gives affine-invariant bound

• applies to special class of convex functions (‘self-concordant’ functions)

• developed to analyze polynomial-time interior-point methods for convex
optimization

Unconstrained minimization 10–24

Self-concordant functions

definition

• convex f : R → R is self-concordant if |f ′′′(x)| ≤ 2f ′′(x)3/2 for all
x ∈ dom f

• f : Rn → R is self-concordant if g(t) = f(x+ tv) is self-concordant for
all x ∈ dom f , v ∈ Rn

examples on R

• linear and quadratic functions

• negative logarithm f(x) = − log x

• negative entropy plus negative logarithm: f(x) = x log x− log x

affine invariance: if f : R → R is s.c., then f̃(y) = f(ay + b) is s.c.:

f̃ ′′′(y) = a3f ′′′(ay + b), f̃ ′′(y) = a2f ′′(ay + b)

Unconstrained minimization 10–25

Self-concordant calculus

properties

• preserved under positive scaling α ≥ 1, and sum

• preserved under composition with affine function

• if g is convex with dom g = R++ and |g′′′(x)| ≤ 3g′′(x)/x then

f(x) = log(−g(x))− log x

is self-concordant

examples: properties can be used to show that the following are s.c.

• f(x) = −∑m
i=1 log(bi − aTi x) on {x | aTi x < bi, i = 1, . . . ,m}

• f(X) = − log detX on Sn
++

• f(x) = − log(y2 − xTx) on {(x, y) | ‖x‖2 < y}

Unconstrained minimization 10–26

Convergence analysis for self-concordant functions

summary: there exist constants η ∈ (0, 1/4], γ > 0 such that

• if λ(x) > η, then
f(x(k+1))− f(x(k)) ≤ −γ

• if λ(x) ≤ η, then

2λ(x(k+1)) ≤
(
2λ(x(k))

)2

(η and γ only depend on backtracking parameters α, β)

complexity bound: number of Newton iterations bounded by

f(x(0))− p⋆

γ
+ log2 log2(1/ǫ)

for α = 0.1, β = 0.8, ǫ = 10−10, bound evaluates to 375(f(x(0))− p⋆) + 6

Unconstrained minimization 10–27

numerical example: 150 randomly generated instances of

minimize f(x) = −∑m
i=1 log(bi − aTi x)

◦: m = 100, n = 50
�: m = 1000, n = 500
♦: m = 1000, n = 50

f(x(0)) − p⋆

it
er
at
io
n
s

0 5 10 15 20 25 30 35
0

5

10

15

20

25

• number of iterations much smaller than 375(f(x(0))− p⋆) + 6

• bound of the form c(f(x(0))− p⋆) + 6 with smaller c (empirically) valid

Unconstrained minimization 10–28

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

H∆x = −g

where H = ∇2f(x), g = ∇f(x)

via Cholesky factorization

H = LLT , ∆xnt = −L−TL−1g, λ(x) = ‖L−1g‖2

• cost (1/3)n3 flops for unstructured system

• cost ≪ (1/3)n3 if H sparse, banded

Unconstrained minimization 10–29

example of dense Newton system with structure

f(x) =

n∑

i=1

ψi(xi) + ψ0(Ax+ b), H = D +ATH0A

• assume A ∈ Rp×n, dense, with p≪ n

• D diagonal with diagonal elements ψ′′
i (xi); H0 = ∇2ψ0(Ax+ b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)

method 2 (page 9–15): factor H0 = L0L
T
0 ; write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

eliminate ∆x from first equation; compute w and ∆x from

(I + LT
0AD

−1ATL0)w = −LT
0AD

−1g, D∆x = −g −ATL0w

cost: 2p2n (dominated by computation of LT
0AD

−1ATL0)

Unconstrained minimization 10–30

Convex Optimization — Boyd & Vandenberghe

11. Equality constrained minimization

• equality constrained minimization

• eliminating equality constraints

• Newton’s method with equality constraints

• infeasible start Newton method

• implementation

11–1

Equality constrained minimization

minimize f(x)
subject to Ax = b

• f convex, twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

optimality conditions: x⋆ is optimal iff there exists a ν⋆ such that

∇f(x⋆) +ATν⋆ = 0, Ax⋆ = b

Equality constrained minimization 11–2

equality constrained quadratic minimization (with P ∈ Sn
+)

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

optimality condition:

[
P AT

A 0

] [
x⋆

ν⋆

]
=

[
−q
b

]

• coefficient matrix is called KKT matrix

• KKT matrix is nonsingular if and only if

Ax = 0, x 6= 0 =⇒ xTPx > 0

• equivalent condition for nonsingularity: P +ATA ≻ 0

Equality constrained minimization 11–3

Eliminating equality constraints

represent solution of {x | Ax = b} as

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}

• x̂ is (any) particular solution

• range of F ∈ Rn×(n−p) is nullspace of A (rankF = n− p and AF = 0)

reduced or eliminated problem

minimize f(Fz + x̂)

• an unconstrained problem with variable z ∈ Rn−p

• from solution z⋆, obtain x⋆ and ν⋆ as

x⋆ = Fz⋆ + x̂, ν⋆ = −(AAT)−1A∇f(x⋆)

Equality constrained minimization 11–4

example: optimal allocation with resource constraint

minimize f1(x1) + f2(x2) + · · ·+ fn(xn)
subject to x1 + x2 + · · ·+ xn = b

eliminate xn = b− x1 − · · · − xn−1, i.e., choose

x̂ = ben, F =

[
I

−1T

]
∈ Rn×(n−1)

reduced problem:

minimize f1(x1) + · · ·+ fn−1(xn−1) + fn(b− x1 − · · · − xn−1)

(variables x1, . . . , xn−1)

Equality constrained minimization 11–5

Newton step

Newton step ∆xnt of f at feasible x is given by solution v of

[
∇2f(x) AT

A 0

] [
v
w

]
=

[
−∇f(x)

0

]

interpretations

• ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) +∇f(x)Tv + (1/2)vT∇2f(x)v
subject to A(x+ v) = b

• ∆xnt equations follow from linearizing optimality conditions

∇f(x+ v) +ATw ≈ ∇f(x) +∇2f(x)v +ATw = 0, A(x+ v) = b

Equality constrained minimization 11–6

Newton decrement

λ(x) =
(
∆xTnt∇2f(x)∆xnt

)1/2
=
(
−∇f(x)T∆xnt

)1/2

properties

• gives an estimate of f(x)− p⋆ using quadratic approximation f̂ :

f(x)− inf
Ay=b

f̂(y) =
1

2
λ(x)2

• directional derivative in Newton direction:

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

• in general, λ(x) 6=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

Equality constrained minimization 11–7

Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ǫ > 0.

repeat

1. Compute the Newton step and decrement ∆xnt, λ(x).

2. Stopping criterion. quit if λ2/2 ≤ ǫ.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x + t∆xnt.

• a feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k))

• affine invariant

Equality constrained minimization 11–8

Newton’s method and elimination

Newton’s method for reduced problem

minimize f̃(z) = f(Fz + x̂)

• variables z ∈ Rn−p

• x̂ satisfies Ax̂ = b; rankF = n− p and AF = 0

• Newton’s method for f̃ , started at z(0), generates iterates z(k)

Newton’s method with equality constraints

when started at x(0) = Fz(0) + x̂, iterates are

x(k+1) = Fz(k) + x̂

hence, don’t need separate convergence analysis

Equality constrained minimization 11–9

Newton step at infeasible points

2nd interpretation of page 11–6 extends to infeasible x (i.e., Ax 6= b)

linearizing optimality conditions at infeasible x (with x ∈ dom f) gives

[
∇2f(x) AT

A 0

] [
∆xnt
w

]
= −

[
∇f(x)
Ax− b

]
(1)

primal-dual interpretation

• write optimality condition as r(y) = 0, where

y = (x, ν), r(y) = (∇f(x) +ATν,Ax− b)

• linearizing r(y) = 0 gives r(y +∆y) ≈ r(y) +Dr(y)∆y = 0:

[
∇2f(x) AT

A 0

] [
∆xnt
∆νnt

]
= −

[
∇f(x) +ATν

Ax− b

]

same as (1) with w = ν +∆νnt

Equality constrained minimization 11–10

Infeasible start Newton method

given starting point x ∈ dom f , ν, tolerance ǫ > 0, α ∈ (0, 1/2), β ∈ (0, 1).

repeat

1. Compute primal and dual Newton steps ∆xnt, ∆νnt.

2. Backtracking line search on ‖r‖2.

t := 1.

while ‖r(x + t∆xnt, ν + t∆νnt)‖2 > (1 − αt)‖r(x, ν)‖2, t := βt.

3. Update. x := x + t∆xnt, ν := ν + t∆νnt.

until Ax = b and ‖r(x, ν)‖2 ≤ ǫ.

• not a descent method: f(x(k+1)) > f(x(k)) is possible

• directional derivative of ‖r(y)‖2 in direction ∆y = (∆xnt,∆νnt) is

d

dt
‖r(y + t∆y)‖2

∣∣∣∣
t=0

= −‖r(y)‖2

Equality constrained minimization 11–11

Solving KKT systems

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

solution methods

• LDLT factorization

• elimination (if H nonsingular)

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

• elimination with singular H: write as

[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g +ATQh

h

]

with Q � 0 for which H +ATQA ≻ 0, and apply elimination

Equality constrained minimization 11–12

Equality constrained analytic centering

primal problem: minimize −∑n
i=1 log xi subject to Ax = b

dual problem: maximize −bTν +∑n
i=1 log(A

Tν)i + n

three methods for an example with A ∈ R100×500, different starting points

1. Newton method with equality constraints (requires x(0) ≻ 0, Ax(0) = b)

k

f
(x

(k
))

−
p
⋆

0 5 10 15 2010−10

10−5

100

105

Equality constrained minimization 11–13

2. Newton method applied to dual problem (requires ATν(0) ≻ 0)

k

p
⋆
−

g
(ν

(k
))

0 2 4 6 8 1010−10

10−5

100

105

3. infeasible start Newton method (requires x(0) ≻ 0)

k

‖
r
(x

(k
) ,
ν
(k

))
‖
2

0 5 10 15 20 2510−15

10−10

10−5

100

105

1010

Equality constrained minimization 11–14

complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

[
diag(x)−2 AT

A 0

] [
∆x
w

]
=

[
diag(x)−11

0

]

reduces to solving Adiag(x)2ATw = b

2. solve Newton system Adiag(ATν)−2AT∆ν = −b+Adiag(ATν)−11

3. use block elimination to solve KKT system

[
diag(x)−2 AT

A 0

] [
∆x
∆ν

]
=

[
diag(x)−11−ATν

b−Ax

]

reduces to solving Adiag(x)2ATw = 2Ax− b

conclusion: in each case, solve ADATw = h with D positive diagonal

Equality constrained minimization 11–15

Network flow optimization

minimize
∑n

i=1 φi(xi)
subject to Ax = b

• directed graph with n arcs, p+ 1 nodes

• xi: flow through arc i; φi: cost flow function for arc i (with φ′′i (x) > 0)

• node-incidence matrix Ã ∈ R(p+1)×n defined as

Ãij =





1 arc j leaves node i
−1 arc j enters node i
0 otherwise

• reduced node-incidence matrix A ∈ Rp×n is Ã with last row removed

• b ∈ Rp is (reduced) source vector

• rankA = p if graph is connected

Equality constrained minimization 11–16

KKT system

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

• H = diag(φ′′1(x1), . . . , φ
′′
n(xn)), positive diagonal

• solve via elimination:

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

sparsity pattern of coefficient matrix is given by graph connectivity

(AH−1AT)ij 6= 0 ⇐⇒ (AAT)ij 6= 0

⇐⇒ nodes i and j are connected by an arc

Equality constrained minimization 11–17

Analytic center of linear matrix inequality

minimize − log detX
subject to tr(AiX) = bi, i = 1, . . . , p

variable X ∈ Sn

optimality conditions

X⋆ ≻ 0, −(X⋆)−1 +

p∑

j=1

ν⋆jAi = 0, tr(AiX
⋆) = bi, i = 1, . . . , p

Newton equation at feasible X:

X−1∆XX−1 +

p∑

j=1

wjAi = X−1, tr(Ai∆X) = 0, i = 1, . . . , p

• follows from linear approximation (X +∆X)−1 ≈ X−1 −X−1∆XX−1

• n(n+ 1)/2 + p variables ∆X, w

Equality constrained minimization 11–18

solution by block elimination

• eliminate ∆X from first equation: ∆X = X −∑p
j=1wjXAjX

• substitute ∆X in second equation

p∑

j=1

tr(AiXAjX)wj = bi, i = 1, . . . , p (2)

a dense positive definite set of linear equations with variable w ∈ Rp

flop count (dominant terms) using Cholesky factorization X = LLT :

• form p products LTAjL: (3/2)pn
3

• form p(p+ 1)/2 inner products tr((LTAiL)(L
TAjL)): (1/2)p

2n2

• solve (2) via Cholesky factorization: (1/3)p3

Equality constrained minimization 11–19

Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

• inequality constrained minimization

• logarithmic barrier function and central path

• barrier method

• feasibility and phase I methods

• complexity analysis via self-concordance

• generalized inequalities

12–1

Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

• fi convex, twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained

Interior-point methods 12–2

Examples

• LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi
subject to Fx � g

Ax = b

with dom f0 = Rn
++

• differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or ℓ∞-norm approximation via LP

• SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)

Interior-point methods 12–3

Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x)− (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a
smooth approximation of I−

• approximation improves as t→ ∞
u

−3 −2 −1 0 1
−5

0

5

10

Interior-point methods 12–4

logarithmic barrier function

φ(x) = −
m∑

i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

• convex (follows from composition rules)

• twice continuously differentiable, with derivatives

∇φ(x) =

m∑

i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑

i=1

1

−fi(x)
∇2fi(x)

Interior-point methods 12–5

Central path

• for t > 0, define x⋆(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x⋆(t) exists and is unique for each t > 0)

• central path is {x⋆(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx⋆(t) is tangent to
level curve of φ through x⋆(t)

c

x⋆ x⋆(10)

Interior-point methods 12–6

Dual points on central path

x = x⋆(t) if there exists a w such that

t∇f0(x) +
m∑

i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

• therefore, x⋆(t) minimizes the Lagrangian

L(x, λ⋆(t), ν⋆(t)) = f0(x) +

m∑

i=1

λ⋆i (t)fi(x) + ν⋆(t)T (Ax− b)

where we define λ⋆i (t) = 1/(−tfi(x⋆(t)) and ν⋆(t) = w/t

• this confirms the intuitive idea that f0(x
⋆(t)) → p⋆ if t→ ∞:

p⋆ ≥ g(λ⋆(t), ν⋆(t))

= L(x⋆(t), λ⋆(t), ν⋆(t))

= f0(x
⋆(t))−m/t

Interior-point methods 12–7

Interpretation via KKT conditions

x = x⋆(t), λ = λ⋆(t), ν = ν⋆(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑

i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0

Interior-point methods 12–8

Force field interpretation

centering problem (for problem with no equality constraints)

minimize tf0(x)−
∑m

i=1 log(−fi(x))

force field interpretation

• tf0(x) is potential of force field F0(x) = −t∇f0(x)
• − log(−fi(x)) is potential of force field Fi(x) = (1/fi(x))∇fi(x)

the forces balance at x⋆(t):

F0(x
⋆(t)) +

m∑

i=1

Fi(x
⋆(t)) = 0

Interior-point methods 12–9

example
minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

• objective force field is constant: F0(x) = −tc
• constraint force field decays as inverse distance to constraint hyperplane:

Fi(x) =
−ai

bi − aTi x
, ‖Fi(x)‖2 =

1

dist(x,Hi)

where Hi = {x | aTi x = bi}

−c

−3c
t = 1 t = 3

Interior-point methods 12–10

Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.

2. Update. x := x⋆(t).

3. Stopping criterion. quit if m/t < ǫ.

4. Increase t. t := µt.

• terminates with f0(x)− p⋆ ≤ ǫ (stopping criterion follows from
f0(x

⋆(t))− p⋆ ≤ m/t)

• centering usually done using Newton’s method, starting at current x

• choice of µ involves a trade-off: large µ means fewer outer iterations,
more inner (Newton) iterations; typical values: µ = 10–20

• several heuristics for choice of t(0)

Interior-point methods 12–11

Convergence analysis

number of outer (centering) iterations: exactly

⌈
log(m/(ǫt(0)))

logµ

⌉

plus the initial centering step (to compute x⋆(t(0)))

centering problem

minimize tf0(x) + φ(x)

see convergence analysis of Newton’s method

• tf0 + φ must have closed sublevel sets for t ≥ t(0)

• classical analysis requires strong convexity, Lipschitz condition

• analysis via self-concordance requires self-concordance of tf0 + φ

Interior-point methods 12–12

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations

d
u
al
it
y
ga
p

µ = 2µ = 50 µ = 150

0 20 40 60 80

10−6

10−4

10−2

100

102

µ

N
ew

to
n
it
er
at
io
n
s

0 40 80 120 160 200
0

20

40

60

80

100

120

140

• starts with x on central path (t(0) = 1, duality gap 100)

• terminates when t = 108 (gap 10−6)

• centering uses Newton’s method with backtracking

• total number of Newton iterations not very sensitive for µ ≥ 10

Interior-point methods 12–13

geometric program (m = 100 inequalities and n = 50 variables)

minimize log
(∑5

k=1 exp(a
T
0kx+ b0k)

)

subject to log
(∑5

k=1 exp(a
T
ikx+ bik)

)
≤ 0, i = 1, . . . ,m

Newton iterations

d
u
al
it
y
ga
p

µ = 2µ = 50µ = 150

0 20 40 60 80 100 120

10−6

10−4

10−2

100

102

Interior-point methods 12–14

family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances

m

N
ew

to
n
it
er
at
io
n
s

101 102 103
15

20

25

30

35

number of iterations grows very slowly as m ranges over a 100 : 1 ratio

Interior-point methods 12–15

Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

• if optimal value p̄⋆ of (3) is positive, then problem (2) is infeasible

• if p̄⋆ = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄⋆ = 0 and not attained, then problem (2) is infeasible

Interior-point methods 12–16

sum of infeasibilities phase I method

minimize 1Ts
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m

Ax = b

for infeasible problems, produces a solution that satisfies many more
inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax

n
u
m
b
er

−1 −0.5 0 0.5 1 1.5
0

20

40

60

n
u
m
b
er

−1 −0.5 0 0.5 1 1.5
0

20

40

60

bi − aT
i xsum

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 inequalities

Interior-point methods 12–17

example: family of linear inequalities Ax � b+ γ∆b

• data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

• use basic phase I, terminate when s < 0 or dual objective is positive

γ

N
ew

to
n
it
er
at
io
n
s

Infeasible Feasible

−1 −0.5 0 0.5 1
0

20

40

60

80

100

γ

N
ew

to
n
it
er
at
io
n
s

−100 −10−2 −10−4 −10−6
0

20

40

60

80

100

γ

N
ew

to
n
it
er
at
io
n
s

10−6 10−4 10−2 100
0

20

40

60

80

100

number of iterations roughly proportional to log(1/|γ|)

Interior-point methods 12–18

Complexity analysis via self-concordance

same assumptions as on page 12–2, plus:

• sublevel sets (of f0, on the feasible set) are bounded

• tf0 + φ is self-concordant with closed sublevel sets

second condition

• holds for LP, QP, QCQP

• may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi
subject to Fx � g

−→ minimize
∑n

i=1 xi log xi
subject to Fx � g, x � 0

• needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply

Interior-point methods 12–19

Newton iterations per centering step: from self-concordance theory

#Newton iterations ≤ µtf0(x) + φ(x)− µtf0(x
+)− φ(x+)

γ
+ c

• bound on effort of computing x+ = x⋆(µt) starting at x = x⋆(t)

• γ, c are constants (depend only on Newton algorithm parameters)

• from duality (with λ = λ⋆(t), ν = ν⋆(t)):

µtf0(x) + φ(x)− µtf0(x
+)− φ(x+)

= µtf0(x)− µtf0(x
+) +

m∑

i=1

log(−µtλifi(x+))−m logµ

≤ µtf0(x)− µtf0(x
+)− µt

m∑

i=1

λifi(x
+)−m−m logµ

≤ µtf0(x)− µtg(λ, ν)−m−m log µ

= m(µ− 1− logµ)

Interior-point methods 12–20

total number of Newton iterations (excluding first centering step)

#Newton iterations ≤ N =

⌈
log(m/(t(0)ǫ))

logµ

⌉(
m(µ− 1− logµ)

γ
+ c

)

µ

N

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

figure shows N for typical values of γ, c,

m = 100,
m

t(0)ǫ
= 105

• confirms trade-off in choice of µ

• in practice, #iterations is in the tens; not very sensitive for µ ≥ 10

Interior-point methods 12–21

polynomial-time complexity of barrier method

• for µ = 1 + 1/
√
m:

N = O

(√
m log

(
m/t(0)

ǫ

))

• number of Newton iterations for fixed gap reduction is O(
√
m)

• multiply with cost of one Newton iteration (a polynomial function of
problem dimensions), to get bound on number of flops

this choice of µ optimizes worst-case complexity; in practice we choose µ
fixed (µ = 10, . . . , 20)

Interior-point methods 12–22

Generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
Ax = b

• f0 convex, fi : R
n → Rki, i = 1, . . . ,m, convex with respect to proper

cones Ki ∈ Rki

• fi twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible; hence strong duality holds and
dual optimum is attained

examples of greatest interest: SOCP, SDP

Interior-point methods 12–23

Generalized logarithm for proper cone

ψ : Rq → R is generalized logarithm for proper cone K ⊆ Rq if:

• domψ = intK and ∇2ψ(y) ≺ 0 for y ≻K 0

• ψ(sy) = ψ(y) + θ log s for y ≻K 0, s > 0 (θ is the degree of ψ)

examples

• nonnegative orthant K = Rn
+: ψ(y) =

∑n
i=1 log yi, with degree θ = n

• positive semidefinite cone K = Sn
+:

ψ(Y) = log detY (θ = n)

• second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)
1/2 ≤ yn+1}:

ψ(y) = log(y2n+1 − y21 − · · · − y2n) (θ = 2)

Interior-point methods 12–24

properties (without proof): for y ≻K 0,

∇ψ(y) �K∗ 0, yT∇ψ(y) = θ

• nonnegative orthant Rn
+: ψ(y) =

∑n
i=1 log yi

∇ψ(y) = (1/y1, . . . , 1/yn), yT∇ψ(y) = n

• positive semidefinite cone Sn
+: ψ(Y) = log detY

∇ψ(Y) = Y −1, tr(Y∇ψ(Y)) = n

• second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)
1/2 ≤ yn+1}:

∇ψ(y) = 2

y2n+1 − y21 − · · · − y2n




−y1
...

−yn
yn+1


 , yT∇ψ(y) = 2

Interior-point methods 12–25

Logarithmic barrier and central path

logarithmic barrier for f1(x) �K1 0, . . . , fm(x) �Km 0:

φ(x) = −
m∑

i=1

ψi(−fi(x)), domφ = {x | fi(x) ≺Ki
0, i = 1, . . . ,m}

• ψi is generalized logarithm for Ki, with degree θi

• φ is convex, twice continuously differentiable

central path: {x⋆(t) | t > 0} where x⋆(t) solves

minimize tf0(x) + φ(x)
subject to Ax = b

Interior-point methods 12–26

Dual points on central path

x = x⋆(t) if there exists w ∈ Rp,

t∇f0(x) +
m∑

i=1

Dfi(x)
T∇ψi(−fi(x)) +ATw = 0

(Dfi(x) ∈ Rki×n is derivative matrix of fi)

• therefore, x⋆(t) minimizes Lagrangian L(x, λ⋆(t), ν⋆(t)), where

λ⋆i (t) =
1

t
∇ψi(−fi(x⋆(t))), ν⋆(t) =

w

t

• from properties of ψi: λ
⋆
i (t) ≻K∗

i
0, with duality gap

f0(x
⋆(t))− g(λ⋆(t), ν⋆(t)) = (1/t)

m∑

i=1

θi

Interior-point methods 12–27

example: semidefinite programming (with Fi ∈ Sp)

minimize cTx
subject to F (x) =

∑n
i=1 xiFi +G � 0

• logarithmic barrier: φ(x) = log det(−F (x)−1)

• central path: x⋆(t) minimizes tcTx− log det(−F (x)); hence

tci − tr(FiF (x
⋆(t))−1) = 0, i = 1, . . . , n

• dual point on central path: Z⋆(t) = −(1/t)F (x⋆(t))−1 is feasible for

maximize tr(GZ)
subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

• duality gap on central path: cTx⋆(t)− tr(GZ⋆(t)) = p/t

Interior-point methods 12–28

Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.

2. Update. x := x⋆(t).

3. Stopping criterion. quit if (
∑

i θi)/t < ǫ.

4. Increase t. t := µt.

• only difference is duality gap m/t on central path is replaced by
∑

i θi/t

• number of outer iterations:

⌈
log((

∑
i θi)/(ǫt

(0)))

logµ

⌉

• complexity analysis via self-concordance applies to SDP, SOCP

Interior-point methods 12–29

Examples

second-order cone program (50 variables, 50 SOC constraints in R6)

Newton iterations

d
u
al
it
y
ga
p

µ = 2µ = 50 µ = 200

0 20 40 60 80

10−6

10−4

10−2

100

102

µ

N
ew

to
n
it
er
at
io
n
s

20 60 100 140 180
0

40

80

120

semidefinite program (100 variables, LMI constraint in S100)

Newton iterations

d
u
al
it
y
ga
p

µ = 2µ = 50µ = 150

0 20 40 60 80 100

10−6

10−4

10−2

100

102

µ

N
ew

to
n
it
er
at
io
n
s

0 20 40 60 80 100 120

20

60

100

140

Interior-point methods 12–30

family of SDPs (A ∈ Sn, x ∈ Rn)

minimize 1Tx
subject to A+ diag(x) � 0

n = 10, . . . , 1000, for each n solve 100 randomly generated instances

n

N
ew

to
n
it
er
at
io
n
s

101 102 103
15

20

25

30

35

Interior-point methods 12–31

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

• update primal and dual variables at each iteration; no distinction
between inner and outer iterations

• often exhibit superlinear asymptotic convergence

• search directions can be interpreted as Newton directions for modified
KKT conditions

• can start at infeasible points

• cost per iteration same as barrier method

Interior-point methods 12–32

Convex Optimization — Boyd & Vandenberghe

13. Conclusions

• main ideas of the course

• importance of modeling in optimization

13–1

Modeling

mathematical optimization

• problems in engineering design, data analysis and statistics, economics,
management, . . . , can often be expressed as mathematical
optimization problems

• techniques exist to take into account multiple objectives or uncertainty
in the data

tractability

• roughly speaking, tractability in optimization requires convexity

• algorithms for nonconvex optimization find local (suboptimal) solutions,
or are very expensive

• surprisingly many applications can be formulated as convex problems

Conclusions 13–2

Theoretical consequences of convexity

• local optima are global

• extensive duality theory

– systematic way of deriving lower bounds on optimal value
– necessary and sufficient optimality conditions
– certificates of infeasibility
– sensitivity analysis

• solution methods with polynomial worst-case complexity theory
(with self-concordance)

Conclusions 13–3

Practical consequences of convexity

(most) convex problems can be solved globally and efficiently

• interior-point methods require 20 – 80 steps in practice

• basic algorithms (e.g., Newton, barrier method, . . .) are easy to
implement and work well for small and medium size problems (larger
problems if structure is exploited)

• more and more high-quality implementations of advanced algorithms
and modeling tools are becoming available

• high level modeling tools like cvx ease modeling and problem
specification

Conclusions 13–4

How to use convex optimization

to use convex optimization in some applied context

• use rapid prototyping, approximate modeling

– start with simple models, small problem instances, inefficient solution
methods

– if you don’t like the results, no need to expend further effort on more
accurate models or efficient algorithms

• work out, simplify, and interpret optimality conditions and dual

• even if the problem is quite nonconvex, you can use convex optimization

– in subproblems, e.g., to find search direction
– by repeatedly forming and solving a convex approximation at the

current point

Conclusions 13–5

Further topics

some topics we didn’t cover:

• methods for very large scale problems

• subgradient calculus, convex analysis

• localization, subgradient, and related methods

• distributed convex optimization

• applications that build on or use convex optimization

Conclusions 13–6

What’s next?

• EE364B — convex optimization II

• MATH301 — advanced topics in convex optimization

• MS&E314 — linear and conic optimization

• EE464 — semidefinite optimization and algebraic techniques

Conclusions 13–7

