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Abstract

Uncertainty models are an essential ingredient in ro-
bust control design. In addition, because of the tradeoff
between uncertainty and performance, the uncertainty
model should be as “tight” as possible. Given a set
of multivariable frequency response measurements, we
show that the computation of multivariable nonpara-
metric uncertainty models which are consistent with
the data (i.e. not invalidated), reduces to a linear ma-
trix inequality (LMI) feasibility problem. Our method
simultaneously searches for the responses of both the
nominal system and the uncertainty weights that give
an optimal uncertainty model. We then show that
computing the optimal or least conservative model for
the data can be done using semidefinite programming
(SDP). Noise and fitting errors are explicitly factored
into the computation using a bounded set approach.
A state space uncertainty model can then be obtained
from the optimal nonparametric model using frequency
domain subspace identification techniques. The pro-
posed technique is demonstrated on a generic MIMO
example, where it outperforms the average-based ap-
proach by almost a factor of two (5dB), in the frequency
range with largest uncertainty.

Notation: For a matrix A € C™*", ||A||2 and 6(A)
denote the maximum singular value. We use [a,s] to
denote a matrix whose elements are given by a,s, 7 =
1,...,m, s=1,...,n. The elementwise or Hadamard
product of two matrices A, B € C™*" Ao B =
[ars - brs]. For simplicity of notation, when referring
to the value of a transfer function at the frequency f;,
we will write G(f;) rather than G(j27 f;) or G(e??™/3).
If S is a subset of C™*", and A, B, C are matrices
of appropriate dimensions, then A + BSC' denotes the
set {A+ BXC | X € §}. We will use I to denote
the identity matrix, and B = {X € C™*" | || X]|| < 1}
to denote a unit ball of matrices; the dimensions of
I and B will be clear from the context. For matrices
A1, ..., A, we use diag(A;, ..., A,) to denote the as-
sociated block diagonal matrix.
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1 Introduction

1.1 Basic Problem Statement:
This paper is concerned with the following problem,
which arises frequently in real applications:

Given a set of (possibly noisy, multivari-
able) frequency response measurements,
compute a “tight” uncertainty model that
is consistent with this data (i.e. not inval-
idated [19, 23]), which could be used for
robust control design.

For example, these frequency response measurements
could be several independent measurements of the fre-
quency response matrix of a single multivariable plant
G, taken at different operating conditions, or they
could be frequency responses of several different plants
G', taken for a multi-model control design.

We denote the data by {G*(f;)}, where each measure-
ment G'(f;) is a complex matrix, i = 1,..., M is the
index of the entire frequency response measurement,
and j = 1,..., N is the frequency index.

Our goal is to compute transfer matrices Gg, Wi and
Wy for the matriz additive uncertainty model [25, 24,
28]:

M(Go, Wi, Wa)(f) = (GUIHIADARLDIIALR < L

1
where G is the nominal m x n transfer matrix, whose
component transfer functions are denoted by Go,.s, 7 =
1,...,m, s = 1,...,n, and Wy, W5 are appropriate
frequency weights. The uncertainty radius of model
(1), at each frequency, is given by

(1>

radius M(Go, W1, W2)(f;)

e WA (£ AW2(f5)ll2, = W (FDll2lW2(f5)2-
(2)

Thus the model (1) describes an uncertainty “tube”
around the nominal model G, whose structure is given
by the frequency weights W;, and whose radius is
ag(Wi(f))a(Wa(f)). Because of the tradeoff between
uncertainty and performance, an additional goal is that
the model we compute should be as “tight” as possi-
ble, in the sense that its radius is minimized at each
frequency f;.



1.2 Nonparametric Computation

The focus in this paper is on the computation of opti-
mal nonparametric uncertainty models from the given
(possibly noisy) data. This means that we will compute
the complex frequency responses of Gy, W7 and W5 at
each frequency f;. Our approach is based on techniques
from robust convex optimization [5, 3, 9, 10].

Once the nonparametric model has been computed,
one can either design optimal controllers directly from
the nonparametric model, e.g. using the technique de-
scribed in [27]; or one can use powerful subspace fre-
quency domain identification methods [13, 17] to obtain
a parametric state space model, which can then be used
for standard state space control design.

We will compute MIMO matrix additive uncertainty
models that are quite general, with no restrictions on
the structure of Gy, W7 and W5. This generality allows
us to compute matrix additive models that can capture
certain LFT uncertainties as well.

Other approaches to uncertainty model synthesis are
described in the literature, see for example [1, 6, 12, 25,
18, 26, 15]. Some of these techniques attempt to com-
pute the parametric state space models of the nominal
model Gy and frequency weights W7 and Ws directly
from the data. However, these methods are either time
domain based, or they are not able compute Gy, Wi
and W5 in such generality.

1.3 Connection to Other Uncertainty Models

LFT uncertainty models of the form
(Golf) + Wi(H)A(I — W) Wa(f)) | [A]> < 1}
may appear more general than the matrix additive
counterparts. However, it turns out that in the
frequency domain approach adopted here, matrix
additive uncertainty models are general enough to
include uncertainty sets generated by LFTs with
unstructured perturbations, as shown in [7, Lem.
10.2.4, p.347]. However, this equivalence is true only
if we allow Gg, Wi and W5 in the matrix additive
model to be arbitrary matrices with no constraints
imposed on their structure, eg: symmetry, diagonal
form, realness, etc. Hence, in this paper, we allow Gy,
W1 and W5 to be general arbitrary complex matrices.

Elementwise (or Hadamard) additive models [§]
{Go(f) + Wo(f) o A ]|A,s] < 1}, which specify, at
each frequency f, a disk of radius |Wy,s(f)| around
each component Go,s(f) of the nominal transfer ma-
trix Go(f), can be easily handled in our framework,
by treating each component as a 1 x l-matrix addi-
tive uncertainty model. This approach produces m x n
frequency weights, and when used for robust control,
would require solving an (mn + 1)-block robust per-
formance p-synthesis problem. In contrast, using the
matrix additive uncertainty model could produce upto

m? + n? weights, but has the benefit of leading to
a two-block robust performance p-synthesis problem
[8, 25, 24].

2 Bounded Set Modelling of Errors

2.1 Prior Assumptions on Data

We make the following standard prior assumptions on
the plant, the uncertainty and the data: The true un-
derlying systems {G?. .}, which generated the data
{G'(f;)}, are stable linear time invariant (LTI) sys-
tems. Each data point G'(f;) is corrupted by a
bounded additive noise, which is known to lie in a given
set. The uncertainty is LTI and stable, and can be cap-
tured by an additive uncertainty model.

In the literature, it is common to also assume that the
impulse responses of each of the underlying true sys-
tems {Gi .} is bounded by some known exponentially
decaying sequence [12, 2]. This ensures that the true
underlying frequency response has a bounded deriva-
tive between the data points, and allows the bounding
of the error in the frequencies between the data points.
However, we will not use this explicitly in our develop-
ment, since our objective is strictly to produce a model
which is consistent with (i.e, not invalidated by) the
given data.

2.2 Modeling Noise and Fitting Error

In practice, there will always be noise on the data. Fur-
thermore, if the data is to be fitted with a state space
model, this fit will not be achieved exactly. These
effects should be considered by any serious method
for computing uncertainty models. We use the set
bounded noise approach to deal with these issues
1,9, 10, 3, 14, 18].

We assume that each data point G'(f;) is corrupted
by a bounded additive noise, which is known to lie in
a set Ui (f;)BUL(f;), where B is the unit ball of ma-
trices of appropriate dimension, and (U{(f;),Us(f;))
are known complex matrices that specify the magni-
tude, and possibly directional information about the
measurement noise. In other words, we assume that
the true value of each frequency response measurement
Girue(fj) satisfies

wue(fi) € G+ UL)BUS(f),  Viyj. (3)

We assume that (Ui (f;),Us(f;)) are given at each fre-
quency, for example from the experimental setup, or
the instrument which takes the data. Often, the es-
timates of the noise matrices are given in terms of
means and variances, see [16, 2]. As a simple ex-
ample, suppose that the noise were known to have a
variance of o2I at all frequencies. Then one could set



Ui(f;) = Ua(fj) = V3o, for all f;. In any case, the
estimation of these matrices is not the subject of this
paper.

We will also add in margins for fitting error in our com-
putation. As with the noise modeling, we will assume
that matrices (V{(f;),V2(f;)) are given, which reflect
the expected size and direction of bounds on the fitting
error.

Thus our technique will “inflate” each point data point
G*(f;) by an amount U{(f;)BUL(f;) to account for the
noise, and an amount V{(f;)BV4(f;) to factor in some
tolerance to fitting errors, and require that the non-
parametric uncertainty model contain these inflated
points. This is illustrated in fig. 1.
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Figure 1: Robust covering of data. Here A, N and E are
martices with unit norm.

Definition 1 An uncertainty model M(Gq, W1, W5)
robustly covers the data {G*(f;)}, with respect to the

matrices (Uli,k(fj)’ UZi’k(fj)) Jk=1,..., K, if the fol-

lowing condition holds:
Gi<fj) + Uf,1(.fj)BU§,1(.fj) +o Uf,K(.fj)BUg,K(.fj)

- M(GUaWhW?)(fj)a V’L, .7
(4)
If (Uli,k(fj)7U§,k(fj>> Jk=1,...,K are all zero, then

we say the model merely covers the data (nonrobustly).

Definition 2 A model M(G§, W1, W3), is said to be
a tight or optimal robust uncertainty model for the data
with respect to given matrices (Uf’k(fj), Ug}k(fj)) k=
1,..., K, if its radius is less than or equal to the radius
of any other model which robustly covers the data, with
respect to the same matrices. Note that tight robust
uncertainty models may not necessarily be unique.

From the bounded noise model (3) it follows that
if a model M(Gy, Wy, Ws3) robustly covers the data
{G'(f;)}, with respect to (Ui(f;),Ui(f;)) only, then
it covers the true uncorrupted data {Gy,,(f;)}. Viola-
tions within Vi (f;)BVZ(f;) are allowed, since they are
within the prescribed tolerance.

The main goal of this paper is to compute an opti-
mal nonparametric matrix additive uncertainty model
M(Go, W1, W3), which is not invalidated, given the
data {G'(f;)} and the noise bounds (U{(f;),Ui(f;))
and fitting error tolerances (Vi(f;),V5(f;)).

3 Computing Optimal Nonparametric Matrix
Additive Uncertainty Models

In this section, we will show that optimal nonpara-
metric matrix additive uncertainty models can be com-
puted reliably and efficiently using tools from convex
optimization, and robust control. Throughout this sec-
tion, the frequency index f; will be dropped to avoid
clutter, since in computing the nonparametric model,
all computations are done for each frequency individu-
ally.

The following two lemmas will be useful. The first
comes from the model validation literature [19, 23], the
second from robust convex optimization [3, 9, 10] and
has its roots in early literature absolute stability theory
and p-analysis, see [11, 22] and the references therein.

Lemma 1 Given the complex matrices A, B and C' of
compatible dimensions, there exists a solution A to the
linear matriz equation A = BAC with 6(A) <1 if and
only if

BB* A
O e |2 ®)
Proof: This lemma is proved in [23, 7]. n

Lemma 2 Let F=F*, L, R, D be complex matrices
of appropriate sizes, with ||D|| < 1. Let A be a complex
perturbation that has the block diagonal structure A =
diag(A4,...,An). Partition L, R, and D conformally
with A as: L =[Ly,...,Lyn], R=[R},...,Ry]|*, D =

[D1,...,Dn]. Then a sufficient condition for

F+LA(I-DA) 'R+R*(I-DA) *A*L* >0, VA
(6)

is that there exists a matrix ¥ = diag(o1l,...,on1),

partitioned conformally with A, with o; real scalars,
such that

F— LYL*
’ R— DYL*

R* — LYD*

=0 w—pup | =0 @



Moreover, when L; # 0 and N < 2, this condition is
also necessary.

Proof: This lemma is proved in [9, 10], for the case
of real matrices using the S-procedure. Since the S-
procedure is necessary and sufficient for complex spaces
[11] for both 1- and 2-block structured matrices, we
obtain our result for N < 2. The condition L; # 0 is
a simple means for constraint qualification, see [11, 9].
]

Note that the requirement that the matrix inequality
in (6) should hold for all ||Al|z < 1, makes this a robust
semi-infinite feasibility problem. In general, such semi-
infinite constraints can be difficult to handle. However,
for the particular case in (6), the lemma shows that the
condition is equivalent to an LMI condition for N < 2.

3.1 Analysis: Validation via LMIs

Applying condition (4) to the matrix additive model
we see that M(Gy, Wy, Wa) robustly covers the
data {G'(f;)}, with respect to (U{(f;),Us(f;)) and
(Vi(f;), V3(f;)), then for all the data points at fre-
quency fj, we must have

{G"+UIN'U; + VIE'VS | [IN*][2 < 1, || E"]l2 < 1}

S {Go+WiAW; | [|Allx <1},
(8)
We will now show that this condition is equivalent to
a linear matrix inequality (LMI). The condition (8)
is equivalent to requiring that for each frequency f;:
VN2 <1, V|EY 2 <1,3|All2 <1 s.t.

G'— Gy +UN'Us + VI E'V] = W1 AW,, Vi,
(9)
From Lemma 1, it follows that condition (9) can be
written as: V |[N¢|ls <1, V |[EY|2 <1,

[ T (G~ Go+ UIN'US + VIE'VS) ] N
(%) T

(10)
where we have defined the variables T} = WiWy
and Ty, = WiW,. Defining L' = [U} V{], and
R = [U¥ V§*]*, (10) can be written as: V |[|[N¢|y <
LV[E2 <1,

8 e [E)[ a]e
+[R9*HN” Ei*][L"* 0]>0 Vi

which , by Lemma 2, is equivalent to the following
LMI condition in the real variable X! = diag(o? 1, 0%1):

. T, — L'SL™ (G'"—Gy) 0
¥ >0, (G* — Go)* Ty R* | >0 Vi
0 R xi

Hence we arrive at the following result, which shows
how the result above can be used to check that a
given uncertainty model (Go, Wy, W2) robustly covers
the data, i.e., analysis or model validation:

Theorem 1 A given matriz additive uncertainty
model M(Go, W1, Ws) robustly covers the data
{G'(f;)}, with respect to the matrices (UL(f;), Us(f;))
and (Vi (f;),VZ(f;)). if and only if, at each frequency
fj, the LMI condition (11) holds in the real vari-
ables Xt = diag(oil,0I), with Gy as in the model,
and Ty = WiW;, Ty = WiWa, Li = [U} Vi), and
Rt = [U2z'* ‘/21'*]*_

3.2 Synthesis: Computation via SDP

We now turn to the problem computing an op-
timal model, i.e., model synthesis. Specifically,
given the data {G'(f;)}, we wish to find optimizers
(G§, Wi, W5) which solve, at each f;, the optimization
problem:

G ain radius M(Gq, W1, Ws) (12)

s.t. ().

Lemma 3 below, provides a means for finding a feasi-
ble robustly covering uncertainty model using convex
optimization. Then problem of computing an optimal
robustly covering model is solved in Theorem 2.

Lemma 3 There exits a matriz additive uncertainty
model M(Gy, W1, Ws) which robustly covers the data
{G(f;)}, with respect to the matrices (UL(f;), Us(f;))
and (Vi (f;),VZ(f;)). if and only if, at each frequency
fj, the LMI condition (11) holds in the complex vari-
ables Go, Ty = 1Ty, To = T3 and real variable
¥t = diag(oil,o4l), where L' = [Ui V}], and R* =
(U Vj*]*. Appropriate W1 and Wy are then given by
the left and right Hermitian square roots of T{ and 15,
respectively.

Proof: Condition (11), when viewed as a con-
straint in the variables (Gg,T1,T5,%) rather than
(Go, W1, Wa, Y), (11) is actually an LMI. Furthermore,
condition (11) ensures that 77 and T are both posi-
tive semidefinite. Hence, given any feasible 177 and 15,
one can immediately compute the frequency weights as
Wi = Tll/2 and Wy = TQ*/Z, i.e, as the left and right
Hermitian square roots of T} and T5, respectively. m

Remark: Concerning the computation of the weights:
First, note that we have chosen to use Hermitian square
roots for uniqueness. Other choices of unique matrix
square roots (e.g. Cholesky factors) should produce



equally valid W and W5. Second, solving (11) will pro-
duce W7, W3 with no useful phase information. This
is because of the squaring of W7, W5 in the definitions
of Ty, T>. However, an appropriate phase can be easily
constructed using the Cepstrum technique [20] when
Wi, W3 are diagonal; if W7, W3 are not diagonal,
the technique in [21] may be used.

Remark: Regarding the generality of Lemma 3, the
LMI (11) in Lemma 3 searches over all possible models
with (Go, Wi, Wa) of compatible dimensions. In partic-
ular, it makes no assumptions on the structure of W3
and Ws. Hence in general, the resulting uncertainty
model will have W7 and W5 square. However, if the
only feasible models have a particular structure, say
W1 tall and W5 fat, then these will be found, since they
are feasible solutions of LMI (11), with T3 = Wy W7y,
T, = W5Ws. In this case, the tall or fat structure of
W1 and W5 will be manifested in rank deficiency of
T7 and T5. Singular value decomposition can then be
used to construct Wy and Ws. On the other hand, it
is possible to impose certain constraints on T and T5
which restrict the search in (11) to matrices of a certain
structure. For example, constraining 77 and T3 to be
(block) diagonal results in (block) diagonal weights W1
and W,.

Theorem 2 An optimal matriz additive uncertainty
model M(Gg, Wi, W5) which robustly covers the data
{G'(f;)} with respect to the matrices (Ui(f;),Us(f;))
and (Vi (f;),Vi(f;)) can be computed by solving the
following semidefinite program (SDP) in the complex
variables Go, Tv = 17, To = T and real variable
¥t = diag(ci1,0481), at each frequency f;:

min t
t,Go,T1, T2, %" (13)
s.t. T1 S tI, T2 S tI, (11)

Then Wi = (TF)Y? and Wi = (T¥)*/? are the left and
right Hermitian square roots of 1T and 15, respectively.

Proof: At each f;, we must solve (12), which can be
written as

Go, Wi W o(W)-o(W2). (14)

s.t. (8).

In Lemma 3, we showed that (8) was equivalent to the
LMI condition (11). Using 73 = WiW; and T =
W3 W, our optimization problem becomes

min  ¢'/2(1y) - Y/%(1y),

15
s.t. (11) (15)
. 1/2 ,1/2
82
e TR (16)

s.t. 5'(T1) S tl, 5'(T2) S tQ, (11)

The proof is completed by noting that in the product
W1 AWs, we can without loss of generality always take
5’(W1) :5'(W2). | ]

Remark: Equations (11) and (13) are written as com-
plex LMIs. These can be easily converted to real LMIs,
using the following fact: For any Hermitian matrix
M € C™*™ the following condition holds:

ReM ImM
M0 < | “tnM Rem | =0

Remark: The optimal G, 175, 1% obtained from solv-
ing (13) may not be unique, due to the singular value
constraints. Thus in practice, to insure uniqueness of
the optimal values at the different frequencies f;, one
may perform two optimizations at each frequency

1. Solve (13) for the optimal radius ¢*

2. Pick a small € > 0 and solve the following SDP prob-
lem to obtain the unique e-suboptimal Gg, Ti, Ts:

min - Tr(Sp) + Tr(S1) + Tr(Se)
Go,T1,12,50,51,52,5°

s.t. T < (Q+e)t*l, To < (1+€)t*I,
I G I T I T
20, 20, >0,
G So T S Ty So
(11).
(17)

Note that the objective in (17) is equivalent to the sum
of the squared Frobenius norms of G, T1 and 7%, which
is strictly convex in those variables, hence the optimal
value of (17) is unique [4]. The procedure above essen-
tially searches the (14 €)t*-suboptimal set for the least
norm solution. Note that in (17) the t* is constant,
which is obtained in Step 1.

Remark: In some situations, one is required to gener-
ate uncertainty models which cover data that comes
from simulations or from finite element models. In
this case, the data {G*(f;)} might contain no noise.
Of course, one could analyze and compute uncertainty
models by simply applying Theorems 1 and 2 with the
matrices (U(f;), Us(f;)) and (Vi(f;),V5(f;)) set to
zero. However, in this case, significant savings in com-
putation are possible. For example, the elementwise
case reduces to a second order cone program (SOCP),
which can be solved an order of magnitude faster than
a semidefinite program.

4 Average-Based Uncertainty Models

There is a simple two-step procedure for computing
suboptimal elementwise or matrix additive uncertainty
models, using the average of the data. The idea is, at
each frequency f;, to take the average of the data to be



the “center” of the set, and then compute the weights
with respect to that fixed center. The procedure goes
as follows:

. JAN ;
Compute the nominal model as G3'8 = L S°M @i

Compute the weights using

(Wi, W) 2 argmin{(13) | Go = G&¥°}  (18)

In the second step, we obtain W™’

but with Gy fized at G'®.

s by solving (13)

As a consequence of the averaging, this technique has
the nice property that it smooths out the data. This
has the benefit of reducing sensitivity to output er-
ror noise in the measurements, and usually requiring a
lower order state space fits than the optimal approaches
proposed here.

However, the averaging technique has the disadvan-
tage of being sensitive to outliers. Thus it can produce
uncertainty models which are considerably more con-
servative than the corresponding optimal uncertainty
models. Specifically, in the elementwise case, the un-
certainty radii can be up to 6dB larger than the optimal
radii; in the matrix case, the difference might be even
larger.

5 Example

This section demonstrates the computation the tight
uncertainty models using the matrix additive approach,
for MIMO model of a high-speed positioning mecha-
nism,

0 1 0 0 0 0
_k  _x k. ol 1 _ 1
M M M M M M
A 0 0 1 0 0 0
ClD |~ k d _k 2| 1 )
1 0 0 0 0 0
0 0 1 0 0 0

where the mass, damping and stiffness parameters
are given in Table 1, together with their uncertain-
ties. The plant was also scaled at the input and out-
put by diagonal scaling matrices diag(6.5e3,0.8¢e5 * [3)
and diag(a,1). Twenty frequency responses were col-
lected for different instances of the parameters, within
their 10% range'. These twenty MIMO frequency re-
sponses were used as the data for computing matrix
uncertainty models. The frequency weights were con-
strained to be diagonal, as explained in the remarks

LOf course, in this simple example, with real parametric un-
certainty, a linear fractional transformation (LFT) parametric
uncertainty model would be more appropriate. But the point is
that in many real applications, such a parametric model is either
not available or very difficult to construct.

‘ | Nominal | % Uncertainty |

M 1.0e-4 +10%
m 1.0e-5 +10%
~ | 1204 £10%
k 1.0e-4 +10%
« 10dB 0
3 5dB 0

Table 1: Parameters and uncertainties.

following Lemma 3. For comparison, we also computed
uncertainty models using the average-based technique
of Section 4. We considered the following two scenarios.

In the first case the data was assumed to be clean and
we computed an optimal matrix additive uncertainty
model which (nonrobustly) covers the data. The results
for clean data case are shown in Fig. 2. The correspond-
ing weights are shown in Fig. 3 and the overall uncer-
tainty radius is shown in Fig. 4. There is a significant
difference between the optimal model and the average-
based model, especially in the frequency range where
the uncertainty is large, where the radius of the optimal
model is 1-5dB tighter than that of the average-based
model. (Recall that the matrix uncertainty weights in
Fig. 3 have the units of the square-root of the radius,
and should therefore not be compared directly to ra-
dius.)

In the second case, we compute a matrix additive un-
certainty model which robustly covers the data, with
respect to the matrices Vi'(f;) = V3 (f;) = 0.751,Y i,
(in other words, we have added in a (0.75)?-radius mar-
gin for fitting error, at all frequencies and data points).
The results for robust covering are shown in Fig. 5,
Fig. 6, and Fig. 7. The results are similar to the clean
data case in the regions where the frequency responses
are large. However, as expected, now the radius is in-
creased by the tolerance value of (0.75)2, and similarly
for the weights. This difference is most pronounced
around the frequency 10*3rad/sec, where the radius is
comparable to the fitting tolerance.

It is interesting to observe the low frequency roll off of
the G 12 and Go,22 in the case of the optimal. We sus-
pect that this is because at low frequencies, the plant
becomes almost a rank-one plant

and the perturbations are large enough that the data
from the [Go,lgGo,gg}T part of the transfer function
is covered automatically by the uncertainty around
[Go,11Go,21]”.
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weights: SDP (—) and AVG (- —).

Figure 6: Robust covering: nonparametric frequency

weights: SDP (—) and AVG (— —).
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Figure 4: Nonrobust covering: matrix uncertainty radii:
SDP (—) and AVG (— —).

Figure 7: Robust covering: matrix uncertainty radii: SDP

(—) and AVG (——-).



6 Conclusion

Given a set of multivariable frequency response mea-
surements, we have shown that the computation of
matrix additive (and elementwise additive) nonpara-
metric uncertainty models which are consistent with
the data (i.e. not invalidated), reduces to a linear ma-
trix inequality (LMI) feasibility problem. This LMI
condition can be used either to analyze a given uncer-
tainty model, i.e. check its consistency with the data,
or it can be used to synthesize an uncertainty model
which is consistent with the data. We then showed that
computing the optimal or least conservative model for
the data can be done using semidefinite programming
(SDP). Our method simultaneously searches for the re-
sponses of both the nominal system and the uncertainty
weights that give an optimal uncertainty model. Noise
and fitting errors were explicitly factored into the com-
putation using a bounded set approach. The proposed
technique was demonstrated on a generic MIMO exam-
ple, where it outperformed the average-based approach
by almost a factor of two (5dB), in the frequency range
with largest uncertainty.
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