On Achieving Reduced Error Propagation Sensitivity in DFE Design via Convex Optimization

Robert L. Kosut1, Wonzoo Chung and C. Richard Johnson, Jr.2, Stephen P. Boyd3

1 Introduction

Decision Feedback Equalization (DFE) is expected in digital TV receivers and other high error rate environments, e.g., [1]. Error propagation usually occurs in infrequent bursts, [4, App.10-A],[2, sec.7.5.4] It is argued here and in [1] that the minimum mean-square-error (MMSE) adaptation mechanism in the presence of error propagation will find a better answer than the solution computed in the absence of decision errors. This paper attempts to formalize this benefit during the design phase, by considering other (convex) performance measures than MSE assuming perfect decisions. After all, any such modified objective is just a proxy for determining the optimal error rate. As discussed in [3], error propagation is “enhanced” by large gains in the decision portion of the DFE portion. We consider a method to penalize these gains, but not in the unconstrained (perfect decision) MSE sense.

2 Standard DFE System

Consider the DFE communications system:

\[
\begin{align*}
\text{w} & \xrightarrow{G(\lambda)} \text{r} \xrightarrow{F(\lambda)} \text{u} \xrightarrow{Q(\cdot)} \hat{a} \\
& \xrightarrow{D(\lambda)} \hat{a}
\end{align*}
\]

The system equations are:

\[
\begin{align*}
\hat{a}_t &= Q(u_t) \\
{u}_t &= F(\lambda)r_t - D(\lambda)\hat{a}_t \\
{r}_t &= w_t + G(\lambda)a_t
\end{align*}
\]

where \(\lambda\) denotes the backward shift operator, i.e., for integer times \(t\), \(\lambda x_t = x_{t-1}\), \(G(\lambda), F(\lambda), D(\lambda)\) are linear-time-invariant systems, and \(Q(\cdot)\) is the quantizer.

The source sequence, \(a\), consists of elements in the \(\ell\)-ary alphabet (\(\ell\) is even),

\[
A = \{\pm 1, \pm 3, \ldots, \pm (\ell - 1)\}
\]

The received signal sequence, \(r\), is a version of the source sequence, \(a\), distorted by the channel dynamics, \(G(\lambda)\), and corrupted by an additive noise sequence, \(w\). The sequence \(\hat{a}\) is an estimate of the source sequence and is the output of the quantizer,

\[
Q(u_t) = \arg \min_{\alpha \in A} |\alpha - u_t|
\]

In the binary case (\(\ell = 2\)), \(A = \{\pm 1\}\) and the quantizer reduces to the sign function. The filters \(F(\lambda)\) and \(D(\lambda)\) are FIR, i.e.,

\[
\begin{align*}
F(\lambda) &= f_0 + f_1 \lambda + \cdots + f_n \lambda^n \\
D(\lambda) &= d_1 \lambda + \cdots + d_m \lambda^m
\end{align*}
\]

The channel, \(G(\lambda)\), is stable and possibly IIR, that is,

\[
G(\lambda) = \sum_{i=0}^{\infty} g_i \lambda^i
\]

with \(g_i \to 0\) as \(i \to \infty\), exponentially. The sequences \(f = \{f_0, \ldots, f_n\}\), \(d = \{d_1, \ldots, d_m\}\), and \(g = \{g_0, g_1, \ldots\}\) are the impulse responses of \(F(\lambda), D(\lambda), G(\lambda)\), respectively.

The DFE system can also be expressed in terms of the impulse response sequences \(g, f, d\), that is,

\[
\begin{align*}
\hat{a}_t &= Q(u_t) \\
{u}_t &= (f \ast r)_t - (d \ast \hat{a})_t \\
{r}_t &= w_t + (g \ast a)_t
\end{align*}
\]

where \(\ast\) denotes convolution. The DFE design variables are the FIR filter coefficients \(f = \{f_0, \ldots, f_n\}\) and \(d = \{d_1, \ldots, d_m\}\).

3 Symbol-Error-Rate (SER)

There are two basic DFE design problems: (1) design with known channel, and (2) design with unknown channel, i.e., adaptation. Here we consider only the former problem.
To specify the design issues more precisely, define the symbol error sequence,
\[e_t = \hat{a}_t - a_{t-\delta} \]
(11)
for some integer \(\delta \geq 0 \). The symbol error is often referred to as the hard error. The design goal is to select the filter impulse response coefficients \(f, d, \) and the delay \(\delta \), to minimize the symbol error rate,
\[\rho = P\{e_t \neq 0\} = 1 - P\{e_t = 0\} \]
(12)
where the probability measure, \(P\{ \cdot \} \), is over the distributions of the source sequence \(a \) and the noise sequence \(w \).

We also define the soft error,
\[\varepsilon_t = u_t - h_\delta a_{t-\delta} \]
(13)
where \(h_\delta \) is the \(\delta \)-th impulse response coefficient of
\[H(\lambda) = F(\lambda)G(\lambda) = \sum_{i=0}^{\infty} h_i \lambda^i \]
(14)
After some algebra, the soft error can be expressed as,
\[\varepsilon_t = F(\lambda)u_t + \tilde{H}(\lambda)a_t - D(\lambda)e_t \]
\[\tilde{H}(\lambda) = F(\lambda)G(\lambda) - \lambda^\delta(D(\lambda) + h_\delta) \]
(15)
Observe that \(\tilde{H}(\lambda) \) is FIR only if \(G(\lambda) \) is FIR. Also, the term \(\tilde{H}(\lambda)a_t \) does not depend on \(a_{t-\delta} \) because \(h_\delta a_{t-\delta} \) is subtracted from \(F(\lambda)G(\lambda)a_t \). The soft error can be written in terms of impulse responses as,
\[\varepsilon_t = (f * w)_t + (\tilde{h} * a)_t - (d * e)_t \]
\[\tilde{h} = g * f - \lambda^\delta * (h_\delta + d) \]
(16)
where \(\tilde{h} \) is the impulse response of \(\tilde{H}(\lambda) \). The quantizer output can then be expressed as,
\[\hat{a}_t = Q(h_\delta a_{t-\delta} + \varepsilon_t) \]
(17)

4 Design Heuristic with Known Channel

The obvious design goal is to minimize the symbol error rate,
\[\min_{f, d, \delta} \rho \]
(18)
Unfortunately there is no computationally feasible solution to this problem for the DFE configuration. Here we present heuristic solutions which modify the classical minimum-mean-square-error (MMSE) method.

Binary alphabet

In the binary case, \(A = \{\pm 1\} \), and hence, \(Q(x) = \text{sgn}(x) \). If \(h_\delta > 0 \), then,
\[\hat{a}_t = \text{sgn}(h_\delta a_{t-\delta} + \varepsilon_t) = \text{sgn}(a_{t-\delta} + \varepsilon'_t) \]
(19)
where prime denotes division by \(h_\delta \), i.e., \((\cdot)' = (\cdot)/h_\delta \). Thus,
\[\varepsilon'_t = \frac{\varepsilon_t}{h_\delta} = (f' * w)_t + (\tilde{h}' * a)_t - (d' * e)_t \]
\[\tilde{h}' = g * f' - \lambda^\delta * (1 + d') \]
(20)
Since only the sign of \(h_\delta \) matters in the binary case, it follows that the design goal is to select \((f, d, \delta) \) to make \(\varepsilon' \) small in some sense.

When he symbol-error-rate, \(\rho \), is typically very small, there can be very few errors over the tap length of the decision filter \(D(\lambda) \). For example, suppose there is only one non-zero error in any time window \(\{t - 1, \ldots, t - m\} \). Then,
\[|\varepsilon'_t| \leq |(f' * w)_t + (\tilde{h}' * a)_t - (d' * e)_t| \]
\[\leq |(f' * w)_t + (\tilde{h}' * a)_t| + ||d' * e||_\infty \]
(21)
The classical MMSE design approach is to select \((f', d') \) to minimize the mean-square-error, under the assumption of perfect decisions (\(e = 0 \)),
\[\text{MSE} = \mathbb{E}[|(f' * w)_t + (\tilde{h}' * a)_t|^2] \]
(22)
Under the assumption that \(w_t \) is gaussian IID with variance \(\sigma_w^2 \) and \(a_t \) is gaussian IID with unity variance, the MMSE design is obtained from:
\[\min_{f', d} \sigma_w^2 ||f'||_2^2 + ||g * f' - \lambda^\delta * (1 + d')||_2^2 \]
(23)
Since any choice of \(h_\delta > 0 \) does not affect the SER, the DFE taps are re-scaled so that \(h_\delta = 1 \). Thus, from the optimum solution \((f', d') \), set \(f = f'/h_\delta' \), \(d = d'/h_\delta' \) with \(h_\delta' = (g * f')_\delta \).

To incorporate the possibility of one error over the tap length of the decision filter \(D(\lambda) \), following (21) suggests the design optimization:
\[\min_{f', d} \sigma_w^2 ||f'||_2^2 + ||g * f' - \lambda^\delta * (1 + d')||_2^2 \]
(24)
This approach penalizes the largest decision filter coefficient by introducing the \(d \)-tap constraint \(\gamma \). If \(\gamma = \infty \) then we return to the MMSE design. As \(\gamma \) decreases we sweep out new designs. Simulations of these designs (section 3) show modest robustness gains to certain types of error propagation environments.

1If it turns out that \(h_\delta < 0 \), then replace the quantizer, in the binary case only, with \(Q(x) = -\text{sgn}(x) \).
Another interpretation is that this approach models error propagation as if it were an exogenous noise, e.g., \(e \) is a random sequence with an infrequent single error, at most one error possibly every \(m \) samples. (Recall \(m \) is the decision tap length). Proceeding in this way we can also consider other models of \(e \). For example, if we assumed that \(e \) was white Gaussian with variance \(\sigma_e^2 \), then DFE designs could be obtained from,

\[
\min_{f',d'} \quad \sigma_w^2 ||f'||^2 + ||g \ast f' - \lambda^S (1 + d')||^2 + \sigma_e^2 ||d'||^2
\]

(25)

In this case \(\sigma_e \) is a design variable which weights the effect of constraining the \(d' \)-taps under the two-norm. In a manner similar to the previous formulation (24), if \(\sigma_e = 0 \) then we return to the MMSE design and as \(\sigma_e \) increases we sweep out new designs. Simulations with this approach are also examined in section 5.

\(\ell_\text{ary} \) alphabet

In the \(\ell_\text{ary} \) case, \(A = \{ \pm 1, \pm 3, \ldots, \pm (\ell - 1) \} \), and hence,

\[
\hat{a}_t = \arg \min_{\alpha \in A} |h_s a_{t-s} + \varepsilon_t - \alpha|
\]

(26)

The choice of \(h_s \) is now not arbitrary in magnitude. Since the quantizer will return the correct symbol if and only if

\[
|\{ (h_s - 1) a_{t-s} + \varepsilon_t \}| \leq 1
\]

(27)

it follows that \(h_s = 1 \) is required, otherwise even when \(\varepsilon_t = 0 \) there would be an error. But setting \(h_s = 1 \) is equivalent to the procedure proposed for the binary case.

Multiple errors

We can go a bit further and account for the possibility of more than one error over the tap length of the decision filter \(D(\lambda) \). Say there are \(k \leq m \) errors. Then the worst case is,

\[
|(d \ast e)_t| \leq \|e\|_{\infty} \sum_{i=1}^{k} |d_{(i)}|
\]

(28)

where \(\{d_{(1)}, \ldots, d_{(m)}\} \) are the impulse response coefficients of \(D(\lambda) \) ordered by magnitude, that is,

\[
|d_{(1)}| \geq |d_{(2)}| \geq \cdots \geq |d_{(m)}|
\]

(29)

Hence, we can also consider the design obtained from the optimization,

\[
\min_{f',d'} \quad \sigma_w^2 ||f'||^2 + ||g \ast f' - \lambda^S (1 + d')||^2
\]

(30)

with the following constraints on the normalized decision taps \(d' \):

i) one-tap constraint (24):

\[
|d'_t| < d'_{\text{max}}, \text{for all } t
\]

ii) two tap constraint (30):

\[
|d'_t| + |d'_{t+1}| < d'_{\text{max}}, \text{for all } t, t+1, t+2
\]

This is equivalent to (30) with \(k = 2 \).

For comparison we also consider the cost function (25).

iii) \(\ell_2 \)-norm DFE:

\[
J' = J + \sigma_e^2 ||d'||^2
\]

For a moderate channel (Figure 1-a) and a relatively severe channel (Figure 1-b), the symbol error rate (SER) of the above three DFE designs are calculated by simulations using \(1.5 \times 10^6 \) of 8-PAM symbols. Table 1 presents SER for each channel and various SNR under different tap-length settings. In each case the choice of the design parameters \(d'_{\text{max}} \) or \(\sigma_e \) and \(\delta \) are chosen to minimize SER from the simulations, e.g., figure 2.

<table>
<thead>
<tr>
<th>Channel c1</th>
<th>(Nf = 20, Ns = 34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR</td>
<td>15dB</td>
</tr>
<tr>
<td>MMSE</td>
<td>0.3725</td>
</tr>
<tr>
<td>(\ell_\infty)</td>
<td>0.3512</td>
</tr>
<tr>
<td>2-tap</td>
<td>0.3483</td>
</tr>
<tr>
<td>(\ell_2)</td>
<td>0.3656</td>
</tr>
</tbody>
</table>

a) Moderate channel with properly modeled DFEs

<table>
<thead>
<tr>
<th>Channel c1</th>
<th>(Nf = 10, Ns = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR</td>
<td>15dB</td>
</tr>
<tr>
<td>MMSE</td>
<td>0.4348</td>
</tr>
<tr>
<td>(\ell_\infty)</td>
<td>0.4180</td>
</tr>
<tr>
<td>2-tap</td>
<td>0.4109</td>
</tr>
<tr>
<td>(\ell_2)</td>
<td>0.4095</td>
</tr>
</tbody>
</table>

b) Moderate channel with under modeled DFEs

<table>
<thead>
<tr>
<th>Channel c2</th>
<th>(Nf = 20, Ns = 34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR</td>
<td>15dB</td>
</tr>
<tr>
<td>MMSE</td>
<td>0.5333</td>
</tr>
<tr>
<td>(\ell_\infty)</td>
<td>0.4828</td>
</tr>
<tr>
<td>2-tap</td>
<td>0.4829</td>
</tr>
<tr>
<td>(\ell_2)</td>
<td>0.4791</td>
</tr>
</tbody>
</table>

c) Severe channel with properly modeled DFEs

Table 1: SER result of modified DFEs

These results indicate that the modified DFE designs yield better SER than the conventional MMSE DFE
design. Specifically, we can find that 2-tap constrained DFE performs always better than ℓ_∞ DFE, while ℓ_2 constrained DFE tends to outperform 2-tap constrained DFE for a severe channel and severe noise environment. Figure 3 shows some examples of DFE taps.

6 Concluding Remarks

Assuming the channel is known, we have shown that somewhat better DFE designs can be obtained by accounting for error propagation. Standard MMSE designs assume perfect decisions. The methods presented here utilize very simple representation of the error propagation. Although properly characterizing error propagation is difficult, the results here motivate a deeper analysis of typical error patterns which can be used to form design constraint on the decision taps.

References