Multiobjective H_2/H_∞-Optimal Control via Finite Dimensional Q-Parametrization and Linear Matrix Inequalities

Haitham Hindi Babak Hassibi
Stephen Boyd
Information Systems Lab, Stanford University

June 22, 1998
Contents

1. Multiobjective Problem Motivation and Definition

2. Formulation in Terms of LMIs

3. Alternative State Space Realization

4. Numerical Example & Conclusion

In this talk, we focus on H_∞. Same ideas carry through for H_2/H_∞ as well - see paper.
Set of all achievable stable closed loop maps is:

\[
\{G = P_{zr}w_e + P_{zr}uK(I - P_{yu}K)^{-1}P_{yw} | K \text{ stabilizing}\}
\]

- set of stabilizing K’s not obvious
- parametrization is linear fractional
- P’s and K can be unstable

Can transform into equivalent parametrization:

\[
\{G = H - UQV | Q \text{ stable}\}
\]

- now H, U, V and Q stable
- affine in $Q \rightarrow$ Good for optimization
General Regulator Problem

\[z_r = \begin{bmatrix} z \\ u \end{bmatrix} = G w_e = \begin{bmatrix} G_z w_e \\ G_u w_e \end{bmatrix} w_e \]

- Typically want:
 1. Small \(\|G_z w_e\|_\infty \) for “good regulation”
 2. Small \(\|G_u w_e\|_\infty \) for “efficient control”
 3. “Reject” disturbances \(w_e = \begin{bmatrix} w \\ v \end{bmatrix} \)

- Usually **conflicting** requirements:
 “good” regulation requires “large” control
Multiobjective Design Paradigm

- Define:

\[J_\lambda^{M}(Q) = (1 - \lambda) \|G_{zw e}(Q)\|_\infty^2 + \lambda \|G_{uw e}(Q)\|_\infty^2 \]

- Compute **tradeoff curve**:

 for \(\lambda = 0 \) to 1

 solve for \(Q_\lambda: \inf_{Q \in H_\infty} J_\lambda^{M}(Q) \)

 plot \(\|G_{zw e}(Q_\lambda)\|_\infty \) versus \(\|G_{uw e}(Q_\lambda)\|_\infty \)

 end

- **Tradeoff curve gives limits of performance** - very useful in practice!

![Diagram](attachment:diagram.png)
Standard vs Multiobjective H^∞

Standard H^∞ Problem: $z_r = \begin{bmatrix} (1 - \lambda)^{\frac{1}{2}} z \\ \lambda^{\frac{1}{2}} u \end{bmatrix}$ minimize

$$J^S_\lambda(Q) = \left\| \begin{bmatrix} (1 - \lambda)^{\frac{1}{2}} G_{zw_e}(Q) \\ \lambda^{\frac{1}{2}} G_{uw_e}(Q) \end{bmatrix} \right\|_\infty^2 = \sup_{w_e \neq 0} \frac{(1 - \lambda) \|z\|_2^2 + \lambda \|u\|_2^2}{\|w_e\|_2^2}$$

Multiobjective H^∞ Problem: minimize

$$J^M_\lambda(Q) = (1 - \lambda) \|G_{zw_e}(Q)\|_\infty^2 + \lambda \|G_{uw_e}(Q)\|_\infty^2 = (1 - \lambda) \sup_{w_e \neq 0} \frac{\|z\|_2^2}{\|w_e\|_2^2} + \lambda \sup_{w_e \neq 0} \frac{\|u\|_2^2}{\|w_e\|_2^2}$$

Comments

- In multiobjective design maximization of z and u over w_e is done **independently**
- In standard design maximization of z and u over w_r is done **simultaneously** - artificially couples z and u
- Why would we care about the gain from w_e to the sum of z and u? They might peak at different frequencies.
More Remarks

• Note that since

\[J^S_\lambda = \text{"sup of sum"} \]

\[J^M_\lambda = \text{"sum of sups"} \]

we have

\[J^S_\lambda(Q) \leq J^M_\lambda(Q) \quad \forall Q \in H_\infty \]

\[\inf_{H_\infty} J^S_\lambda \leq \inf_{H_\infty} J^M_\lambda \]

• Also, since \(G_{zw_e}(Q) \) and \(G_{uw_e}(Q) \) are both affine in \(Q \)

\[\implies \text{ both problems convex} \]

• Finally, note that the problems are infinite dimensional

• In Standard problem, state space structure provides means for minimizing exactly via bisection applied to Riccati equations or LMI.

• In Multiobjective problem cannot solve exactly in general. Can only minimize conservative upper bound. But no analysis for degree of conservativeness.

• So why not use finite dimensional \(Q \)-based approach which fell out of favor because no analysis was available for degree of approximation?
Previous Research

- State space, upper bound on H_∞/H_2
 - '89: Bernstein & Haddad
 - '91: Khargonekar & Rotea

- Finite dimensional Q, convex optimization
 - '88: Boyd, Barratt, Balakrishnan, Kabamba & Meyer
 - '94: Sznaier, Rotstien & Sideris

- Finite dimensional Q and LMIs
 - '95: Chen & Wen
 - '95: Scherer - our method was first proposed

- Lyapunov Shaping, LMIs
 - '95: Scherer, Gahinet & Chilali
 - '95: El-Ghaoui & Folcher

- Solve nonconvex problem
 - '98: Halder, Hassibi & Kailath
\[\|G\|_\infty \text{ via Bounded Real Lemma} \]

- To avoid truncation errors of QDES, we use state space
- Given closed loop system \(G \) with then

\[
\|G\|_\infty \equiv \|D + C(zI - A)^{-1}B\|_\infty = \gamma^*
\]

if and only if \(\gamma^* \) is optimizer of

\[
\begin{align*}
\text{minimize} & \quad \gamma \\
\text{subject to} & \quad \begin{bmatrix}
A^T X A - X & A^T X B & C^T \\
B^T X A & B^T X B - \gamma I & D^T \\
C & D & -\gamma I
\end{bmatrix} < 0 \\
& \quad X > 0
\end{align*}
\]

- \(A, B, C, D \) are closed loop matrices - contain controller variables
- Due to cross terms between \(A, B, \) and \(X \), have nonlinear matrix inequality
- In ’93 ’94, Gahinet & Apkarian and Iwasaki & Skelton showed that using elimination lemma can reduce to 3 LMI’s

(Similar LMI’s exist for \(H_2 \) norm)
Multiobjective \mathcal{H}_∞ Problem

- We now want to minimize

$$(1 - \lambda) \|G_z\|_\infty + \lambda \|G_u\|_\infty$$

- Apply **bounded real lemma** to G_z and G_u separately

\rightarrow **SDP** in $\gamma_z, \gamma_u, X_z, X_u$, and closed loop matrices of G_z and G_u:

$$\min \quad (1 - \lambda) \gamma_z + \lambda \gamma_u$$

$$\begin{bmatrix}
A^T_z X_z A_z - X_z & A^T_z X_z B_z & C^T_z \\
B^T_z X_z A_z & B^T_z X_z B_z - \gamma_z I & D^T_z \\
C_z & D_z & -\gamma_z I
\end{bmatrix} < 0$$

$$X_z > 0$$

$$\begin{bmatrix}
A^T_u X_u A_u - X_u & A^T_u X_u B_u & C^T_u \\
B^T_u X_u A_u & B^T_u X_u B_u - \gamma_u I & D^T_u \\
C_u & D_u & -\gamma_u I
\end{bmatrix} < 0$$

$$X_u > 0$$

- Again **cross terms** between A’s, X’s and B’s.

- But now **elimination lemma fails**

- Note C’s and D’s appear **linearly**

- If could put all controller variables in C’s and D’s, get LMI’s - **done!**. This is our goal.
State Space SISO FIR

• Given FIR system Q with **pulse response**

\[
\{ q_0, q_1, q_2, q_3, 0, 0, \ldots \} \]

• We have (control canonical form) **realization**

\[
\begin{bmatrix}
 A_Q & B_Q \\
 C_Q & D_Q
\end{bmatrix} \equiv \begin{bmatrix}
 0 & \begin{bmatrix} 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\
 q_1 & q_2 & q_3 & q_0
\end{bmatrix}
\]

• **All variables** q_i are in C_Q and D_Q matrices.
• Matrices A_Q and B_Q are **fixed**.
• Later on, we will **assume** that the component SISO systems Q_{ij} of Q in the Q-parametrization are all SISO FIRs.
Pulling Out Q

- Recall that in Q-parametrization: H, U, Q, and V are just matrices in \mathcal{H}_∞.
- Want to write

$$G(Q) = H - U Q V$$

in terms of **SISO components** of Q explicitly.
- Decompose Q as sum of its **SISO components** Q_{rs} times elementary matrices $E_{rs} = e_r e_s^T$:

$$Q = \sum_{r,s} Q_{rs} e_r e_s^T$$

- Hence:

$$G(Q) = H - U \left(\sum_{r,s} Q_{rs} e_r e_s^T \right) V$$

$$= H - \sum_{r,s} Q_{rs} \left((U e_r)(e_s^T V) \right)$$

- Therefore:

$$G(Q) = H - \sum_{r,s} Q_{rs} T_{rs}$$

where $T_{rs} = (U e_r)(e_s^T V)$.

11
Kronecker Products

• So we have

\[G(Q) = H - \sum_{rs} Q_{rs} T_{rs} \]

• Now \(Q_{rs} T_{rs} \) is just \textbf{scalar} (SISO) \(\times \) \textbf{matrix} (MIMO) in \(\mathcal{H}_\infty \). So

\[
Q_{rs} T_{rs} \triangleq \begin{bmatrix}
Q_{rs} T_{rs}^{(11)} & \cdots & Q_{rs} T_{rs}^{(1n)} \\
\vdots & \ddots & \vdots \\
Q_{rs} T_{rs}^{(m1)} & \cdots & Q_{rs} T_{rs}^{(mn)}
\end{bmatrix}
\]

\[= Q_{rs} \otimes T_{rs} \]

where \(\otimes \) denotes \textbf{Kronecker multiplication}

\[A \otimes B \triangleq \begin{bmatrix}
a_{11} B & \cdots & a_{1n} B \\
\vdots & \ddots & \vdots \\
a_{m1} B & \cdots & a_{mn} B
\end{bmatrix} \in \mathbb{R}^{mp \times nq} \]

• So to be \textbf{explicit} we write:

\[G(Q) = H - \sum_{rs} Q_{rs} \otimes T_{rs} \]
State Space Representation of $Q \otimes T$

- **Given:** $Q \in \mathcal{H}^{p \times q}$ and $T \in \mathcal{H}^{m \times n}$

\[
Q \equiv \begin{bmatrix}
A_Q & B_Q \\
C_Q & D_Q
\end{bmatrix} \quad \text{and} \quad T \equiv \begin{bmatrix}
A_T & B_T \\
C_T & D_T
\end{bmatrix}
\]

Then: $Q \otimes T$ has state space

\[
\begin{bmatrix}
A_Q \otimes I_m & B_Q \otimes C_T & B_Q \otimes D_T \\
0 & I_q \otimes A_T & I_q \otimes B_T \\
C_Q \otimes I_m & D_q \otimes C_T & D_Q \otimes D_T
\end{bmatrix}
\]

- If Q has **SISO FIR structure**, then all coefficients q_i of Q (contained in C_Q & D_Q) appear only in $C_Q \otimes T$ and $D_Q \otimes T$.
State Space for Closed Loop System G

- **Assume:** that Q is SISO, then there’s just one Q and one T. Can then drop r and s indexes:

$$\sum_{r,s} Q_{rs} \otimes T_{rs} = Q \otimes T.$$

(general case same idea - see paper)

- Then closed loop transfer function

$$G(Q) = H - Q \otimes T$$

- This is just H in parallel with $-(Q \otimes T)$.
- Therefore it’s easy to write down state space for G:

$$\begin{bmatrix} A_G & B_G \\ C_G & D_G \end{bmatrix} = \begin{bmatrix} A_H & A_{Q \otimes T} & B_H \\ C_H & -C_{Q \otimes T} & B_{Q \otimes T} \\ D_H & D_{Q \otimes T} & D_{Q \otimes T} \end{bmatrix}.$$

- Note that if Q is FIR, then all coefficients of Q are contained in C_G and D_G.
State Space for Multiobjective Closed Loop

- Start with

\[G(Q) = H - \sum_{r,s} Q_{rs} \otimes T_{rs}. \]

- **Partition** \(G, H, T \) according to \(z_r = \begin{bmatrix} z \\ u \end{bmatrix} \):

\[
\begin{bmatrix}
G_z(Q) \\
G_u(Q)
\end{bmatrix} = \begin{bmatrix} H_z \\ H_u \end{bmatrix} + \sum_{r,s} \begin{bmatrix} Q_{rs} \otimes T_{z,rs} \\ Q_{rs} \otimes T_{u,rs} \end{bmatrix}
\]

- Again **assume** just one \(Q \) and \(T \).
- **Now get state space** of \(G_z \) and \(G_u \):

\[
\begin{bmatrix}
A_z & B_z \\
C_z & D_z
\end{bmatrix} = \begin{bmatrix}
A_{Hz} & B_{Hz} \\
A_{Q \otimes T_z} & B_{Q \otimes T_z}
\end{bmatrix} \begin{bmatrix}
C_{Hz} & -C_{Q \otimes T_z} \\
D_{Hz} & D_{Q \otimes T_z}
\end{bmatrix}
\]

\[
\begin{bmatrix}
A_u & B_u \\
C_u & D_u
\end{bmatrix} = \begin{bmatrix}
A_{Hu} & B_{Hu} \\
A_{Q \otimes T_u} & B_{Q \otimes T_u}
\end{bmatrix} \begin{bmatrix}
C_{Hu} & -C_{Q \otimes T_u} \\
D_{Hu} & D_{Q \otimes T_u}
\end{bmatrix}
\]

- Note that if \(Q \) is FIR, then all **coefficients** of \(Q \) are contained in \(C_z, D_z \) and \(C_u, D_u \) → **done**!
Numerical Example

The graph illustrates tradeoffs between multiobjective (solid line) and standard (dashed line) approaches.

- **System was:**
 - unstable, second order, $f_0 = 1$, $\zeta = -0.5$.
 - discretized at $T_s \approx 1/6$
 - $0.9T_s$ delay in loop

- Stabilized with LQG to get H, U, and V

- Modified with **12-tap FIR Q**

Result: 25% reduction in control effort!
Conclusion

Proposed Method

- based on Q-parametrization & finite dimensional convex optimization

- conservative, but can outperform standard H_∞ and Lyapunov shaping

- extends to H_2/H_∞ (and other problems)

- involves more computation than standard methods, but structure can be exploited for speedup