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Abstract— We present a crosslayer technique to find and averaged rate at which packets are injected into the network
characterize optimal control policies for wireless networks The time averaging serves two purposes. First, it captures
operating at different time scales at the upper layer and physical differences in the characteristics of different data tyjaes

layer. The technique can also be directly applied to networks . .
carrying traffic with different time dependencies such as data S€¢0Nd it reflects the observation that upper layer prosocol

or video. Our approach combines network utility maximization ~ Often operate at longer time scales than those used by the
and adaptive modulation over an infinite discrete time horizon physical layer. We call this extension multi-period NUM/AM

using a class of performance measures we call time smoothed (MPNUM/AM), since it averages over multiple time periods.
utility functions. We describe the properties of optimal physical MPNUM/AM is data source driven. with the data sources

layer power and link rate policies and characterize optimal . . .
upper layer policies, which determine when packets should be driving the demand for data throughput. This demand is

injected into the network. We also characterize the behavior of Supplied by the network at the expense of using transmitter
optimal policies as different system parameters are used. power. MPNUM explicitly models the tension between the

performance of upper layer network protocols and physical
layer power costs. Time averaged flows are also considered

Adaptive modulation (AM) is a technique used to maxin [11], [12] for buffered video and other transmissions.
imize spectral efficiency by adapting a link's transmitter Qur results focus on describing and characterizing the
power and rate under random channel conditions [1], [2bptimal data source, link power and link rate policies fae th
[3], [4], [5], [6]. We call this technique SE/AM for specthal  ireless network. We formulate the problem for a general
efficient adaptive modulation. SE/AM has proved useful ifyireless network but, due to space limitations, consider
many applications, but it is an approach aimed at optimizingnly a single link with multiple data flows traversing it.
a physical layer metric only. It does not take into accounpyr analysis of optimal MPNUM/AM policies shows that
the impact of upper layer protocols nor consider the charaghese protocols are different than those of either SE/AM or
teristics of the traffic carried over the link. NUM/AM. MPNUM/AM policies are functions of both the

To capture the effect of upper layer protocols, we comchannel state and the average data source rate (netwa} stat
bined network utility maximization (NUM) [7], [8], [9] and unlike SE/AM policies which have a fixed channel threshold
SE/AM to yield NUM/AM [10]. NUM/AM models the upper pelow which no data will be transmitted, MPNUM policies
layer performance of data flows through a wireless networil| transmit even when channel conditions are poor if the
using utility functions. Different utility functions capte the average data source rate is too low. Unlike NUM/AM which
behavior of different upper layer protocols (e.g. TCP.Jityti  always transmits, MPNUM/AM ceases to transmit if average
functions are functions of the rate at which data sourcesinj source data rates are sufficiently high.
packets into the network. NUM/AM models multiple data This paper is organized as follows: Section Il describes
flows traversing multiple links and yields optimal AM link the network model, and Section Il presents the system per-
power and link rate policies. These policies are optimal oveormance metric. Section IV poses the problem as an infinite
the distribution of channel states. However these policiasorizon average cost Markov decision process and describes
do not capture time dependent characteristics of the traffic method of solution. Section V investigates a single link
carried by the network, and they implicitly assume that uppeyith multiple data flows. Section VI describes numerical

layer protocols respond on the same timescale as physiegdamples, and Section VII summarizes our conclusions.
layer AM policies.

We extend NUM/AM to a broader class of utility functions Il. MODEL
that we call time smoothed utility functions. Time smoothed e consider an infinite horizon discrete time motlet

utility functions model the upper layer performance of dat@, 1. ... of a multi-hop wireless network under flat fading. The
flows through a wireless network as functions of the tim@etwork had =1, ..., L links andm=1,...,M flows. Multiple

T . flows can traverse a given link, and a given flow can traverse
This work was supported in part by the DARPA ITMANET program

under grant 1105741-1-TFIND and the AFOSR Complex Networksng Multiple links from its source to its destination. Routirg i
FA9550-08-1-0480 described by matrixA, where A, =1 if flow m traverses

I. INTRODUCTION



link | and Aj, = O otherwise. The channel gain mat® instantaneous rate. In this cae~ 1 may be appropriate.
describes the matrix of channel gains at titpavhere G}j For buffered video traffic, short term averages may be most
is the gain from the transmitter on linkto the receiver on appropriate and an intermediate valueédafan be used. More
link i. The gain matrix is random and models flat fadingcomplex averaging schemes can be used, but for clarity we
We assume the underlying process is Markov. The netwotse this simple method of averaging.
is assumed to have knowledge of current channel gains.
The network can adapt its link transmitter powers, link
rates, and the instantaneous rate at which packets agsbciat Our network performance metric is the average net benefit
with a given flow enter the network. Link transmits at associated with a set of policies. Net benefit is the diffeeen
power ¢f at timet. The vector of transmitter powerg' between the upper layer performance and physical layer
is determined by an AM power policy which is assumegower cost of the system. In a single time period this is
to be a function of the channel gain matr& and the expressed as
vector of average flow rates, which is described below.
For compactness of notation, the value of the power policy is E z Um(rt) — vl (G|, (4)
written asg' = (G, r'). Link | transmits at rat& at timet. m
The rate policy vector is a function of the channel gain matriwhereE is the expectation operator over channel states. The
and vector of link powers and is written &= R(G',¢").  parameterv > 0 determines the tradeoff between average
Each source injects packets into the network at instantaewer and average utility and can be thought of as the power
neous flow ratas,,. The vector of instantaneous source flowcost of performance in units of performance per Watt.
ratesut is a function ofG! and the time averaged flow rates Network performance is defined as the time average of the
rt. The instantaneous source flow rate policy vector is writteper-period performance over an infinite time horizon. This i
asu' = u(rt,Gl). written as
At any timet the total of all flow rates traversing a link 1 [N-1
must be less than the transmission rate of that link. This canJ, 4(ro) = lim —E [Z;(Z Um(t) —vT@(GLr) |, (5)
be written as N—oN | & G

Ill. SYSTEM PERFORMANCE

t . e
AU <R. 1) whererg > 0 is the vector of initial flow rates at each source
and the expectation is ovéG'} . The variablel, o(ro) is

Upper layer protocols are modeled as utility function h t benefit of usi lici d 0. Diff i
[13], [14]. TCP in particular [15] has been modeled in this € average net benetit ol using polickesind ¢. iteren

. . . I - Instantaneous source flow policiasor AM power policies
way. Associated with each flow is a utility functidgiy(rt,) P P P

which measures the upper layer performance of averagg)df:l_in ;_esult n d|ffe:jent atvferagt_e benefr;]. . the | t
flow m at timet. Different flows may have different utility € time averaged cost function emphasizes the long term

functions, reflecting the use of different protocols. Wili behav!or of the system and_does not discount Its future
functions are increasing strictly concave functions. c8iri behavior. We use th|s formulation as opposed to _ad|scour_1ted
concave utility functions exhibit diminishing returns it performance metric on pragmatic grounds, W'thOUt prior

rate, that is, as rate increases the incremental utilitwgroy knowledge, each byte of a file or voice message is of equal

smaller amounts. Video protocols often exhibit this proyer importance and there is little justification in discountiater
We consider utility functions of the form packets as inherently less important. As such (5) seeks to

capture the long term cost/benefit of using an instantaneous
G ot <a<1 flow function u. Transient network behaviors are “averaged
U(r) = |](-)79(1’ o—1 @ out”in (5).
The objective is to describe the instantaneous source flow
The parameten corresponds to different properties of therate policyu and AM power policy@ that maximize (5).
utility function. For a = 1 the utility function has the That is, we seek stationary functioo$ and ¢* such that
property of proportional fairness.

The variabler exponentially averages the instantaneous Jur g+ (Fo) = igﬁJn(fo), (6)
flow rates ) . . .
L gt (1 — o) (3) Whererris any time sequence of stationary functions con-
- b

tained in a defined “admissible” clags In this paperl is
where| is the identity matrix andd is a diagonal matrix the class of functions of the form(r,G) and (G,r).
with 0< 8 < I. We callr! the state of the system. Averaging Equations (5) and (6) describe an average cost Markov
the flow rates reflects the demands of different types dbecision Process, MDP, [16], [17]. The system state vagiabl
traffic. When8 = 0 each period is evaluated independentlyis r. The instantaneous source flow rate policyand AM
This models traffic that is delay sensitive or where packetsower policy ¢ are stationary functions of the channel state
can't be shifted between time periods. Voice traffic, with th and system state. Note that we are using the term policy to
appropriate utility function, can be modeled in this mannerefer to both the function and (more properly) to the seqaenc
For file transfer, packets can be shifted between periodsf using the function repeatedly over the infinite horizos. A
with the average rate a more important metric than the intuition would suggest, the average cost associated Wwéh t



optimal policies is independent of the initial stateand can demand for throughput, and the optimal policies supply this

be written as the constagdg: . demand. The associated optimality equation (8) becomes
i1
IV. METHOD OF SOLUTION ur,G) = ;jlrgma)(u(r)_v%Jr
>0 (11)

Bellman’s equation describes the optimality condition for V(6r + (1— 6)a)}.
an average cost MDP. The wireless network uses knowledge
of its stater and channel condition§ to adapt to changing ~ The per-period network performance is strictly concave
conditions. This assumption allows us to use the pos&nd increasing im and consequently it can be shown through
decision form of the Bellman equation [18]. Policigsand induction that the relative value functiaf(r) is also strictly
@* are optimal if one can find constad o+ and function concave and increasing. Thus, for ed&&landr, (11) can be

V(r) such that viewed as a constrained concave optimization problem with
3 Y _E U T a global maximum.
g V() = {m%(Zm m(fm) = V" @+ Lettingy = 6r + (1— 6)u, (11) becomes

V(Or+(1-6)u)}. y=ory _
() y*(r,G):argmax{u(r)—vem((ll«?)l+v(9)} (12)

The functionV(r) is called the relative value function and §>6r

captures the deviation from average system performance i )
when the system is in state Unfortunately equation (7) is Wherey is the optimal value at channel staéeand system

very difficult to solve analytically [17] and numerical meth stater. The optimal instantaneous source rate policy then has

ods must be used. Consequently, we characterize the prdp€ form
erties of optimal policies, describing how policies chaage U (r,G) = [y*—or][1-6]"1 y*>6r
system parameters are modified and then numerically solve I 0 otherwise.

for optimal policies. N At a given system state, the system will try to maintain
Our approach focuses on a convex optimization problem

. X Lo . a target average flow ratg for each channel conditiofs.
assp_mated W'.th (7). Formally, the mgX|m|zat|on n (7) iwov If the average flow rate is below* the link will transmit
positive functionsu and ¢. However in post-decision form,

AR ) . at a rate sufficient to return the average flow rateyto
the maximization 1S |nS|de. the expectation operator, ath If the average flow rate exceeg@s, then nothing will be
;?il;ezr?fgzgoggt':dal rgg:lc\l/zfug:j bc? ﬁ?r:?zu;‘;toend afolZFe rr'r?blﬁfansmitted that period and in subsequent periods until the

. . P np " “average rate declines below this threshold. The rate oirgecl
particular, for given values of and G the optimal values

of the policiesu(r,G) and ¢(G,r) can be expressed as 's determined b}@,_Wlth k= log(9)_UIMe Steps required to
the next transmission for a constaat

13)

[u(r,G),p(G,r)] = argmax{zmum(rm)—vT(ﬁJr Properties ofy*(r,G) can be deduced from (12) using
0,6>0 (8)  Topkis’ Monotonicity Theorem [20]. Topkis’ Theorem re-
V(br+(1-6)0)} lates the properties of supermodularity and monotoniéity.
where the optimization is over the positive real variahles function f(x,3) is supermodular ir(x, 3) if for any x > x
and . f(x,B)— f(x,B) is nondecreasing if. If we think of x as
the argument an# as a parameter, a supermodular function
V. A WIRELESSLINK is nondecreasing for an increasing parameier Topkis’

In this section we characterize the optimal instantaneoddieorem states that if is supermodular ir{x, 3), then
source flow ratel and AM link power policiesp for a single Koy
link. We first consider a single flow to illustrate the appttoac X(B) = ar?;l,‘a” (xB) (14)
and then analyze a single link W'th multiple flows. “.1 bOthis nondecreasing ifi, whereD is the set of feasiblg values.
cases we assume MQAM modulation and that the link raté . ?
function is Equation (11) is supermodular (Bwh.en the other param-
Glgt eters are held constant. Consequegtlys nondecreasing in
R =log (1+KN>7 (9 G, matching the intuition that the optimal policy seeks to
boost the target flow rates associated with better channel
whereK:ﬁ, andBER s the target bit error rate [19]. conditions. Equation (11) is submodular in Thus, the
For simplicity we normalizeN = 1. average power is nonincreasing asis increased. This
In the single flow case, (1) simplifies tb=R'. Thus the matches the intuition that the optimal policy will decrease
link power policy ¢ is determined by and can be expressedthe average power used as it becomes more costly.

as X The averaging factol® controls the coupling between
(_ exp’ _17 (10) discrete time periods. For a fixed channel state, the source
KG! will inject packets sufficient to return the system to theér

and only a single policy needs to be found. In this form thélow ratey*(r,G). Equation (12) is supermodular th Thus,
optimal instantaneous source flow policy drives the optimaf* is nondecreasing iff. A special case i9 = 0, since
link power policy and link rate. That isy represents the each period is independent of every other period. In this cas



the optimal policy is described in [10] and the network will
transmit in every time period. A8 gets larger the impact
of the link transmitting is felt to a greater degree in future
periods, thus increasing average utility at no incremental
power.

The optimal MPNUM/AM policies are different than those
of either SE/AM or NUM/AM. The MPNUM/AM power
policy is a function of the channel stat®8 and system
stater. Unlike SE/AM policies which have a fixed channel
threshold below which no data will be transmitted, MPNUM
policies will transmit even when channel conditions arerpoo
if the average data source rate is too low. Unlike NUM/AM
which always transmits, MPNUM/AM ceases to transmit if
average source data rates are sufficiently high. In general
MPNUM/AM will transmit whenevery*(r,G) > 8r and like
SE/AM and NUM/AM will increase transmitter power with
improving channel conditions.

A. Multiple Flows

Multiple data flows,M > 2, across a single link are
modeled in a similar manner. The link rate bounds the sum
of the instantaneous flows and (1) becortég' = R, As in
the single flow case, the instantaneous source rate policies
determine the AM power policy yielding

o= exp(1Tut) —1

Kat (15)
The associated optimality equation is
u(G,r) = argmax{u(r YL Al o
(@) = argmayu(n - v 16

V(0r + (1 —8)a)}.

Analysis is similar to the single flow case and vyields
optimal policies with more complex instantaneous flow rate
thresholds. Writingy(r,G) = 6r + (I — 8)u and definingy*
as the optimal value of the related unconstrained problem
yields the optimal policy

ut(r,G) = { [y —orl —6]* y* >6r

otherwise
where the inequalities are element wise. Each instantaneou
flow is associated with a threshoi,(r,G). As in the single
flow case, whery* > 6r the demands of the instantaneous
source vector determine the throughput supplied by the
network. Wheny* < 6r for one or more flows, the optimal
instantaneous flow rateg* for those flows may still be
nonzero, depending on the particular set of utility funesio
selected. The quantity* is computed from (16).

17)

(e

VI.

In this section we present results for a discrete approx-
imation for the case of a single flow over a single link.
The state space and policy space are partitioned and eelativ
value function for the discrete problem computed iterdfive
from the Bellman equation (7) using relative value itenatio
Although this approach converges for the problems shown
here, convergence is not, in general, guaranteed [17]. The
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horizon average cost Markov decision process. MPNUM/AM
captures the tension between the demand for upper layer
performance and the power cost of supplying it.

The MPNUM/AM power and link rate policies are func-
tions of both channel conditions and network state and are
different than either SE/AM policies or NUM/AM policies.
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[1]
transition probabilities used are based on IID Rayleiglniad 7]
of the elements 06.

The relative value iteration algorithm recursively congsut 3]
the optimal values of the average cdgt and relative value
functionV (r) for the discretized problem. LM(") be thekth
iterate ofVi, \7i<k) is the kth iterate of 7V;, andJ® is the 4
kth iterate ofJ. The value iteration algorithm is as follows: -

5
fori=1,...,N
L 0
initialize \/i< ) =0. [6]
repeat
2 M ._ oy®
VAR RS
3. Update. J® := V¥
4. Sopping criterion. quit whenJ® converges. (8]
5. Update. V<™ .= ® _ g,
where 7 is the Bellman operator [17]. [9]

Figure 1 shows that the value function is strictly concave
and increasing for three different valuesmfFigure 2 shows
the optimal policy for the case of a utility function with
a= % As can be seen, the policy is a function of bath
and G. Transmitter power cut-off occurs for larger valued'!!
of G as the system state increases as expected. Figure
3 plots average power versus average utility for differerif2]
values ofv. The three curves correspond to three different
values ofa. Figure 4 shows average power versus averages)
utility as v is varied for seven different values @, the

i - [14]
averaging parameter. The curves are produced by figing
and calculating average power and average utility for aeang
of values forv. [15]

VIl. CONCLUSION [16]

We extend NUM/AM to a broader class of utility functions[17]
that we call time smoothed utility functions. Time smoothed
utility functions reflect differences in the time dependenE18
characteristics of different types of traffic and also thegio)
different time scales used by different layers of the the
protocol stack. We term this extension as MPNUM/AM sincé?”!
it averages over multiple periods and is modeled as an iafinit

MPNUM policies have no fixed transmission threshold, but
will transmit even when channel conditions are poor if
the average flow rate is too low. Unlike NUM/AM which
always transmits, MPNUM/AM ceases to transmit if average
source data rates are sufficiently high. We characterize the
behavior of the optimal MPNUM policies as different system
parameters are used.
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