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Abstract— We present a crosslayer technique to find and
characterize optimal control policies for wireless networks
operating at different time scales at the upper layer and physical
layer. The technique can also be directly applied to networks
carrying traffic with different time dependencies such as data
or video. Our approach combines network utility maximization
and adaptive modulation over an infinite discrete time horizon
using a class of performance measures we call time smoothed
utility functions. We describe the properties of optimal physical
layer power and link rate policies and characterize optimal
upper layer policies, which determine when packets should be
injected into the network. We also characterize the behavior of
optimal policies as different system parameters are used.

I. I NTRODUCTION

Adaptive modulation (AM) is a technique used to max-
imize spectral efficiency by adapting a link’s transmitter
power and rate under random channel conditions [1], [2],
[3], [4], [5], [6]. We call this technique SE/AM for spectrally
efficient adaptive modulation. SE/AM has proved useful in
many applications, but it is an approach aimed at optimizing
a physical layer metric only. It does not take into account
the impact of upper layer protocols nor consider the charac-
teristics of the traffic carried over the link.

To capture the effect of upper layer protocols, we com-
bined network utility maximization (NUM) [7], [8], [9] and
SE/AM to yield NUM/AM [10]. NUM/AM models the upper
layer performance of data flows through a wireless network
using utility functions. Different utility functions capture the
behavior of different upper layer protocols (e.g. TCP.) Utility
functions are functions of the rate at which data sources inject
packets into the network. NUM/AM models multiple data
flows traversing multiple links and yields optimal AM link
power and link rate policies. These policies are optimal over
the distribution of channel states. However these policies
do not capture time dependent characteristics of the traffic
carried by the network, and they implicitly assume that upper
layer protocols respond on the same timescale as physical
layer AM policies.

We extend NUM/AM to a broader class of utility functions
that we call time smoothed utility functions. Time smoothed
utility functions model the upper layer performance of data
flows through a wireless network as functions of the time
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averaged rate at which packets are injected into the network.
The time averaging serves two purposes. First, it captures
differences in the characteristics of different data types, and
second it reflects the observation that upper layer protocols
often operate at longer time scales than those used by the
physical layer. We call this extension multi-period NUM/AM
(MPNUM/AM), since it averages over multiple time periods.
MPNUM/AM is data source driven, with the data sources
driving the demand for data throughput. This demand is
supplied by the network at the expense of using transmitter
power. MPNUM explicitly models the tension between the
performance of upper layer network protocols and physical
layer power costs. Time averaged flows are also considered
in [11], [12] for buffered video and other transmissions.

Our results focus on describing and characterizing the
optimal data source, link power and link rate policies for the
wireless network. We formulate the problem for a general
wireless network but, due to space limitations, consider
only a single link with multiple data flows traversing it.
Our analysis of optimal MPNUM/AM policies shows that
these protocols are different than those of either SE/AM or
NUM/AM. MPNUM/AM policies are functions of both the
channel state and the average data source rate (network state.)
Unlike SE/AM policies which have a fixed channel threshold
below which no data will be transmitted, MPNUM policies
will transmit even when channel conditions are poor if the
average data source rate is too low. Unlike NUM/AM which
always transmits, MPNUM/AM ceases to transmit if average
source data rates are sufficiently high.

This paper is organized as follows: Section II describes
the network model, and Section III presents the system per-
formance metric. Section IV poses the problem as an infinite
horizon average cost Markov decision process and describes
a method of solution. Section V investigates a single link
with multiple data flows. Section VI describes numerical
examples, and Section VII summarizes our conclusions.

II. M ODEL

We consider an infinite horizon discrete time modelt =
0,1, ... of a multi-hop wireless network under flat fading. The
network hasl = 1, ...,L links andm = 1, ...,M flows. Multiple
flows can traverse a given link, and a given flow can traverse
multiple links from its source to its destination. Routing is
described by matrixA, where Alm = 1 if flow m traverses



link l and Alm = 0 otherwise. The channel gain matrixGt

describes the matrix of channel gains at timet, whereGt
i j

is the gain from the transmitter on linkj to the receiver on
link i. The gain matrix is random and models flat fading.
We assume the underlying process is Markov. The network
is assumed to have knowledge of current channel gains.

The network can adapt its link transmitter powers, link
rates, and the instantaneous rate at which packets associated
with a given flow enter the network. Linkl transmits at
power φ t

l at time t. The vector of transmitter powersφ t

is determined by an AM power policy which is assumed
to be a function of the channel gain matrixGt and the
vector of average flow ratesrt , which is described below.
For compactness of notation, the value of the power policy is
written asφ t = φ(Gt ,rt). Link l transmits at rateRt

l at timet.
The rate policy vector is a function of the channel gain matrix
and vector of link powers and is written asRt = R(Gt ,φ t).

Each source injects packets into the network at instanta-
neous flow rateut

m. The vector of instantaneous source flow
ratesut is a function ofGt and the time averaged flow rates
rt . The instantaneous source flow rate policy vector is written
asut = u(rt ,Gt).

At any time t the total of all flow rates traversing a link
must be less than the transmission rate of that link. This can
be written as

Aut ≤ Rt . (1)

Upper layer protocols are modeled as utility functions
[13], [14]. TCP in particular [15] has been modeled in this
way. Associated with each flow is a utility functionUm(rt

m)
which measures the upper layer performance of averaged
flow m at time t. Different flows may have different utility
functions, reflecting the use of different protocols. Utility
functions are increasing strictly concave functions. Strictly
concave utility functions exhibit diminishing returns with
rate, that is, as rate increases the incremental utility grows by
smaller amounts. Video protocols often exhibit this property.
We consider utility functions of the form

U(r) =

{

r1−α

1−α 0 < α < 1
logr α = 1

(2)

The parameterα corresponds to different properties of the
utility function. For α = 1 the utility function has the
property of proportional fairness.

The variabler exponentially averages the instantaneous
flow rates

rt+1 = θrt +(I −θ)ut , (3)

where I is the identity matrix andθ is a diagonal matrix
with 0≤ θ < I. We callrt the state of the system. Averaging
the flow rates reflects the demands of different types of
traffic. Whenθ = 0 each period is evaluated independently.
This models traffic that is delay sensitive or where packets
can’t be shifted between time periods. Voice traffic, with the
appropriate utility function, can be modeled in this manner.
For file transfer, packets can be shifted between periods,
with the average rater a more important metric than the

instantaneous rate. In this caseθ ≈ 1 may be appropriate.
For buffered video traffic, short term averages may be most
appropriate and an intermediate value ofθ can be used. More
complex averaging schemes can be used, but for clarity we
use this simple method of averaging.

III. SYSTEM PERFORMANCE

Our network performance metric is the average net benefit
associated with a set of policies. Net benefit is the difference
between the upper layer performance and physical layer
power cost of the system. In a single time period this is
expressed as

E

[

∑
m

Um(rt
m)−νT φ(Gt ,rt)

]

, (4)

whereE is the expectation operator over channel states. The
parameterν ≥ 0 determines the tradeoff between average
power and average utility and can be thought of as the power
cost of performance in units of performance per Watt.

Network performance is defined as the time average of the
per-period performance over an infinite time horizon. This is
written as

Ju,φ (r0) = lim
N→∞

1
N

E

[

N−1

∑
t=0

(∑
m

Um(rt
m)−νT φ(Gt ,rt))

]

, (5)

wherer0 > 0 is the vector of initial flow rates at each source
and the expectation is over{Gt}∞

t=0. The variableJu,φ (r0) is
the average net benefit of using policiesu and φ . Different
instantaneous source flow policiesu or AM power policies
φ can result in different average benefit.

The time averaged cost function emphasizes the long term
behavior of the system and does not discount its future
behavior. We use this formulation as opposed to a discounted
performance metric on pragmatic grounds; without prior
knowledge, each byte of a file or voice message is of equal
importance and there is little justification in discountinglater
packets as inherently less important. As such (5) seeks to
capture the long term cost/benefit of using an instantaneous
flow function u. Transient network behaviors are “averaged
out” in (5).

The objective is to describe the instantaneous source flow
rate policy u and AM power policyφ that maximize (5).
That is, we seek stationary functionsu∗ andφ ∗ such that

Ju∗,φ∗(r0) = sup
π∈Π

Jπ(r0), (6)

whereπ is any time sequence of stationary functions con-
tained in a defined “admissible” classΠ. In this paperΠ is
the class of functions of the formγ(r,G) andβ (G,r).

Equations (5) and (6) describe an average cost Markov
Decision Process, MDP, [16], [17]. The system state variable
is r. The instantaneous source flow rate policyu and AM
power policyφ are stationary functions of the channel state
and system state. Note that we are using the term policy to
refer to both the function and (more properly) to the sequence
of using the function repeatedly over the infinite horizon. As
intuition would suggest, the average cost associated with the



optimal policies is independent of the initial stater0 and can
be written as the constantJu∗,φ∗ .

IV. M ETHOD OFSOLUTION

Bellman’s equation describes the optimality condition for
an average cost MDP. The wireless network uses knowledge
of its stater and channel conditionsG to adapt to changing
conditions. This assumption allows us to use the post-
decision form of the Bellman equation [18]. Policiesu∗ and
φ ∗ are optimal if one can find constantJu∗,φ∗ and function
V (r) such that

Ju∗,φ∗ +V (r) = E{max
u,φ≥0

(∑m Um(rm)−νT φ+

V (θr +(I −θ)u)} .
(7)

The functionV (r) is called the relative value function and
captures the deviation from average system performance
when the system is in stater. Unfortunately equation (7) is
very difficult to solve analytically [17] and numerical meth-
ods must be used. Consequently, we characterize the prop-
erties of optimal policies, describing how policies changeas
system parameters are modified and then numerically solve
for optimal policies.

Our approach focuses on a convex optimization problem
associated with (7). Formally, the maximization in (7) is over
positive functionsu and φ . However in post-decision form,
the maximization is inside the expectation operator, allowing
values of the optimal policies to be calculated as variables
from an associated real valued optimization problem. In
particular, for given values ofr and G the optimal values
of the policiesu(r,G) andφ(G,r) can be expressed as

[u(r,G),φ(G,r)] = argmax
û,φ̂≥0

{

∑m Um(rm)−νT φ̂+

V (θr +(I −θ)û)}
(8)

where the optimization is over the positive real variables ˆu
and φ̂ .

V. A W IRELESSL INK

In this section we characterize the optimal instantaneous
source flow rateu and AM link power policiesφ for a single
link. We first consider a single flow to illustrate the approach
and then analyze a single link with multiple flows. In both
cases we assume MQAM modulation and that the link rate
function is

Rt = log

(

1+K
Gtφ t

N

)

, (9)

whereK = −1
log(BER) , andBER is the target bit error rate [19].

For simplicity we normalizeN = 1.
In the single flow case, (1) simplifies tout = Rt . Thus the

link power policyφ is determined byu and can be expressed
as

φ t =
exput

−1
KGt , (10)

and only a single policy needs to be found. In this form the
optimal instantaneous source flow policy drives the optimal
link power policy and link rate. That is,u represents the

demand for throughput, and the optimal policies supply this
demand. The associated optimality equation (8) becomes

u(r,G) = argmax
û≥0

{U(r)−ν expû −1
KG +

V (θr +(1−θ)û)}.
(11)

The per-period network performance is strictly concave
and increasing inr and consequently it can be shown through
induction that the relative value functionV (r) is also strictly
concave and increasing. Thus, for eachG andr, (11) can be
viewed as a constrained concave optimization problem with
a global maximum.

Letting y = θr +(1−θ)u, (11) becomes

y∗(r,G) = argmax
ŷ≥θr

{

U(r)−ν
exp( ŷ−θr

(1−θ) )−1

KG
+V (ŷ)

}

(12)

wherey∗ is the optimal value at channel stateG and system
stater. The optimal instantaneous source rate policy then has
the form

u∗(r,G) =

{

[y∗−θr][1−θ ]−1 y∗ ≥ θr
0 otherwise.

(13)

At a given system stater, the system will try to maintain
a target average flow ratey∗ for each channel conditionG.
If the average flow rate is belowy∗ the link will transmit
at a rate sufficient to return the average flow rate toy∗.
If the average flow rate exceedsy∗, then nothing will be
transmitted that period and in subsequent periods until the
average rate declines below this threshold. The rate of decline
is determined byθ , with k = log(y∗/r)

log(θ) time steps required to
the next transmission for a constantG.

Properties ofy∗(r,G) can be deduced from (12) using
Topkis’ Monotonicity Theorem [20]. Topkis’ Theorem re-
lates the properties of supermodularity and monotonicity.A
function f (x,β ) is supermodular in(x,β ) if for any x

′
> x

f (x
′
,β )− f (x,β ) is nondecreasing inβ . If we think of x as

the argument andβ as a parameter, a supermodular function
is nondecreasing for an increasing parameterβ . Topkis’
Theorem states that iff is supermodular in(x,β ), then

x∗(β ) = argmax
x∈D

f (x,β ) (14)

is nondecreasing inβ , whereD is the set of feasiblex values.
Equation (11) is supermodular inG when the other param-

eters are held constant. Consequentlyy∗ is nondecreasing in
G, matching the intuition that the optimal policy seeks to
boost the target flow rates associated with better channel
conditions. Equation (11) is submodular inν . Thus, the
average power is nonincreasing asν is increased. This
matches the intuition that the optimal policy will decrease
the average power used as it becomes more costly.

The averaging factorθ controls the coupling between
discrete time periods. For a fixed channel state, the source
will inject packets sufficient to return the system to the target
flow ratey∗(r,G). Equation (12) is supermodular inθ . Thus,
y∗ is nondecreasing inθ . A special case isθ = 0, since
each period is independent of every other period. In this case



the optimal policy is described in [10] and the network will
transmit in every time period. Asθ gets larger the impact
of the link transmitting is felt to a greater degree in future
periods, thus increasing average utility at no incremental
power.

The optimal MPNUM/AM policies are different than those
of either SE/AM or NUM/AM. The MPNUM/AM power
policy is a function of the channel stateG and system
stater. Unlike SE/AM policies which have a fixed channel
threshold below which no data will be transmitted, MPNUM
policies will transmit even when channel conditions are poor
if the average data source rate is too low. Unlike NUM/AM
which always transmits, MPNUM/AM ceases to transmit if
average source data rates are sufficiently high. In general
MPNUM/AM will transmit whenevery∗(r,G) ≥ θr and like
SE/AM and NUM/AM will increase transmitter power with
improving channel conditions.

A. Multiple Flows

Multiple data flows, M ≥ 2, across a single link are
modeled in a similar manner. The link rate bounds the sum
of the instantaneous flows and (1) becomes1T ut = Rt . As in
the single flow case, the instantaneous source rate policies
determine the AM power policy yielding

φ t =
exp(1T ut)−1

KGt . (15)

The associated optimality equation is

u(G,r) = argmax
û≥0

{U(r)−ν exp(1T û)−1
KG +

V (θr +(I −θ)û)} .
(16)

Analysis is similar to the single flow case and yields
optimal policies with more complex instantaneous flow rate
thresholds. Writingy(r,G) = θr +(I − θ)u and definingy∗

as the optimal value of the related unconstrained problem
yields the optimal policy

u∗(r,G) =

{

[y∗−θr][I −θ ]−1 y∗ ≥ θr
û∗ otherwise

(17)

where the inequalities are element wise. Each instantaneous
flow is associated with a thresholdy∗m(r,G). As in the single
flow case, wheny∗ ≥ θr the demands of the instantaneous
source vector determine the throughput supplied by the
network. Wheny∗ ≤ θr for one or more flows, the optimal
instantaneous flow rates ˆu∗ for those flows may still be
nonzero, depending on the particular set of utility functions
selected. The quantity ˆu∗ is computed from (16).

VI. N UMERICAL RESULTS

In this section we present results for a discrete approx-
imation for the case of a single flow over a single link.
The state space and policy space are partitioned and relative
value function for the discrete problem computed iteratively
from the Bellman equation (7) using relative value iteration.
Although this approach converges for the problems shown
here, convergence is not, in general, guaranteed [17]. The
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transition probabilities used are based on IID Rayleigh fading
of the elements ofG.

The relative value iteration algorithm recursively computes
the optimal values of the average costJu∗ and relative value
functionV (r) for the discretized problem. LetV (k)

i be thekth
iterate ofVi, V̂ (k)

i is the kth iterate ofT Vi, and J(k) is the
kth iterate ofJ. The value iteration algorithm is as follows:

for i = 1, . . . ,N

initialize V (0)
i = 0.

repeat

1. V̂ (k)
i := 0.

2. V̂ (k)
i := T V (k)

i .

3. Update. J(k) := V̂ (k)
1 .

4. Stopping criterion. quit whenJ(k) converges.

5. Update. V (k+1)
i := V̂ (k)

i −V̂ (k)
1 .

whereT is the Bellman operator [17].
Figure 1 shows that the value function is strictly concave

and increasing for three different values ofα. Figure 2 shows
the optimal policy for the case of a utility function with
α = 1

2. As can be seen, the policy is a function of bothr
and G. Transmitter power cut-off occurs for larger values
of G as the system stater increases as expected. Figure
3 plots average power versus average utility for different
values ofν . The three curves correspond to three different
values ofα. Figure 4 shows average power versus average
utility as ν is varied for seven different values ofθ , the
averaging parameter. The curves are produced by fixingθ
and calculating average power and average utility for a range
of values forν .

VII. C ONCLUSION

We extend NUM/AM to a broader class of utility functions
that we call time smoothed utility functions. Time smoothed
utility functions reflect differences in the time dependent
characteristics of different types of traffic and also the
different time scales used by different layers of the the
protocol stack. We term this extension as MPNUM/AM since
it averages over multiple periods and is modeled as an infinite

horizon average cost Markov decision process. MPNUM/AM
captures the tension between the demand for upper layer
performance and the power cost of supplying it.

The MPNUM/AM power and link rate policies are func-
tions of both channel conditions and network state and are
different than either SE/AM policies or NUM/AM policies.
MPNUM policies have no fixed transmission threshold, but
will transmit even when channel conditions are poor if
the average flow rate is too low. Unlike NUM/AM which
always transmits, MPNUM/AM ceases to transmit if average
source data rates are sufficiently high. We characterize the
behavior of the optimal MPNUM policies as different system
parameters are used.
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